zgce commited on
Commit
f591f55
1 Parent(s): b696fdb

Upload 12 files

Browse files
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "F:/models/Skywork-13B-Base-8bits",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16.0,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 64,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "k_proj",
21
+ "gate_proj",
22
+ "v_proj",
23
+ "up_proj",
24
+ "q_proj",
25
+ "down_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae4940e051ce6ec0a5ebfec426ca58281bb2fff6b3c7db4caa91ba9430f3d1f4
3
+ size 1165755562
all_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.0,
3
+ "train_loss": 1.5255728854658854,
4
+ "train_runtime": 1381.7862,
5
+ "train_samples_per_second": 0.524,
6
+ "train_steps_per_second": 0.524
7
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenization_skywork.py ADDED
@@ -0,0 +1,250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SkyworkAI and the HuggingFace Inc. team. All rights reserved.
2
+ # This code is built upon Huggingface's transformers repository.
3
+
4
+ """Tokenization classes for Skywork."""
5
+ import os
6
+ from shutil import copyfile
7
+ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
8
+
9
+ import sentencepiece as spm
10
+
11
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
12
+ from transformers.utils import logging
13
+
14
+ if TYPE_CHECKING:
15
+ from transformers.pipelines.conversational import Conversation
16
+
17
+ logger = logging.get_logger(__name__)
18
+
19
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
20
+
21
+
22
+ SPIECE_UNDERLINE = "▁"
23
+
24
+ B_INST, E_INST = "[INST]", "[/INST]"
25
+ B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
26
+
27
+ DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
28
+ that your responses are socially unbiased and positive in nature.
29
+
30
+ If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""
31
+
32
+ class SkyworkTokenizer(PreTrainedTokenizer):
33
+
34
+ vocab_files_names = VOCAB_FILES_NAMES
35
+ # pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
36
+ # max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
37
+ model_input_names = ["input_ids", "attention_mask"]
38
+
39
+ def __init__(
40
+ self,
41
+ vocab_file,
42
+ unk_token="<unk>",
43
+ bos_token="<s>",
44
+ eos_token="</s>",
45
+ pad_token=None,
46
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
47
+ add_bos_token=True,
48
+ add_eos_token=False,
49
+ clean_up_tokenization_spaces=False,
50
+ legacy=True,
51
+ **kwargs,
52
+ ):
53
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
54
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
55
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
56
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
57
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
58
+ self.legacy = legacy
59
+ self.vocab_file = vocab_file
60
+ self.add_bos_token = add_bos_token
61
+ self.add_eos_token = add_eos_token
62
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
63
+ self.sp_model.Load(vocab_file)
64
+ super().__init__(
65
+ bos_token=bos_token,
66
+ eos_token=eos_token,
67
+ unk_token=unk_token,
68
+ pad_token=pad_token,
69
+ add_bos_token=add_bos_token,
70
+ add_eos_token=add_eos_token,
71
+ sp_model_kwargs=self.sp_model_kwargs,
72
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
73
+ legacy=legacy,
74
+ **kwargs,
75
+ )
76
+ if legacy:
77
+ logger.warning_once(
78
+ f"You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. "
79
+ )
80
+
81
+
82
+ def __getstate__(self):
83
+ state = self.__dict__.copy()
84
+ state["sp_model"] = None
85
+ state["sp_model_proto"] = self.sp_model.serialized_model_proto()
86
+ return state
87
+
88
+ def __setstate__(self, d):
89
+ self.__dict__ = d
90
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
91
+ self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
92
+
93
+ @property
94
+ def vocab_size(self):
95
+ """Returns vocab size"""
96
+ return self.sp_model.get_piece_size()
97
+
98
+ def get_vocab(self):
99
+ """Returns vocab as a dict"""
100
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
101
+ vocab.update(self.added_tokens_encoder)
102
+ return vocab
103
+
104
+ # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize
105
+ def tokenize(self, text, **kwargs) -> List[str]:
106
+ # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at
107
+ # the beginning of the text
108
+ if not self.legacy:
109
+ text = SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " ")
110
+ return super().tokenize(text, **kwargs)
111
+
112
+ # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize
113
+ def _tokenize(self, text):
114
+ if not self.legacy:
115
+ is_first = text.startswith(SPIECE_UNDERLINE)
116
+ if is_first:
117
+ text = text[1:]
118
+
119
+ tokens = self.sp_model.encode(text, out_type=str)
120
+
121
+ if not self.legacy and not is_first and not text.startswith(" ") and tokens[0].startswith(SPIECE_UNDERLINE):
122
+ tokens = ([tokens[0][1:]] if len(tokens[0]) > 1 else []) + tokens[1:]
123
+ return tokens
124
+
125
+ def _convert_token_to_id(self, token):
126
+ """Converts a token (str) in an id using the vocab."""
127
+ return self.sp_model.piece_to_id(token)
128
+
129
+ def _convert_id_to_token(self, index):
130
+ """Converts an index (integer) in a token (str) using the vocab."""
131
+ token = self.sp_model.IdToPiece(index)
132
+ return token
133
+
134
+ def convert_tokens_to_string(self, tokens):
135
+ """Converts a sequence of tokens (string) in a single string."""
136
+ current_sub_tokens = []
137
+ out_string = ""
138
+ prev_is_special = False
139
+ for i, token in enumerate(tokens):
140
+ # make sure that special tokens are not decoded using sentencepiece model
141
+ if token in self.all_special_tokens:
142
+ if not prev_is_special and i != 0:
143
+ out_string += " "
144
+ out_string += self.sp_model.decode(current_sub_tokens) + token
145
+ prev_is_special = True
146
+ current_sub_tokens = []
147
+ else:
148
+ current_sub_tokens.append(token)
149
+ prev_is_special = False
150
+ out_string += self.sp_model.decode(current_sub_tokens)
151
+ return out_string
152
+
153
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
154
+ if not os.path.isdir(save_directory):
155
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
156
+ return
157
+ out_vocab_file = os.path.join(
158
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
159
+ )
160
+
161
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
162
+ copyfile(self.vocab_file, out_vocab_file)
163
+ elif not os.path.isfile(self.vocab_file):
164
+ with open(out_vocab_file, "wb") as fi:
165
+ content_spiece_model = self.sp_model.serialized_model_proto()
166
+ fi.write(content_spiece_model)
167
+
168
+ return (out_vocab_file,)
169
+
170
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
171
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
172
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
173
+
174
+ output = bos_token_id + token_ids_0 + eos_token_id
175
+
176
+ if token_ids_1 is not None:
177
+ output = output + bos_token_id + token_ids_1 + eos_token_id
178
+
179
+ return output
180
+
181
+ def get_special_tokens_mask(
182
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
183
+ ) -> List[int]:
184
+ if already_has_special_tokens:
185
+ return super().get_special_tokens_mask(
186
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
187
+ )
188
+
189
+ bos_token_id = [1] if self.add_bos_token else []
190
+ eos_token_id = [1] if self.add_eos_token else []
191
+
192
+ if token_ids_1 is None:
193
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
194
+ return (
195
+ bos_token_id
196
+ + ([0] * len(token_ids_0))
197
+ + eos_token_id
198
+ + bos_token_id
199
+ + ([0] * len(token_ids_1))
200
+ + eos_token_id
201
+ )
202
+
203
+ def create_token_type_ids_from_sequences(
204
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
205
+ ) -> List[int]:
206
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
207
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
208
+
209
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
210
+
211
+ if token_ids_1 is not None:
212
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
213
+
214
+ return output
215
+
216
+ def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
217
+ dialogue = list(conversation.iter_texts())
218
+ if not all([is_user for is_user, msg in dialogue[::2]]) or not all(
219
+ [not is_user for is_user, msg in dialogue[1::2]]
220
+ ):
221
+ raise ValueError(
222
+ "The model only supports 'user' and 'assistant' roles, starting with user and alternating (u/a/u/a/u...)"
223
+ )
224
+
225
+ dialog_tokens: List[int] = []
226
+ if len(conversation.past_user_inputs) > 0:
227
+ if not conversation.past_user_inputs[0].startswith(B_SYS) or E_SYS not in conversation.past_user_inputs[0]:
228
+ conversation.past_user_inputs[0] = (
229
+ B_SYS + DEFAULT_SYSTEM_PROMPT + E_SYS + conversation.past_user_inputs[0]
230
+ )
231
+ elif not dialogue[0][1].startswith(B_SYS) or E_SYS not in dialogue[0][1]:
232
+ dialogue[0] = (dialogue[0][0], B_SYS + DEFAULT_SYSTEM_PROMPT + E_SYS + dialogue[0][1])
233
+
234
+ dialog_tokens += sum(
235
+ [
236
+ [self.bos_token_id]
237
+ + self.encode(
238
+ f"{B_INST} {(prompt[1]).strip()} {E_INST} {(answer[1]).strip()} ", add_special_tokens=False
239
+ )
240
+ + [self.eos_token_id]
241
+ for prompt, answer in zip(dialogue[::2], dialogue[1::2])
242
+ ],
243
+ [],
244
+ )
245
+ if not (dialogue[-1][0]):
246
+ raise ValueError(f"Last message must be from user, got {dialogue[-1]['role']}")
247
+ dialog_tokens += [self.bos_token_id] + self.encode(
248
+ f"{B_INST} {(dialogue[-1][1]).strip()} {E_INST}", add_special_tokens=False
249
+ )
250
+ return dialog_tokens
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36ec9a4d6fd7cc78fbb9e4afd89fb04cba0381b08a842ca0b60826073821f594
3
+ size 994250
tokenizer_config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": true,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "auto_map": {
31
+ "AutoTokenizer": [
32
+ "tokenization_skywork.SkyworkTokenizer",
33
+ null
34
+ ]
35
+ },
36
+ "bos_token": "<s>",
37
+ "clean_up_tokenization_spaces": false,
38
+ "eos_token": "</s>",
39
+ "legacy": true,
40
+ "model_max_length": 1000000000000000019884624838656,
41
+ "pad_token": "</s>",
42
+ "padding_side": "right",
43
+ "sp_model_kwargs": {},
44
+ "split_special_tokens": false,
45
+ "tokenizer_class": "SkyworkTokenizer",
46
+ "unk_token": "<unk>"
47
+ }
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.0,
3
+ "train_loss": 1.5255728854658854,
4
+ "train_runtime": 1381.7862,
5
+ "train_samples_per_second": 0.524,
6
+ "train_steps_per_second": 0.524
7
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 5, "total_steps": 724, "loss": 2.1959, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.999411623120412e-05, "epoch": 0.01, "percentage": 0.69, "elapsed_time": "0:00:09", "remaining_time": "0:23:15"}
2
+ {"current_steps": 10, "total_steps": 724, "loss": 1.7787, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.997646769431532e-05, "epoch": 0.03, "percentage": 1.38, "elapsed_time": "0:00:20", "remaining_time": "0:24:01"}
3
+ {"current_steps": 15, "total_steps": 724, "loss": 1.167, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9947062696526445e-05, "epoch": 0.04, "percentage": 2.07, "elapsed_time": "0:00:29", "remaining_time": "0:23:06"}
4
+ {"current_steps": 20, "total_steps": 724, "loss": 2.0242, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.990591507881416e-05, "epoch": 0.06, "percentage": 2.76, "elapsed_time": "0:00:38", "remaining_time": "0:22:41"}
5
+ {"current_steps": 25, "total_steps": 724, "loss": 2.2836, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9853044209423996e-05, "epoch": 0.07, "percentage": 3.45, "elapsed_time": "0:00:49", "remaining_time": "0:23:06"}
6
+ {"current_steps": 30, "total_steps": 724, "loss": 1.9629, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9788474974753686e-05, "epoch": 0.08, "percentage": 4.14, "elapsed_time": "0:00:58", "remaining_time": "0:22:39"}
7
+ {"current_steps": 35, "total_steps": 724, "loss": 2.5583, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.971223776763907e-05, "epoch": 0.1, "percentage": 4.83, "elapsed_time": "0:01:09", "remaining_time": "0:22:42"}
8
+ {"current_steps": 40, "total_steps": 724, "loss": 1.9105, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.962436847304818e-05, "epoch": 0.11, "percentage": 5.52, "elapsed_time": "0:01:17", "remaining_time": "0:22:05"}
9
+ {"current_steps": 45, "total_steps": 724, "loss": 2.1563, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9524908451190096e-05, "epoch": 0.12, "percentage": 6.22, "elapsed_time": "0:01:26", "remaining_time": "0:21:48"}
10
+ {"current_steps": 50, "total_steps": 724, "loss": 2.3299, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9413904518046674e-05, "epoch": 0.14, "percentage": 6.91, "elapsed_time": "0:01:36", "remaining_time": "0:21:44"}
11
+ {"current_steps": 55, "total_steps": 724, "loss": 1.4083, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.929140892333616e-05, "epoch": 0.15, "percentage": 7.6, "elapsed_time": "0:01:44", "remaining_time": "0:21:06"}
12
+ {"current_steps": 60, "total_steps": 724, "loss": 1.7837, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9157479325919156e-05, "epoch": 0.17, "percentage": 8.29, "elapsed_time": "0:01:53", "remaining_time": "0:20:51"}
13
+ {"current_steps": 65, "total_steps": 724, "loss": 1.4737, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.901217876665858e-05, "epoch": 0.18, "percentage": 8.98, "elapsed_time": "0:02:00", "remaining_time": "0:20:25"}
14
+ {"current_steps": 70, "total_steps": 724, "loss": 2.1072, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8855575638746135e-05, "epoch": 0.19, "percentage": 9.67, "elapsed_time": "0:02:13", "remaining_time": "0:20:45"}
15
+ {"current_steps": 75, "total_steps": 724, "loss": 0.8345, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.868774365550962e-05, "epoch": 0.21, "percentage": 10.36, "elapsed_time": "0:02:24", "remaining_time": "0:20:48"}
16
+ {"current_steps": 80, "total_steps": 724, "loss": 2.4821, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.850876181571592e-05, "epoch": 0.22, "percentage": 11.05, "elapsed_time": "0:02:36", "remaining_time": "0:20:59"}
17
+ {"current_steps": 85, "total_steps": 724, "loss": 1.6394, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.831871436638613e-05, "epoch": 0.23, "percentage": 11.74, "elapsed_time": "0:02:47", "remaining_time": "0:20:58"}
18
+ {"current_steps": 90, "total_steps": 724, "loss": 1.6403, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.811769076314044e-05, "epoch": 0.25, "percentage": 12.43, "elapsed_time": "0:02:58", "remaining_time": "0:20:59"}
19
+ {"current_steps": 95, "total_steps": 724, "loss": 1.6487, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.790578562809116e-05, "epoch": 0.26, "percentage": 13.12, "elapsed_time": "0:03:11", "remaining_time": "0:21:10"}
20
+ {"current_steps": 100, "total_steps": 724, "loss": 1.751, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7683098705304e-05, "epoch": 0.28, "percentage": 13.81, "elapsed_time": "0:03:21", "remaining_time": "0:20:55"}
21
+ {"current_steps": 105, "total_steps": 724, "loss": 1.7423, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7449734813848345e-05, "epoch": 0.29, "percentage": 14.5, "elapsed_time": "0:03:29", "remaining_time": "0:20:35"}
22
+ {"current_steps": 110, "total_steps": 724, "loss": 1.9435, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.720580379845883e-05, "epoch": 0.3, "percentage": 15.19, "elapsed_time": "0:03:38", "remaining_time": "0:20:20"}
23
+ {"current_steps": 115, "total_steps": 724, "loss": 1.2112, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.695142047783118e-05, "epoch": 0.32, "percentage": 15.88, "elapsed_time": "0:03:46", "remaining_time": "0:19:57"}
24
+ {"current_steps": 120, "total_steps": 724, "loss": 1.5366, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.668670459057692e-05, "epoch": 0.33, "percentage": 16.57, "elapsed_time": "0:03:54", "remaining_time": "0:19:40"}
25
+ {"current_steps": 125, "total_steps": 724, "loss": 1.1842, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.641178073886224e-05, "epoch": 0.35, "percentage": 17.27, "elapsed_time": "0:04:03", "remaining_time": "0:19:24"}
26
+ {"current_steps": 130, "total_steps": 724, "loss": 1.2011, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6126778329757516e-05, "epoch": 0.36, "percentage": 17.96, "elapsed_time": "0:04:11", "remaining_time": "0:19:10"}
27
+ {"current_steps": 135, "total_steps": 724, "loss": 1.2053, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.583183151432527e-05, "epoch": 0.37, "percentage": 18.65, "elapsed_time": "0:04:20", "remaining_time": "0:18:56"}
28
+ {"current_steps": 140, "total_steps": 724, "loss": 1.4354, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.5527079124475045e-05, "epoch": 0.39, "percentage": 19.34, "elapsed_time": "0:04:29", "remaining_time": "0:18:42"}
29
+ {"current_steps": 145, "total_steps": 724, "loss": 1.5641, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.521266460761497e-05, "epoch": 0.4, "percentage": 20.03, "elapsed_time": "0:04:37", "remaining_time": "0:18:26"}
30
+ {"current_steps": 150, "total_steps": 724, "loss": 1.7298, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.488873595913091e-05, "epoch": 0.41, "percentage": 20.72, "elapsed_time": "0:04:46", "remaining_time": "0:18:15"}
31
+ {"current_steps": 155, "total_steps": 724, "loss": 1.2547, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.4555445652724795e-05, "epoch": 0.43, "percentage": 21.41, "elapsed_time": "0:04:53", "remaining_time": "0:17:56"}
32
+ {"current_steps": 160, "total_steps": 724, "loss": 1.6051, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.4212950568645007e-05, "epoch": 0.44, "percentage": 22.1, "elapsed_time": "0:05:02", "remaining_time": "0:17:47"}
33
+ {"current_steps": 165, "total_steps": 724, "loss": 1.5891, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.386141191984262e-05, "epoch": 0.46, "percentage": 22.79, "elapsed_time": "0:05:11", "remaining_time": "0:17:34"}
34
+ {"current_steps": 170, "total_steps": 724, "loss": 1.2693, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.350099517608823e-05, "epoch": 0.47, "percentage": 23.48, "elapsed_time": "0:05:19", "remaining_time": "0:17:21"}
35
+ {"current_steps": 175, "total_steps": 724, "loss": 1.5962, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.313186998608506e-05, "epoch": 0.48, "percentage": 24.17, "elapsed_time": "0:05:28", "remaining_time": "0:17:10"}
36
+ {"current_steps": 180, "total_steps": 724, "loss": 1.5196, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.275421009761509e-05, "epoch": 0.5, "percentage": 24.86, "elapsed_time": "0:05:36", "remaining_time": "0:16:57"}
37
+ {"current_steps": 185, "total_steps": 724, "loss": 1.6221, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.236819327575571e-05, "epoch": 0.51, "percentage": 25.55, "elapsed_time": "0:05:45", "remaining_time": "0:16:45"}
38
+ {"current_steps": 190, "total_steps": 724, "loss": 1.1342, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.197400121920539e-05, "epoch": 0.52, "percentage": 26.24, "elapsed_time": "0:05:52", "remaining_time": "0:16:31"}
39
+ {"current_steps": 195, "total_steps": 724, "loss": 2.024, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1571819474757894e-05, "epoch": 0.54, "percentage": 26.93, "elapsed_time": "0:06:01", "remaining_time": "0:16:20"}
40
+ {"current_steps": 200, "total_steps": 724, "loss": 1.3701, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.116183734996509e-05, "epoch": 0.55, "percentage": 27.62, "elapsed_time": "0:06:09", "remaining_time": "0:16:08"}
41
+ {"current_steps": 205, "total_steps": 724, "loss": 1.7944, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.074424782402958e-05, "epoch": 0.57, "percentage": 28.31, "elapsed_time": "0:06:19", "remaining_time": "0:15:59"}
42
+ {"current_steps": 210, "total_steps": 724, "loss": 1.561, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.031924745696915e-05, "epoch": 0.58, "percentage": 29.01, "elapsed_time": "0:06:28", "remaining_time": "0:15:50"}
43
+ {"current_steps": 215, "total_steps": 724, "loss": 1.828, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.988703629709564e-05, "epoch": 0.59, "percentage": 29.7, "elapsed_time": "0:06:38", "remaining_time": "0:15:42"}
44
+ {"current_steps": 220, "total_steps": 724, "loss": 1.2159, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.944781778685189e-05, "epoch": 0.61, "percentage": 30.39, "elapsed_time": "0:06:45", "remaining_time": "0:15:29"}
45
+ {"current_steps": 225, "total_steps": 724, "loss": 1.6311, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.900179866705112e-05, "epoch": 0.62, "percentage": 31.08, "elapsed_time": "0:06:54", "remaining_time": "0:15:18"}
46
+ {"current_steps": 230, "total_steps": 724, "loss": 1.8962, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.854918887956369e-05, "epoch": 0.64, "percentage": 31.77, "elapsed_time": "0:07:03", "remaining_time": "0:15:10"}
47
+ {"current_steps": 235, "total_steps": 724, "loss": 1.3081, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.809020146849714e-05, "epoch": 0.65, "percentage": 32.46, "elapsed_time": "0:07:11", "remaining_time": "0:14:58"}
48
+ {"current_steps": 240, "total_steps": 724, "loss": 1.6926, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.7625052479916015e-05, "epoch": 0.66, "percentage": 33.15, "elapsed_time": "0:07:20", "remaining_time": "0:14:48"}
49
+ {"current_steps": 245, "total_steps": 724, "loss": 1.9407, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.715396086014869e-05, "epoch": 0.68, "percentage": 33.84, "elapsed_time": "0:07:29", "remaining_time": "0:14:38"}
50
+ {"current_steps": 250, "total_steps": 724, "loss": 1.3894, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.667714835272895e-05, "epoch": 0.69, "percentage": 34.53, "elapsed_time": "0:07:38", "remaining_time": "0:14:28"}
51
+ {"current_steps": 255, "total_steps": 724, "loss": 1.2711, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.6194839394021e-05, "epoch": 0.7, "percentage": 35.22, "elapsed_time": "0:07:47", "remaining_time": "0:14:19"}
52
+ {"current_steps": 260, "total_steps": 724, "loss": 2.0264, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.570726100757693e-05, "epoch": 0.72, "percentage": 35.91, "elapsed_time": "0:07:55", "remaining_time": "0:14:08"}
53
+ {"current_steps": 265, "total_steps": 724, "loss": 2.0718, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5214642697276426e-05, "epoch": 0.73, "percentage": 36.6, "elapsed_time": "0:08:03", "remaining_time": "0:13:57"}
54
+ {"current_steps": 270, "total_steps": 724, "loss": 1.3508, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.471721633929885e-05, "epoch": 0.75, "percentage": 37.29, "elapsed_time": "0:08:11", "remaining_time": "0:13:46"}
55
+ {"current_steps": 275, "total_steps": 724, "loss": 1.4645, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.421521607297888e-05, "epoch": 0.76, "percentage": 37.98, "elapsed_time": "0:08:18", "remaining_time": "0:13:34"}
56
+ {"current_steps": 280, "total_steps": 724, "loss": 1.9456, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.370887819059672e-05, "epoch": 0.77, "percentage": 38.67, "elapsed_time": "0:08:27", "remaining_time": "0:13:25"}
57
+ {"current_steps": 285, "total_steps": 724, "loss": 1.6282, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.319844102615497e-05, "epoch": 0.79, "percentage": 39.36, "elapsed_time": "0:08:36", "remaining_time": "0:13:15"}
58
+ {"current_steps": 290, "total_steps": 724, "loss": 1.7652, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.268414484319445e-05, "epoch": 0.8, "percentage": 40.06, "elapsed_time": "0:08:45", "remaining_time": "0:13:05"}
59
+ {"current_steps": 295, "total_steps": 724, "loss": 1.6169, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.216623172170183e-05, "epoch": 0.81, "percentage": 40.75, "elapsed_time": "0:08:54", "remaining_time": "0:12:56"}
60
+ {"current_steps": 300, "total_steps": 724, "loss": 1.3647, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.164494544416215e-05, "epoch": 0.83, "percentage": 41.44, "elapsed_time": "0:09:02", "remaining_time": "0:12:47"}
61
+ {"current_steps": 305, "total_steps": 724, "loss": 2.0791, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.11205313808101e-05, "epoch": 0.84, "percentage": 42.13, "elapsed_time": "0:09:12", "remaining_time": "0:12:39"}
62
+ {"current_steps": 310, "total_steps": 724, "loss": 1.8486, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.059323637413385e-05, "epoch": 0.86, "percentage": 42.82, "elapsed_time": "0:09:21", "remaining_time": "0:12:30"}
63
+ {"current_steps": 315, "total_steps": 724, "loss": 1.0746, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.0063308622685903e-05, "epoch": 0.87, "percentage": 43.51, "elapsed_time": "0:09:28", "remaining_time": "0:12:18"}
64
+ {"current_steps": 320, "total_steps": 724, "loss": 0.779, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9530997564255725e-05, "epoch": 0.88, "percentage": 44.2, "elapsed_time": "0:09:36", "remaining_time": "0:12:07"}
65
+ {"current_steps": 325, "total_steps": 724, "loss": 1.7561, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8996553758458916e-05, "epoch": 0.9, "percentage": 44.89, "elapsed_time": "0:09:46", "remaining_time": "0:11:59"}
66
+ {"current_steps": 330, "total_steps": 724, "loss": 0.8527, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8460228768798506e-05, "epoch": 0.91, "percentage": 45.58, "elapsed_time": "0:09:55", "remaining_time": "0:11:50"}
67
+ {"current_steps": 335, "total_steps": 724, "loss": 1.211, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.792227504425359e-05, "epoch": 0.93, "percentage": 46.27, "elapsed_time": "0:10:02", "remaining_time": "0:11:40"}
68
+ {"current_steps": 340, "total_steps": 724, "loss": 1.4435, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.738294580045119e-05, "epoch": 0.94, "percentage": 46.96, "elapsed_time": "0:10:10", "remaining_time": "0:11:29"}
69
+ {"current_steps": 345, "total_steps": 724, "loss": 1.4192, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6842494900477365e-05, "epoch": 0.95, "percentage": 47.65, "elapsed_time": "0:10:17", "remaining_time": "0:11:18"}
70
+ {"current_steps": 350, "total_steps": 724, "loss": 1.7033, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6301176735383382e-05, "epoch": 0.97, "percentage": 48.34, "elapsed_time": "0:10:26", "remaining_time": "0:11:09"}
71
+ {"current_steps": 355, "total_steps": 724, "loss": 1.4952, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.57592461044435e-05, "epoch": 0.98, "percentage": 49.03, "elapsed_time": "0:10:33", "remaining_time": "0:10:58"}
72
+ {"current_steps": 360, "total_steps": 724, "loss": 1.3207, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.521695809522061e-05, "epoch": 0.99, "percentage": 49.72, "elapsed_time": "0:10:41", "remaining_time": "0:10:48"}
73
+ {"current_steps": 365, "total_steps": 724, "loss": 1.2689, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.467456796349607e-05, "epoch": 1.01, "percentage": 50.41, "elapsed_time": "0:10:50", "remaining_time": "0:10:39"}
74
+ {"current_steps": 370, "total_steps": 724, "loss": 1.5812, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4132331013120453e-05, "epoch": 1.02, "percentage": 51.1, "elapsed_time": "0:10:59", "remaining_time": "0:10:30"}
75
+ {"current_steps": 375, "total_steps": 724, "loss": 1.8583, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3590502475841642e-05, "epoch": 1.04, "percentage": 51.8, "elapsed_time": "0:11:10", "remaining_time": "0:10:23"}
76
+ {"current_steps": 380, "total_steps": 724, "loss": 1.7619, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.304933739116688e-05, "epoch": 1.05, "percentage": 52.49, "elapsed_time": "0:11:19", "remaining_time": "0:10:15"}
77
+ {"current_steps": 385, "total_steps": 724, "loss": 1.5837, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2509090486315246e-05, "epoch": 1.06, "percentage": 53.18, "elapsed_time": "0:11:28", "remaining_time": "0:10:05"}
78
+ {"current_steps": 390, "total_steps": 724, "loss": 1.6458, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1970016056317203e-05, "epoch": 1.08, "percentage": 53.87, "elapsed_time": "0:11:37", "remaining_time": "0:09:57"}
79
+ {"current_steps": 395, "total_steps": 724, "loss": 1.4172, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1432367844317558e-05, "epoch": 1.09, "percentage": 54.56, "elapsed_time": "0:11:46", "remaining_time": "0:09:48"}
80
+ {"current_steps": 400, "total_steps": 724, "loss": 1.4327, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0896398922138122e-05, "epoch": 1.1, "percentage": 55.25, "elapsed_time": "0:11:54", "remaining_time": "0:09:38"}
81
+ {"current_steps": 405, "total_steps": 724, "loss": 1.0046, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0362361571156505e-05, "epoch": 1.12, "percentage": 55.94, "elapsed_time": "0:12:03", "remaining_time": "0:09:29"}
82
+ {"current_steps": 410, "total_steps": 724, "loss": 1.2355, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9830507163556816e-05, "epoch": 1.13, "percentage": 56.63, "elapsed_time": "0:12:12", "remaining_time": "0:09:20"}
83
+ {"current_steps": 415, "total_steps": 724, "loss": 1.224, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.930108604400846e-05, "epoch": 1.15, "percentage": 57.32, "elapsed_time": "0:12:20", "remaining_time": "0:09:11"}
84
+ {"current_steps": 420, "total_steps": 724, "loss": 1.7486, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8774347411828472e-05, "epoch": 1.16, "percentage": 58.01, "elapsed_time": "0:12:29", "remaining_time": "0:09:02"}
85
+ {"current_steps": 425, "total_steps": 724, "loss": 1.6091, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.825053920368306e-05, "epoch": 1.17, "percentage": 58.7, "elapsed_time": "0:12:37", "remaining_time": "0:08:53"}
86
+ {"current_steps": 430, "total_steps": 724, "loss": 1.4323, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.772990797688344e-05, "epoch": 1.19, "percentage": 59.39, "elapsed_time": "0:12:46", "remaining_time": "0:08:43"}
87
+ {"current_steps": 435, "total_steps": 724, "loss": 1.0638, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7212698793330916e-05, "epoch": 1.2, "percentage": 60.08, "elapsed_time": "0:12:53", "remaining_time": "0:08:33"}
88
+ {"current_steps": 440, "total_steps": 724, "loss": 1.6245, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6699155104165904e-05, "epoch": 1.22, "percentage": 60.77, "elapsed_time": "0:13:02", "remaining_time": "0:08:25"}
89
+ {"current_steps": 445, "total_steps": 724, "loss": 1.1679, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.61895186351751e-05, "epoch": 1.23, "percentage": 61.46, "elapsed_time": "0:13:10", "remaining_time": "0:08:15"}
90
+ {"current_steps": 450, "total_steps": 724, "loss": 1.7155, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.568402927301076e-05, "epoch": 1.24, "percentage": 62.15, "elapsed_time": "0:13:19", "remaining_time": "0:08:06"}
91
+ {"current_steps": 455, "total_steps": 724, "loss": 1.2734, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5182924952275768e-05, "epoch": 1.26, "percentage": 62.85, "elapsed_time": "0:13:27", "remaining_time": "0:07:57"}
92
+ {"current_steps": 460, "total_steps": 724, "loss": 1.7568, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4686441543527374e-05, "epoch": 1.27, "percentage": 63.54, "elapsed_time": "0:13:35", "remaining_time": "0:07:48"}
93
+ {"current_steps": 465, "total_steps": 724, "loss": 1.7407, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4194812742252638e-05, "epoch": 1.28, "percentage": 64.23, "elapsed_time": "0:13:44", "remaining_time": "0:07:39"}
94
+ {"current_steps": 470, "total_steps": 724, "loss": 1.5895, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3708269958867565e-05, "epoch": 1.3, "percentage": 64.92, "elapsed_time": "0:13:56", "remaining_time": "0:07:32"}
95
+ {"current_steps": 475, "total_steps": 724, "loss": 2.2967, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.322704220979187e-05, "epoch": 1.31, "percentage": 65.61, "elapsed_time": "0:14:07", "remaining_time": "0:07:24"}
96
+ {"current_steps": 480, "total_steps": 724, "loss": 1.4595, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2751356009650681e-05, "epoch": 1.33, "percentage": 66.3, "elapsed_time": "0:14:15", "remaining_time": "0:07:15"}
97
+ {"current_steps": 485, "total_steps": 724, "loss": 1.6341, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2281435264653665e-05, "epoch": 1.34, "percentage": 66.99, "elapsed_time": "0:14:25", "remaining_time": "0:07:06"}
98
+ {"current_steps": 490, "total_steps": 724, "loss": 1.3562, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1817501167202099e-05, "epoch": 1.35, "percentage": 67.68, "elapsed_time": "0:14:33", "remaining_time": "0:06:57"}
99
+ {"current_steps": 495, "total_steps": 724, "loss": 1.6777, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1359772091773263e-05, "epoch": 1.37, "percentage": 68.37, "elapsed_time": "0:14:42", "remaining_time": "0:06:48"}
100
+ {"current_steps": 500, "total_steps": 724, "loss": 1.0831, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0908463492131227e-05, "epoch": 1.38, "percentage": 69.06, "elapsed_time": "0:14:49", "remaining_time": "0:06:38"}
101
+ {"current_steps": 505, "total_steps": 724, "loss": 1.0575, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0463787799912465e-05, "epoch": 1.4, "percentage": 69.75, "elapsed_time": "0:14:56", "remaining_time": "0:06:28"}
102
+ {"current_steps": 510, "total_steps": 724, "loss": 1.3363, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0025954324633948e-05, "epoch": 1.41, "percentage": 70.44, "elapsed_time": "0:15:04", "remaining_time": "0:06:19"}
103
+ {"current_steps": 515, "total_steps": 724, "loss": 0.9582, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.595169155170852e-06, "epoch": 1.42, "percentage": 71.13, "elapsed_time": "0:15:16", "remaining_time": "0:06:11"}
104
+ {"current_steps": 520, "total_steps": 724, "loss": 1.8537, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.171635062750189e-06, "epoch": 1.44, "percentage": 71.82, "elapsed_time": "0:15:29", "remaining_time": "0:06:04"}
105
+ {"current_steps": 525, "total_steps": 724, "loss": 1.372, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.755551405506143e-06, "epoch": 1.45, "percentage": 72.51, "elapsed_time": "0:15:41", "remaining_time": "0:05:56"}
106
+ {"current_steps": 530, "total_steps": 724, "loss": 1.6832, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.347114034641806e-06, "epoch": 1.46, "percentage": 73.2, "elapsed_time": "0:15:50", "remaining_time": "0:05:47"}
107
+ {"current_steps": 535, "total_steps": 724, "loss": 0.8202, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.9465152022418e-06, "epoch": 1.48, "percentage": 73.9, "elapsed_time": "0:15:58", "remaining_time": "0:05:38"}
108
+ {"current_steps": 540, "total_steps": 724, "loss": 1.4924, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.5539434707789266e-06, "epoch": 1.49, "percentage": 74.59, "elapsed_time": "0:16:08", "remaining_time": "0:05:30"}
109
+ {"current_steps": 545, "total_steps": 724, "loss": 0.8526, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.169583624357451e-06, "epoch": 1.51, "percentage": 75.28, "elapsed_time": "0:16:19", "remaining_time": "0:05:21"}
110
+ {"current_steps": 550, "total_steps": 724, "loss": 1.8087, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.793616581735062e-06, "epoch": 1.52, "percentage": 75.97, "elapsed_time": "0:16:31", "remaining_time": "0:05:13"}
111
+ {"current_steps": 555, "total_steps": 724, "loss": 1.5891, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.42621931116405e-06, "epoch": 1.53, "percentage": 76.66, "elapsed_time": "0:16:43", "remaining_time": "0:05:05"}
112
+ {"current_steps": 560, "total_steps": 724, "loss": 1.9362, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.067564747092094e-06, "epoch": 1.55, "percentage": 77.35, "elapsed_time": "0:16:55", "remaining_time": "0:04:57"}
113
+ {"current_steps": 565, "total_steps": 724, "loss": 1.0487, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.717821708761822e-06, "epoch": 1.56, "percentage": 78.04, "elapsed_time": "0:17:06", "remaining_time": "0:04:48"}
114
+ {"current_steps": 570, "total_steps": 724, "loss": 1.6339, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.377154820747271e-06, "epoch": 1.57, "percentage": 78.73, "elapsed_time": "0:17:18", "remaining_time": "0:04:40"}
115
+ {"current_steps": 575, "total_steps": 724, "loss": 1.2953, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.045724435464874e-06, "epoch": 1.59, "percentage": 79.42, "elapsed_time": "0:17:29", "remaining_time": "0:04:32"}
116
+ {"current_steps": 580, "total_steps": 724, "loss": 1.0077, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.72368655769535e-06, "epoch": 1.6, "percentage": 80.11, "elapsed_time": "0:17:40", "remaining_time": "0:04:23"}
117
+ {"current_steps": 585, "total_steps": 724, "loss": 1.1702, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.411192771152004e-06, "epoch": 1.62, "percentage": 80.8, "elapsed_time": "0:17:52", "remaining_time": "0:04:14"}
118
+ {"current_steps": 590, "total_steps": 724, "loss": 1.5571, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.108390167130044e-06, "epoch": 1.63, "percentage": 81.49, "elapsed_time": "0:18:04", "remaining_time": "0:04:06"}
119
+ {"current_steps": 595, "total_steps": 724, "loss": 1.3669, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.8154212752704976e-06, "epoch": 1.64, "percentage": 82.18, "elapsed_time": "0:18:15", "remaining_time": "0:03:57"}
120
+ {"current_steps": 600, "total_steps": 724, "loss": 1.6162, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.532423996471307e-06, "epoch": 1.66, "percentage": 82.87, "elapsed_time": "0:18:26", "remaining_time": "0:03:48"}
121
+ {"current_steps": 605, "total_steps": 724, "loss": 0.4967, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.259531537977123e-06, "epoch": 1.67, "percentage": 83.56, "elapsed_time": "0:18:37", "remaining_time": "0:03:39"}
122
+ {"current_steps": 610, "total_steps": 724, "loss": 1.066, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9968723506784953e-06, "epoch": 1.69, "percentage": 84.25, "elapsed_time": "0:18:48", "remaining_time": "0:03:30"}
123
+ {"current_steps": 615, "total_steps": 724, "loss": 1.4617, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7445700686498545e-06, "epoch": 1.7, "percentage": 84.94, "elapsed_time": "0:19:02", "remaining_time": "0:03:22"}
124
+ {"current_steps": 620, "total_steps": 724, "loss": 1.3762, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.502743450954714e-06, "epoch": 1.71, "percentage": 85.64, "elapsed_time": "0:19:14", "remaining_time": "0:03:13"}
125
+ {"current_steps": 625, "total_steps": 724, "loss": 1.6011, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.271506325745662e-06, "epoch": 1.73, "percentage": 86.33, "elapsed_time": "0:19:27", "remaining_time": "0:03:05"}
126
+ {"current_steps": 630, "total_steps": 724, "loss": 1.7583, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.050967536685233e-06, "epoch": 1.74, "percentage": 87.02, "elapsed_time": "0:19:40", "remaining_time": "0:02:56"}
127
+ {"current_steps": 635, "total_steps": 724, "loss": 1.4909, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8412308917130611e-06, "epoch": 1.75, "percentage": 87.71, "elapsed_time": "0:19:52", "remaining_time": "0:02:47"}
128
+ {"current_steps": 640, "total_steps": 724, "loss": 0.8267, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6423951141833011e-06, "epoch": 1.77, "percentage": 88.4, "elapsed_time": "0:20:03", "remaining_time": "0:02:37"}
129
+ {"current_steps": 645, "total_steps": 724, "loss": 1.3815, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4545537963954247e-06, "epoch": 1.78, "percentage": 89.09, "elapsed_time": "0:20:15", "remaining_time": "0:02:28"}
130
+ {"current_steps": 650, "total_steps": 724, "loss": 1.618, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2777953555401678e-06, "epoch": 1.8, "percentage": 89.78, "elapsed_time": "0:20:27", "remaining_time": "0:02:19"}
131
+ {"current_steps": 655, "total_steps": 724, "loss": 1.6904, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1122029920814236e-06, "epoch": 1.81, "percentage": 90.47, "elapsed_time": "0:20:39", "remaining_time": "0:02:10"}
132
+ {"current_steps": 660, "total_steps": 724, "loss": 1.1602, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.578546505936676e-07, "epoch": 1.82, "percentage": 91.16, "elapsed_time": "0:20:50", "remaining_time": "0:02:01"}
133
+ {"current_steps": 665, "total_steps": 724, "loss": 1.7147, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.148229830733295e-07, "epoch": 1.84, "percentage": 91.85, "elapsed_time": "0:21:01", "remaining_time": "0:01:51"}
134
+ {"current_steps": 670, "total_steps": 724, "loss": 1.3837, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.831753147413827e-07, "epoch": 1.85, "percentage": 92.54, "elapsed_time": "0:21:13", "remaining_time": "0:01:42"}
135
+ {"current_steps": 675, "total_steps": 724, "loss": 1.5324, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.629736123532653e-07, "epoch": 1.86, "percentage": 93.23, "elapsed_time": "0:21:23", "remaining_time": "0:01:33"}
136
+ {"current_steps": 680, "total_steps": 724, "loss": 0.9563, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.5427445503103684e-07, "epoch": 1.88, "percentage": 93.92, "elapsed_time": "0:21:31", "remaining_time": "0:01:23"}
137
+ {"current_steps": 685, "total_steps": 724, "loss": 1.2545, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.571290076314959e-07, "epoch": 1.89, "percentage": 94.61, "elapsed_time": "0:21:39", "remaining_time": "0:01:13"}
138
+ {"current_steps": 690, "total_steps": 724, "loss": 1.5162, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7158299666280864e-07, "epoch": 1.91, "percentage": 95.3, "elapsed_time": "0:21:48", "remaining_time": "0:01:04"}
139
+ {"current_steps": 695, "total_steps": 724, "loss": 1.3806, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9767668876096713e-07, "epoch": 1.92, "percentage": 95.99, "elapsed_time": "0:21:57", "remaining_time": "0:00:54"}
140
+ {"current_steps": 700, "total_steps": 724, "loss": 1.4588, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3544487173623443e-07, "epoch": 1.93, "percentage": 96.69, "elapsed_time": "0:22:06", "remaining_time": "0:00:45"}
141
+ {"current_steps": 705, "total_steps": 724, "loss": 2.3318, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.491683819846219e-08, "epoch": 1.95, "percentage": 97.38, "elapsed_time": "0:22:17", "remaining_time": "0:00:36"}
142
+ {"current_steps": 710, "total_steps": 724, "loss": 1.021, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.611637176901162e-08, "epoch": 1.96, "percentage": 98.07, "elapsed_time": "0:22:28", "remaining_time": "0:00:26"}
143
+ {"current_steps": 715, "total_steps": 724, "loss": 1.5645, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9061735885772536e-08, "epoch": 1.98, "percentage": 98.76, "elapsed_time": "0:22:40", "remaining_time": "0:00:17"}
144
+ {"current_steps": 720, "total_steps": 724, "loss": 1.6854, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.76566520653987e-09, "epoch": 1.99, "percentage": 99.45, "elapsed_time": "0:22:52", "remaining_time": "0:00:07"}
145
+ {"current_steps": 724, "total_steps": 724, "loss": null, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.0, "percentage": 100.0, "elapsed_time": "0:23:01", "remaining_time": "0:00:00"}
trainer_state.json ADDED
@@ -0,0 +1,892 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.0,
5
+ "eval_steps": 500,
6
+ "global_step": 724,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.999411623120412e-05,
14
+ "loss": 2.1959,
15
+ "step": 5
16
+ },
17
+ {
18
+ "epoch": 0.03,
19
+ "learning_rate": 4.997646769431532e-05,
20
+ "loss": 1.7787,
21
+ "step": 10
22
+ },
23
+ {
24
+ "epoch": 0.04,
25
+ "learning_rate": 4.9947062696526445e-05,
26
+ "loss": 1.167,
27
+ "step": 15
28
+ },
29
+ {
30
+ "epoch": 0.06,
31
+ "learning_rate": 4.990591507881416e-05,
32
+ "loss": 2.0242,
33
+ "step": 20
34
+ },
35
+ {
36
+ "epoch": 0.07,
37
+ "learning_rate": 4.9853044209423996e-05,
38
+ "loss": 2.2836,
39
+ "step": 25
40
+ },
41
+ {
42
+ "epoch": 0.08,
43
+ "learning_rate": 4.9788474974753686e-05,
44
+ "loss": 1.9629,
45
+ "step": 30
46
+ },
47
+ {
48
+ "epoch": 0.1,
49
+ "learning_rate": 4.971223776763907e-05,
50
+ "loss": 2.5583,
51
+ "step": 35
52
+ },
53
+ {
54
+ "epoch": 0.11,
55
+ "learning_rate": 4.962436847304818e-05,
56
+ "loss": 1.9105,
57
+ "step": 40
58
+ },
59
+ {
60
+ "epoch": 0.12,
61
+ "learning_rate": 4.9524908451190096e-05,
62
+ "loss": 2.1563,
63
+ "step": 45
64
+ },
65
+ {
66
+ "epoch": 0.14,
67
+ "learning_rate": 4.9413904518046674e-05,
68
+ "loss": 2.3299,
69
+ "step": 50
70
+ },
71
+ {
72
+ "epoch": 0.15,
73
+ "learning_rate": 4.929140892333616e-05,
74
+ "loss": 1.4083,
75
+ "step": 55
76
+ },
77
+ {
78
+ "epoch": 0.17,
79
+ "learning_rate": 4.9157479325919156e-05,
80
+ "loss": 1.7837,
81
+ "step": 60
82
+ },
83
+ {
84
+ "epoch": 0.18,
85
+ "learning_rate": 4.901217876665858e-05,
86
+ "loss": 1.4737,
87
+ "step": 65
88
+ },
89
+ {
90
+ "epoch": 0.19,
91
+ "learning_rate": 4.8855575638746135e-05,
92
+ "loss": 2.1072,
93
+ "step": 70
94
+ },
95
+ {
96
+ "epoch": 0.21,
97
+ "learning_rate": 4.868774365550962e-05,
98
+ "loss": 0.8345,
99
+ "step": 75
100
+ },
101
+ {
102
+ "epoch": 0.22,
103
+ "learning_rate": 4.850876181571592e-05,
104
+ "loss": 2.4821,
105
+ "step": 80
106
+ },
107
+ {
108
+ "epoch": 0.23,
109
+ "learning_rate": 4.831871436638613e-05,
110
+ "loss": 1.6394,
111
+ "step": 85
112
+ },
113
+ {
114
+ "epoch": 0.25,
115
+ "learning_rate": 4.811769076314044e-05,
116
+ "loss": 1.6403,
117
+ "step": 90
118
+ },
119
+ {
120
+ "epoch": 0.26,
121
+ "learning_rate": 4.790578562809116e-05,
122
+ "loss": 1.6487,
123
+ "step": 95
124
+ },
125
+ {
126
+ "epoch": 0.28,
127
+ "learning_rate": 4.7683098705304e-05,
128
+ "loss": 1.751,
129
+ "step": 100
130
+ },
131
+ {
132
+ "epoch": 0.29,
133
+ "learning_rate": 4.7449734813848345e-05,
134
+ "loss": 1.7423,
135
+ "step": 105
136
+ },
137
+ {
138
+ "epoch": 0.3,
139
+ "learning_rate": 4.720580379845883e-05,
140
+ "loss": 1.9435,
141
+ "step": 110
142
+ },
143
+ {
144
+ "epoch": 0.32,
145
+ "learning_rate": 4.695142047783118e-05,
146
+ "loss": 1.2112,
147
+ "step": 115
148
+ },
149
+ {
150
+ "epoch": 0.33,
151
+ "learning_rate": 4.668670459057692e-05,
152
+ "loss": 1.5366,
153
+ "step": 120
154
+ },
155
+ {
156
+ "epoch": 0.35,
157
+ "learning_rate": 4.641178073886224e-05,
158
+ "loss": 1.1842,
159
+ "step": 125
160
+ },
161
+ {
162
+ "epoch": 0.36,
163
+ "learning_rate": 4.6126778329757516e-05,
164
+ "loss": 1.2011,
165
+ "step": 130
166
+ },
167
+ {
168
+ "epoch": 0.37,
169
+ "learning_rate": 4.583183151432527e-05,
170
+ "loss": 1.2053,
171
+ "step": 135
172
+ },
173
+ {
174
+ "epoch": 0.39,
175
+ "learning_rate": 4.5527079124475045e-05,
176
+ "loss": 1.4354,
177
+ "step": 140
178
+ },
179
+ {
180
+ "epoch": 0.4,
181
+ "learning_rate": 4.521266460761497e-05,
182
+ "loss": 1.5641,
183
+ "step": 145
184
+ },
185
+ {
186
+ "epoch": 0.41,
187
+ "learning_rate": 4.488873595913091e-05,
188
+ "loss": 1.7298,
189
+ "step": 150
190
+ },
191
+ {
192
+ "epoch": 0.43,
193
+ "learning_rate": 4.4555445652724795e-05,
194
+ "loss": 1.2547,
195
+ "step": 155
196
+ },
197
+ {
198
+ "epoch": 0.44,
199
+ "learning_rate": 4.4212950568645007e-05,
200
+ "loss": 1.6051,
201
+ "step": 160
202
+ },
203
+ {
204
+ "epoch": 0.46,
205
+ "learning_rate": 4.386141191984262e-05,
206
+ "loss": 1.5891,
207
+ "step": 165
208
+ },
209
+ {
210
+ "epoch": 0.47,
211
+ "learning_rate": 4.350099517608823e-05,
212
+ "loss": 1.2693,
213
+ "step": 170
214
+ },
215
+ {
216
+ "epoch": 0.48,
217
+ "learning_rate": 4.313186998608506e-05,
218
+ "loss": 1.5962,
219
+ "step": 175
220
+ },
221
+ {
222
+ "epoch": 0.5,
223
+ "learning_rate": 4.275421009761509e-05,
224
+ "loss": 1.5196,
225
+ "step": 180
226
+ },
227
+ {
228
+ "epoch": 0.51,
229
+ "learning_rate": 4.236819327575571e-05,
230
+ "loss": 1.6221,
231
+ "step": 185
232
+ },
233
+ {
234
+ "epoch": 0.52,
235
+ "learning_rate": 4.197400121920539e-05,
236
+ "loss": 1.1342,
237
+ "step": 190
238
+ },
239
+ {
240
+ "epoch": 0.54,
241
+ "learning_rate": 4.1571819474757894e-05,
242
+ "loss": 2.024,
243
+ "step": 195
244
+ },
245
+ {
246
+ "epoch": 0.55,
247
+ "learning_rate": 4.116183734996509e-05,
248
+ "loss": 1.3701,
249
+ "step": 200
250
+ },
251
+ {
252
+ "epoch": 0.57,
253
+ "learning_rate": 4.074424782402958e-05,
254
+ "loss": 1.7944,
255
+ "step": 205
256
+ },
257
+ {
258
+ "epoch": 0.58,
259
+ "learning_rate": 4.031924745696915e-05,
260
+ "loss": 1.561,
261
+ "step": 210
262
+ },
263
+ {
264
+ "epoch": 0.59,
265
+ "learning_rate": 3.988703629709564e-05,
266
+ "loss": 1.828,
267
+ "step": 215
268
+ },
269
+ {
270
+ "epoch": 0.61,
271
+ "learning_rate": 3.944781778685189e-05,
272
+ "loss": 1.2159,
273
+ "step": 220
274
+ },
275
+ {
276
+ "epoch": 0.62,
277
+ "learning_rate": 3.900179866705112e-05,
278
+ "loss": 1.6311,
279
+ "step": 225
280
+ },
281
+ {
282
+ "epoch": 0.64,
283
+ "learning_rate": 3.854918887956369e-05,
284
+ "loss": 1.8962,
285
+ "step": 230
286
+ },
287
+ {
288
+ "epoch": 0.65,
289
+ "learning_rate": 3.809020146849714e-05,
290
+ "loss": 1.3081,
291
+ "step": 235
292
+ },
293
+ {
294
+ "epoch": 0.66,
295
+ "learning_rate": 3.7625052479916015e-05,
296
+ "loss": 1.6926,
297
+ "step": 240
298
+ },
299
+ {
300
+ "epoch": 0.68,
301
+ "learning_rate": 3.715396086014869e-05,
302
+ "loss": 1.9407,
303
+ "step": 245
304
+ },
305
+ {
306
+ "epoch": 0.69,
307
+ "learning_rate": 3.667714835272895e-05,
308
+ "loss": 1.3894,
309
+ "step": 250
310
+ },
311
+ {
312
+ "epoch": 0.7,
313
+ "learning_rate": 3.6194839394021e-05,
314
+ "loss": 1.2711,
315
+ "step": 255
316
+ },
317
+ {
318
+ "epoch": 0.72,
319
+ "learning_rate": 3.570726100757693e-05,
320
+ "loss": 2.0264,
321
+ "step": 260
322
+ },
323
+ {
324
+ "epoch": 0.73,
325
+ "learning_rate": 3.5214642697276426e-05,
326
+ "loss": 2.0718,
327
+ "step": 265
328
+ },
329
+ {
330
+ "epoch": 0.75,
331
+ "learning_rate": 3.471721633929885e-05,
332
+ "loss": 1.3508,
333
+ "step": 270
334
+ },
335
+ {
336
+ "epoch": 0.76,
337
+ "learning_rate": 3.421521607297888e-05,
338
+ "loss": 1.4645,
339
+ "step": 275
340
+ },
341
+ {
342
+ "epoch": 0.77,
343
+ "learning_rate": 3.370887819059672e-05,
344
+ "loss": 1.9456,
345
+ "step": 280
346
+ },
347
+ {
348
+ "epoch": 0.79,
349
+ "learning_rate": 3.319844102615497e-05,
350
+ "loss": 1.6282,
351
+ "step": 285
352
+ },
353
+ {
354
+ "epoch": 0.8,
355
+ "learning_rate": 3.268414484319445e-05,
356
+ "loss": 1.7652,
357
+ "step": 290
358
+ },
359
+ {
360
+ "epoch": 0.81,
361
+ "learning_rate": 3.216623172170183e-05,
362
+ "loss": 1.6169,
363
+ "step": 295
364
+ },
365
+ {
366
+ "epoch": 0.83,
367
+ "learning_rate": 3.164494544416215e-05,
368
+ "loss": 1.3647,
369
+ "step": 300
370
+ },
371
+ {
372
+ "epoch": 0.84,
373
+ "learning_rate": 3.11205313808101e-05,
374
+ "loss": 2.0791,
375
+ "step": 305
376
+ },
377
+ {
378
+ "epoch": 0.86,
379
+ "learning_rate": 3.059323637413385e-05,
380
+ "loss": 1.8486,
381
+ "step": 310
382
+ },
383
+ {
384
+ "epoch": 0.87,
385
+ "learning_rate": 3.0063308622685903e-05,
386
+ "loss": 1.0746,
387
+ "step": 315
388
+ },
389
+ {
390
+ "epoch": 0.88,
391
+ "learning_rate": 2.9530997564255725e-05,
392
+ "loss": 0.779,
393
+ "step": 320
394
+ },
395
+ {
396
+ "epoch": 0.9,
397
+ "learning_rate": 2.8996553758458916e-05,
398
+ "loss": 1.7561,
399
+ "step": 325
400
+ },
401
+ {
402
+ "epoch": 0.91,
403
+ "learning_rate": 2.8460228768798506e-05,
404
+ "loss": 0.8527,
405
+ "step": 330
406
+ },
407
+ {
408
+ "epoch": 0.93,
409
+ "learning_rate": 2.792227504425359e-05,
410
+ "loss": 1.211,
411
+ "step": 335
412
+ },
413
+ {
414
+ "epoch": 0.94,
415
+ "learning_rate": 2.738294580045119e-05,
416
+ "loss": 1.4435,
417
+ "step": 340
418
+ },
419
+ {
420
+ "epoch": 0.95,
421
+ "learning_rate": 2.6842494900477365e-05,
422
+ "loss": 1.4192,
423
+ "step": 345
424
+ },
425
+ {
426
+ "epoch": 0.97,
427
+ "learning_rate": 2.6301176735383382e-05,
428
+ "loss": 1.7033,
429
+ "step": 350
430
+ },
431
+ {
432
+ "epoch": 0.98,
433
+ "learning_rate": 2.57592461044435e-05,
434
+ "loss": 1.4952,
435
+ "step": 355
436
+ },
437
+ {
438
+ "epoch": 0.99,
439
+ "learning_rate": 2.521695809522061e-05,
440
+ "loss": 1.3207,
441
+ "step": 360
442
+ },
443
+ {
444
+ "epoch": 1.01,
445
+ "learning_rate": 2.467456796349607e-05,
446
+ "loss": 1.2689,
447
+ "step": 365
448
+ },
449
+ {
450
+ "epoch": 1.02,
451
+ "learning_rate": 2.4132331013120453e-05,
452
+ "loss": 1.5812,
453
+ "step": 370
454
+ },
455
+ {
456
+ "epoch": 1.04,
457
+ "learning_rate": 2.3590502475841642e-05,
458
+ "loss": 1.8583,
459
+ "step": 375
460
+ },
461
+ {
462
+ "epoch": 1.05,
463
+ "learning_rate": 2.304933739116688e-05,
464
+ "loss": 1.7619,
465
+ "step": 380
466
+ },
467
+ {
468
+ "epoch": 1.06,
469
+ "learning_rate": 2.2509090486315246e-05,
470
+ "loss": 1.5837,
471
+ "step": 385
472
+ },
473
+ {
474
+ "epoch": 1.08,
475
+ "learning_rate": 2.1970016056317203e-05,
476
+ "loss": 1.6458,
477
+ "step": 390
478
+ },
479
+ {
480
+ "epoch": 1.09,
481
+ "learning_rate": 2.1432367844317558e-05,
482
+ "loss": 1.4172,
483
+ "step": 395
484
+ },
485
+ {
486
+ "epoch": 1.1,
487
+ "learning_rate": 2.0896398922138122e-05,
488
+ "loss": 1.4327,
489
+ "step": 400
490
+ },
491
+ {
492
+ "epoch": 1.12,
493
+ "learning_rate": 2.0362361571156505e-05,
494
+ "loss": 1.0046,
495
+ "step": 405
496
+ },
497
+ {
498
+ "epoch": 1.13,
499
+ "learning_rate": 1.9830507163556816e-05,
500
+ "loss": 1.2355,
501
+ "step": 410
502
+ },
503
+ {
504
+ "epoch": 1.15,
505
+ "learning_rate": 1.930108604400846e-05,
506
+ "loss": 1.224,
507
+ "step": 415
508
+ },
509
+ {
510
+ "epoch": 1.16,
511
+ "learning_rate": 1.8774347411828472e-05,
512
+ "loss": 1.7486,
513
+ "step": 420
514
+ },
515
+ {
516
+ "epoch": 1.17,
517
+ "learning_rate": 1.825053920368306e-05,
518
+ "loss": 1.6091,
519
+ "step": 425
520
+ },
521
+ {
522
+ "epoch": 1.19,
523
+ "learning_rate": 1.772990797688344e-05,
524
+ "loss": 1.4323,
525
+ "step": 430
526
+ },
527
+ {
528
+ "epoch": 1.2,
529
+ "learning_rate": 1.7212698793330916e-05,
530
+ "loss": 1.0638,
531
+ "step": 435
532
+ },
533
+ {
534
+ "epoch": 1.22,
535
+ "learning_rate": 1.6699155104165904e-05,
536
+ "loss": 1.6245,
537
+ "step": 440
538
+ },
539
+ {
540
+ "epoch": 1.23,
541
+ "learning_rate": 1.61895186351751e-05,
542
+ "loss": 1.1679,
543
+ "step": 445
544
+ },
545
+ {
546
+ "epoch": 1.24,
547
+ "learning_rate": 1.568402927301076e-05,
548
+ "loss": 1.7155,
549
+ "step": 450
550
+ },
551
+ {
552
+ "epoch": 1.26,
553
+ "learning_rate": 1.5182924952275768e-05,
554
+ "loss": 1.2734,
555
+ "step": 455
556
+ },
557
+ {
558
+ "epoch": 1.27,
559
+ "learning_rate": 1.4686441543527374e-05,
560
+ "loss": 1.7568,
561
+ "step": 460
562
+ },
563
+ {
564
+ "epoch": 1.28,
565
+ "learning_rate": 1.4194812742252638e-05,
566
+ "loss": 1.7407,
567
+ "step": 465
568
+ },
569
+ {
570
+ "epoch": 1.3,
571
+ "learning_rate": 1.3708269958867565e-05,
572
+ "loss": 1.5895,
573
+ "step": 470
574
+ },
575
+ {
576
+ "epoch": 1.31,
577
+ "learning_rate": 1.322704220979187e-05,
578
+ "loss": 2.2967,
579
+ "step": 475
580
+ },
581
+ {
582
+ "epoch": 1.33,
583
+ "learning_rate": 1.2751356009650681e-05,
584
+ "loss": 1.4595,
585
+ "step": 480
586
+ },
587
+ {
588
+ "epoch": 1.34,
589
+ "learning_rate": 1.2281435264653665e-05,
590
+ "loss": 1.6341,
591
+ "step": 485
592
+ },
593
+ {
594
+ "epoch": 1.35,
595
+ "learning_rate": 1.1817501167202099e-05,
596
+ "loss": 1.3562,
597
+ "step": 490
598
+ },
599
+ {
600
+ "epoch": 1.37,
601
+ "learning_rate": 1.1359772091773263e-05,
602
+ "loss": 1.6777,
603
+ "step": 495
604
+ },
605
+ {
606
+ "epoch": 1.38,
607
+ "learning_rate": 1.0908463492131227e-05,
608
+ "loss": 1.0831,
609
+ "step": 500
610
+ },
611
+ {
612
+ "epoch": 1.4,
613
+ "learning_rate": 1.0463787799912465e-05,
614
+ "loss": 1.0575,
615
+ "step": 505
616
+ },
617
+ {
618
+ "epoch": 1.41,
619
+ "learning_rate": 1.0025954324633948e-05,
620
+ "loss": 1.3363,
621
+ "step": 510
622
+ },
623
+ {
624
+ "epoch": 1.42,
625
+ "learning_rate": 9.595169155170852e-06,
626
+ "loss": 0.9582,
627
+ "step": 515
628
+ },
629
+ {
630
+ "epoch": 1.44,
631
+ "learning_rate": 9.171635062750189e-06,
632
+ "loss": 1.8537,
633
+ "step": 520
634
+ },
635
+ {
636
+ "epoch": 1.45,
637
+ "learning_rate": 8.755551405506143e-06,
638
+ "loss": 1.372,
639
+ "step": 525
640
+ },
641
+ {
642
+ "epoch": 1.46,
643
+ "learning_rate": 8.347114034641806e-06,
644
+ "loss": 1.6832,
645
+ "step": 530
646
+ },
647
+ {
648
+ "epoch": 1.48,
649
+ "learning_rate": 7.9465152022418e-06,
650
+ "loss": 0.8202,
651
+ "step": 535
652
+ },
653
+ {
654
+ "epoch": 1.49,
655
+ "learning_rate": 7.5539434707789266e-06,
656
+ "loss": 1.4924,
657
+ "step": 540
658
+ },
659
+ {
660
+ "epoch": 1.51,
661
+ "learning_rate": 7.169583624357451e-06,
662
+ "loss": 0.8526,
663
+ "step": 545
664
+ },
665
+ {
666
+ "epoch": 1.52,
667
+ "learning_rate": 6.793616581735062e-06,
668
+ "loss": 1.8087,
669
+ "step": 550
670
+ },
671
+ {
672
+ "epoch": 1.53,
673
+ "learning_rate": 6.42621931116405e-06,
674
+ "loss": 1.5891,
675
+ "step": 555
676
+ },
677
+ {
678
+ "epoch": 1.55,
679
+ "learning_rate": 6.067564747092094e-06,
680
+ "loss": 1.9362,
681
+ "step": 560
682
+ },
683
+ {
684
+ "epoch": 1.56,
685
+ "learning_rate": 5.717821708761822e-06,
686
+ "loss": 1.0487,
687
+ "step": 565
688
+ },
689
+ {
690
+ "epoch": 1.57,
691
+ "learning_rate": 5.377154820747271e-06,
692
+ "loss": 1.6339,
693
+ "step": 570
694
+ },
695
+ {
696
+ "epoch": 1.59,
697
+ "learning_rate": 5.045724435464874e-06,
698
+ "loss": 1.2953,
699
+ "step": 575
700
+ },
701
+ {
702
+ "epoch": 1.6,
703
+ "learning_rate": 4.72368655769535e-06,
704
+ "loss": 1.0077,
705
+ "step": 580
706
+ },
707
+ {
708
+ "epoch": 1.62,
709
+ "learning_rate": 4.411192771152004e-06,
710
+ "loss": 1.1702,
711
+ "step": 585
712
+ },
713
+ {
714
+ "epoch": 1.63,
715
+ "learning_rate": 4.108390167130044e-06,
716
+ "loss": 1.5571,
717
+ "step": 590
718
+ },
719
+ {
720
+ "epoch": 1.64,
721
+ "learning_rate": 3.8154212752704976e-06,
722
+ "loss": 1.3669,
723
+ "step": 595
724
+ },
725
+ {
726
+ "epoch": 1.66,
727
+ "learning_rate": 3.532423996471307e-06,
728
+ "loss": 1.6162,
729
+ "step": 600
730
+ },
731
+ {
732
+ "epoch": 1.67,
733
+ "learning_rate": 3.259531537977123e-06,
734
+ "loss": 0.4967,
735
+ "step": 605
736
+ },
737
+ {
738
+ "epoch": 1.69,
739
+ "learning_rate": 2.9968723506784953e-06,
740
+ "loss": 1.066,
741
+ "step": 610
742
+ },
743
+ {
744
+ "epoch": 1.7,
745
+ "learning_rate": 2.7445700686498545e-06,
746
+ "loss": 1.4617,
747
+ "step": 615
748
+ },
749
+ {
750
+ "epoch": 1.71,
751
+ "learning_rate": 2.502743450954714e-06,
752
+ "loss": 1.3762,
753
+ "step": 620
754
+ },
755
+ {
756
+ "epoch": 1.73,
757
+ "learning_rate": 2.271506325745662e-06,
758
+ "loss": 1.6011,
759
+ "step": 625
760
+ },
761
+ {
762
+ "epoch": 1.74,
763
+ "learning_rate": 2.050967536685233e-06,
764
+ "loss": 1.7583,
765
+ "step": 630
766
+ },
767
+ {
768
+ "epoch": 1.75,
769
+ "learning_rate": 1.8412308917130611e-06,
770
+ "loss": 1.4909,
771
+ "step": 635
772
+ },
773
+ {
774
+ "epoch": 1.77,
775
+ "learning_rate": 1.6423951141833011e-06,
776
+ "loss": 0.8267,
777
+ "step": 640
778
+ },
779
+ {
780
+ "epoch": 1.78,
781
+ "learning_rate": 1.4545537963954247e-06,
782
+ "loss": 1.3815,
783
+ "step": 645
784
+ },
785
+ {
786
+ "epoch": 1.8,
787
+ "learning_rate": 1.2777953555401678e-06,
788
+ "loss": 1.618,
789
+ "step": 650
790
+ },
791
+ {
792
+ "epoch": 1.81,
793
+ "learning_rate": 1.1122029920814236e-06,
794
+ "loss": 1.6904,
795
+ "step": 655
796
+ },
797
+ {
798
+ "epoch": 1.82,
799
+ "learning_rate": 9.578546505936676e-07,
800
+ "loss": 1.1602,
801
+ "step": 660
802
+ },
803
+ {
804
+ "epoch": 1.84,
805
+ "learning_rate": 8.148229830733295e-07,
806
+ "loss": 1.7147,
807
+ "step": 665
808
+ },
809
+ {
810
+ "epoch": 1.85,
811
+ "learning_rate": 6.831753147413827e-07,
812
+ "loss": 1.3837,
813
+ "step": 670
814
+ },
815
+ {
816
+ "epoch": 1.86,
817
+ "learning_rate": 5.629736123532653e-07,
818
+ "loss": 1.5324,
819
+ "step": 675
820
+ },
821
+ {
822
+ "epoch": 1.88,
823
+ "learning_rate": 4.5427445503103684e-07,
824
+ "loss": 0.9563,
825
+ "step": 680
826
+ },
827
+ {
828
+ "epoch": 1.89,
829
+ "learning_rate": 3.571290076314959e-07,
830
+ "loss": 1.2545,
831
+ "step": 685
832
+ },
833
+ {
834
+ "epoch": 1.91,
835
+ "learning_rate": 2.7158299666280864e-07,
836
+ "loss": 1.5162,
837
+ "step": 690
838
+ },
839
+ {
840
+ "epoch": 1.92,
841
+ "learning_rate": 1.9767668876096713e-07,
842
+ "loss": 1.3806,
843
+ "step": 695
844
+ },
845
+ {
846
+ "epoch": 1.93,
847
+ "learning_rate": 1.3544487173623443e-07,
848
+ "loss": 1.4588,
849
+ "step": 700
850
+ },
851
+ {
852
+ "epoch": 1.95,
853
+ "learning_rate": 8.491683819846219e-08,
854
+ "loss": 2.3318,
855
+ "step": 705
856
+ },
857
+ {
858
+ "epoch": 1.96,
859
+ "learning_rate": 4.611637176901162e-08,
860
+ "loss": 1.021,
861
+ "step": 710
862
+ },
863
+ {
864
+ "epoch": 1.98,
865
+ "learning_rate": 1.9061735885772536e-08,
866
+ "loss": 1.5645,
867
+ "step": 715
868
+ },
869
+ {
870
+ "epoch": 1.99,
871
+ "learning_rate": 3.76566520653987e-09,
872
+ "loss": 1.6854,
873
+ "step": 720
874
+ },
875
+ {
876
+ "epoch": 2.0,
877
+ "step": 724,
878
+ "total_flos": 3.95850929775575e+16,
879
+ "train_loss": 1.5255728854658854,
880
+ "train_runtime": 1381.7862,
881
+ "train_samples_per_second": 0.524,
882
+ "train_steps_per_second": 0.524
883
+ }
884
+ ],
885
+ "logging_steps": 5,
886
+ "max_steps": 724,
887
+ "num_train_epochs": 2,
888
+ "save_steps": 5000,
889
+ "total_flos": 3.95850929775575e+16,
890
+ "trial_name": null,
891
+ "trial_params": null
892
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e82a499bd072e39734f9ecc3971214f3280bff46aa14a84789ba4fa112adb807
3
+ size 4728
training_loss.png ADDED