--- language: en license: cc-by-sa-4.0 library_name: span-marker tags: - span-marker - token-classification - ner - named-entity-recognition - generated_from_span_marker_trainer metrics: - precision - recall - f1 widget: - text: Inductively Coupled Plasma - Mass Spectrometry ( ICP - MS ) analysis of Longcliffe SP52 limestone was undertaken to identify other impurities present , and the effect of sorbent mass and SO2 concentration on elemental partitioning in the carbonator between solid sorbent and gaseous phase was investigated , using a bubbler sampling system . - text: We extensively evaluate our work against benchmark and competitive protocols across a range of metrics over three real connectivity and GPS traces such as Sassy [ 44 ] , San Francisco Cabs [ 45 ] and Infocom 2006 [ 33 ] . - text: In this research , we developed a robust two - layer classifier that can accurately classify normal hearing ( NH ) from hearing impaired ( HI ) infants with congenital sensori - neural hearing loss ( SNHL ) based on their Magnetic Resonance ( MR ) images . - text: In situ Peak Force Tapping AFM was employed for determining morphology and nano - mechanical properties of the surface layer . - text: By means of a criterion of Gilmer for polynomially dense subsets of the ring of integers of a number field , we show that , if h∈K[X ] maps every element of OK of degree n to an algebraic integer , then h(X ) is integral - valued over OK , that is , h(OK)⊂OK . pipeline_tag: token-classification base_model: bert-base-uncased model-index: - name: SpanMarker with bert-base-uncased on my-data results: - task: type: token-classification name: Named Entity Recognition dataset: name: my-data type: unknown split: test metrics: - type: f1 value: 0.6547008547008547 name: F1 - type: precision value: 0.69009009009009 name: Precision - type: recall value: 0.6227642276422765 name: Recall --- # SpanMarker with bert-base-uncased on my-data This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-uncased](https://huggingface.co/bert-base-uncased) as the underlying encoder. ## Model Details ### Model Description - **Model Type:** SpanMarker - **Encoder:** [bert-base-uncased](https://huggingface.co/bert-base-uncased) - **Maximum Sequence Length:** 256 tokens - **Maximum Entity Length:** 8 words - **Language:** en - **License:** cc-by-sa-4.0 ### Model Sources - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER) - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf) ### Model Labels | Label | Examples | |:---------|:--------------------------------------------------------------------------------------------------------| | Data | "an overall mitochondrial", "defect", "Depth time - series" | | Material | "cross - shore measurement locations", "the subject 's fibroblasts", "COXI , COXII and COXIII subunits" | | Method | "EFSA", "an approximation", "in vitro" | | Process | "translation", "intake", "a significant reduction of synthesis" | ## Evaluation ### Metrics | Label | Precision | Recall | F1 | |:---------|:----------|:-------|:-------| | **all** | 0.6901 | 0.6228 | 0.6547 | | Data | 0.6136 | 0.5714 | 0.5918 | | Material | 0.7926 | 0.7413 | 0.7661 | | Method | 0.4286 | 0.3 | 0.3529 | | Process | 0.6780 | 0.5854 | 0.6283 | ## Uses ### Direct Use for Inference ```python from span_marker import SpanMarkerModel # Download from the 🤗 Hub model = SpanMarkerModel.from_pretrained("span_marker_model_id") # Run inference entities = model.predict("In situ Peak Force Tapping AFM was employed for determining morphology and nano - mechanical properties of the surface layer .") ``` ### Downstream Use You can finetune this model on your own dataset.
Click to expand ```python from span_marker import SpanMarkerModel, Trainer # Download from the 🤗 Hub model = SpanMarkerModel.from_pretrained("span_marker_model_id") # Specify a Dataset with "tokens" and "ner_tag" columns dataset = load_dataset("conll2003") # For example CoNLL2003 # Initialize a Trainer using the pretrained model & dataset trainer = Trainer( model=model, train_dataset=dataset["train"], eval_dataset=dataset["validation"], ) trainer.train() trainer.save_model("span_marker_model_id-finetuned") ```
## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:----------------------|:----|:--------|:----| | Sentence length | 3 | 25.6049 | 106 | | Entities per sentence | 0 | 5.2439 | 22 | ### Training Hyperparameters - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training Results | Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy | |:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:| | 2.0134 | 300 | 0.0557 | 0.6921 | 0.5706 | 0.6255 | 0.7645 | | 4.0268 | 600 | 0.0583 | 0.6994 | 0.6527 | 0.6752 | 0.7974 | | 6.0403 | 900 | 0.0701 | 0.7085 | 0.6679 | 0.6876 | 0.8039 | | 8.0537 | 1200 | 0.0797 | 0.6963 | 0.6870 | 0.6916 | 0.8129 | ### Framework Versions - Python: 3.10.12 - SpanMarker: 1.5.0 - Transformers: 4.36.2 - PyTorch: 2.0.1+cu118 - Datasets: 2.16.1 - Tokenizers: 0.15.0 ## Citation ### BibTeX ``` @software{Aarsen_SpanMarker, author = {Aarsen, Tom}, license = {Apache-2.0}, title = {{SpanMarker for Named Entity Recognition}}, url = {https://github.com/tomaarsen/SpanMarkerNER} } ```