zhong-al
commited on
Commit
•
1a4f7a3
1
Parent(s):
a5a2ed9
Merge cfg
Browse files- cfg.py +1283 -1
- helpers/cfg.py +0 -1286
cfg.py
CHANGED
@@ -1,7 +1,1289 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def load_config(path_to_config=None):
|
7 |
# Setup cfg.
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
3 |
|
4 |
+
"""Configs."""
|
5 |
+
import math
|
6 |
+
|
7 |
+
from fvcore.common.config import CfgNode
|
8 |
+
|
9 |
+
# -----------------------------------------------------------------------------
|
10 |
+
# Config definition
|
11 |
+
# -----------------------------------------------------------------------------
|
12 |
+
_C = CfgNode()
|
13 |
+
|
14 |
+
# -----------------------------------------------------------------------------
|
15 |
+
# Contrastive Model (for MoCo, SimCLR, SwAV, BYOL)
|
16 |
+
# -----------------------------------------------------------------------------
|
17 |
+
|
18 |
+
_C.CONTRASTIVE = CfgNode()
|
19 |
+
|
20 |
+
# temperature used for contrastive losses
|
21 |
+
_C.CONTRASTIVE.T = 0.07
|
22 |
+
|
23 |
+
# output dimension for the loss
|
24 |
+
_C.CONTRASTIVE.DIM = 128
|
25 |
+
|
26 |
+
# number of training samples (for kNN bank)
|
27 |
+
_C.CONTRASTIVE.LENGTH = 239975
|
28 |
+
|
29 |
+
# the length of MoCo's and MemBanks' queues
|
30 |
+
_C.CONTRASTIVE.QUEUE_LEN = 65536
|
31 |
+
|
32 |
+
# momentum for momentum encoder updates
|
33 |
+
_C.CONTRASTIVE.MOMENTUM = 0.5
|
34 |
+
|
35 |
+
# wether to anneal momentum to value above with cosine schedule
|
36 |
+
_C.CONTRASTIVE.MOMENTUM_ANNEALING = False
|
37 |
+
|
38 |
+
# either memorybank, moco, simclr, byol, swav
|
39 |
+
_C.CONTRASTIVE.TYPE = "mem"
|
40 |
+
|
41 |
+
# wether to interpolate memorybank in time
|
42 |
+
_C.CONTRASTIVE.INTERP_MEMORY = False
|
43 |
+
|
44 |
+
# 1d or 2d (+temporal) memory
|
45 |
+
_C.CONTRASTIVE.MEM_TYPE = "1d"
|
46 |
+
|
47 |
+
# number of classes for online kNN evaluation
|
48 |
+
_C.CONTRASTIVE.NUM_CLASSES_DOWNSTREAM = 400
|
49 |
+
|
50 |
+
# use an MLP projection with these num layers
|
51 |
+
_C.CONTRASTIVE.NUM_MLP_LAYERS = 1
|
52 |
+
|
53 |
+
# dimension of projection and predictor MLPs
|
54 |
+
_C.CONTRASTIVE.MLP_DIM = 2048
|
55 |
+
|
56 |
+
# use BN in projection/prediction MLP
|
57 |
+
_C.CONTRASTIVE.BN_MLP = False
|
58 |
+
|
59 |
+
# use synchronized BN in projection/prediction MLP
|
60 |
+
_C.CONTRASTIVE.BN_SYNC_MLP = False
|
61 |
+
|
62 |
+
# shuffle BN only locally vs. across machines
|
63 |
+
_C.CONTRASTIVE.LOCAL_SHUFFLE_BN = True
|
64 |
+
|
65 |
+
# Wether to fill multiple clips (or just the first) into queue
|
66 |
+
_C.CONTRASTIVE.MOCO_MULTI_VIEW_QUEUE = False
|
67 |
+
|
68 |
+
# if sampling multiple clips per vid they need to be at least min frames apart
|
69 |
+
_C.CONTRASTIVE.DELTA_CLIPS_MIN = -math.inf
|
70 |
+
|
71 |
+
# if sampling multiple clips per vid they can be max frames apart
|
72 |
+
_C.CONTRASTIVE.DELTA_CLIPS_MAX = math.inf
|
73 |
+
|
74 |
+
# if non empty, use predictors with depth specified
|
75 |
+
_C.CONTRASTIVE.PREDICTOR_DEPTHS = []
|
76 |
+
|
77 |
+
# Wether to sequentially process multiple clips (=lower mem usage) or batch them
|
78 |
+
_C.CONTRASTIVE.SEQUENTIAL = False
|
79 |
+
|
80 |
+
# Wether to perform SimCLR loss across machines (or only locally)
|
81 |
+
_C.CONTRASTIVE.SIMCLR_DIST_ON = True
|
82 |
+
|
83 |
+
# Length of queue used in SwAV
|
84 |
+
_C.CONTRASTIVE.SWAV_QEUE_LEN = 0
|
85 |
+
|
86 |
+
# Wether to run online kNN evaluation during training
|
87 |
+
_C.CONTRASTIVE.KNN_ON = True
|
88 |
+
|
89 |
+
|
90 |
+
# ---------------------------------------------------------------------------- #
|
91 |
+
# Batch norm options
|
92 |
+
# ---------------------------------------------------------------------------- #
|
93 |
+
_C.BN = CfgNode()
|
94 |
+
|
95 |
+
# Precise BN stats.
|
96 |
+
_C.BN.USE_PRECISE_STATS = False
|
97 |
+
|
98 |
+
# Number of samples use to compute precise bn.
|
99 |
+
_C.BN.NUM_BATCHES_PRECISE = 200
|
100 |
+
|
101 |
+
# Weight decay value that applies on BN.
|
102 |
+
_C.BN.WEIGHT_DECAY = 0.0
|
103 |
+
|
104 |
+
# Norm type, options include `batchnorm`, `sub_batchnorm`, `sync_batchnorm`
|
105 |
+
_C.BN.NORM_TYPE = "batchnorm"
|
106 |
+
|
107 |
+
# Parameter for SubBatchNorm, where it splits the batch dimension into
|
108 |
+
# NUM_SPLITS splits, and run BN on each of them separately independently.
|
109 |
+
_C.BN.NUM_SPLITS = 1
|
110 |
+
|
111 |
+
# Parameter for NaiveSyncBatchNorm, where the stats across `NUM_SYNC_DEVICES`
|
112 |
+
# devices will be synchronized. `NUM_SYNC_DEVICES` cannot be larger than number of
|
113 |
+
# devices per machine; if global sync is desired, set `GLOBAL_SYNC`.
|
114 |
+
# By default ONLY applies to NaiveSyncBatchNorm3d; consider also setting
|
115 |
+
# CONTRASTIVE.BN_SYNC_MLP if appropriate.
|
116 |
+
_C.BN.NUM_SYNC_DEVICES = 1
|
117 |
+
|
118 |
+
# Parameter for NaiveSyncBatchNorm. Setting `GLOBAL_SYNC` to True synchronizes
|
119 |
+
# stats across all devices, across all machines; in this case, `NUM_SYNC_DEVICES`
|
120 |
+
# must be set to None.
|
121 |
+
# By default ONLY applies to NaiveSyncBatchNorm3d; consider also setting
|
122 |
+
# CONTRASTIVE.BN_SYNC_MLP if appropriate.
|
123 |
+
_C.BN.GLOBAL_SYNC = False
|
124 |
+
|
125 |
+
# ---------------------------------------------------------------------------- #
|
126 |
+
# Training options.
|
127 |
+
# ---------------------------------------------------------------------------- #
|
128 |
+
_C.TRAIN = CfgNode()
|
129 |
+
|
130 |
+
# If True Train the model, else skip training.
|
131 |
+
_C.TRAIN.ENABLE = True
|
132 |
+
|
133 |
+
# Kill training if loss explodes over this ratio from the previous 5 measurements.
|
134 |
+
# Only enforced if > 0.0
|
135 |
+
_C.TRAIN.KILL_LOSS_EXPLOSION_FACTOR = 0.0
|
136 |
+
|
137 |
+
# Dataset.
|
138 |
+
_C.TRAIN.DATASET = "kinetics"
|
139 |
+
|
140 |
+
# Total mini-batch size.
|
141 |
+
_C.TRAIN.BATCH_SIZE = 64
|
142 |
+
|
143 |
+
# Evaluate model on test data every eval period epochs.
|
144 |
+
_C.TRAIN.EVAL_PERIOD = 10
|
145 |
+
|
146 |
+
# Save model checkpoint every checkpoint period epochs.
|
147 |
+
_C.TRAIN.CHECKPOINT_PERIOD = 10
|
148 |
+
|
149 |
+
# Resume training from the latest checkpoint in the output directory.
|
150 |
+
_C.TRAIN.AUTO_RESUME = True
|
151 |
+
|
152 |
+
# Path to the checkpoint to load the initial weight.
|
153 |
+
_C.TRAIN.CHECKPOINT_FILE_PATH = ""
|
154 |
+
|
155 |
+
# Checkpoint types include `caffe2` or `pytorch`.
|
156 |
+
_C.TRAIN.CHECKPOINT_TYPE = "pytorch"
|
157 |
+
|
158 |
+
# If True, perform inflation when loading checkpoint.
|
159 |
+
_C.TRAIN.CHECKPOINT_INFLATE = False
|
160 |
+
|
161 |
+
# If True, reset epochs when loading checkpoint.
|
162 |
+
_C.TRAIN.CHECKPOINT_EPOCH_RESET = False
|
163 |
+
|
164 |
+
# If set, clear all layer names according to the pattern provided.
|
165 |
+
_C.TRAIN.CHECKPOINT_CLEAR_NAME_PATTERN = () # ("backbone.",)
|
166 |
+
|
167 |
+
# If True, use FP16 for activations
|
168 |
+
_C.TRAIN.MIXED_PRECISION = False
|
169 |
+
|
170 |
+
# if True, inflate some params from imagenet model.
|
171 |
+
_C.TRAIN.CHECKPOINT_IN_INIT = False
|
172 |
+
|
173 |
+
# ---------------------------------------------------------------------------- #
|
174 |
+
# Augmentation options.
|
175 |
+
# ---------------------------------------------------------------------------- #
|
176 |
+
_C.AUG = CfgNode()
|
177 |
+
|
178 |
+
# Whether to enable randaug.
|
179 |
+
_C.AUG.ENABLE = False
|
180 |
+
|
181 |
+
# Number of repeated augmentations to used during training.
|
182 |
+
# If this is greater than 1, then the actual batch size is
|
183 |
+
# TRAIN.BATCH_SIZE * AUG.NUM_SAMPLE.
|
184 |
+
_C.AUG.NUM_SAMPLE = 1
|
185 |
+
|
186 |
+
# Not used if using randaug.
|
187 |
+
_C.AUG.COLOR_JITTER = 0.4
|
188 |
+
|
189 |
+
# RandAug parameters.
|
190 |
+
_C.AUG.AA_TYPE = "rand-m9-mstd0.5-inc1"
|
191 |
+
|
192 |
+
# Interpolation method.
|
193 |
+
_C.AUG.INTERPOLATION = "bicubic"
|
194 |
+
|
195 |
+
# Probability of random erasing.
|
196 |
+
_C.AUG.RE_PROB = 0.25
|
197 |
+
|
198 |
+
# Random erasing mode.
|
199 |
+
_C.AUG.RE_MODE = "pixel"
|
200 |
+
|
201 |
+
# Random erase count.
|
202 |
+
_C.AUG.RE_COUNT = 1
|
203 |
+
|
204 |
+
# Do not random erase first (clean) augmentation split.
|
205 |
+
_C.AUG.RE_SPLIT = False
|
206 |
+
|
207 |
+
# Whether to generate input mask during image processing.
|
208 |
+
_C.AUG.GEN_MASK_LOADER = False
|
209 |
+
|
210 |
+
# If True, masking mode is "tube". Default is "cube".
|
211 |
+
_C.AUG.MASK_TUBE = False
|
212 |
+
|
213 |
+
# If True, masking mode is "frame". Default is "cube".
|
214 |
+
_C.AUG.MASK_FRAMES = False
|
215 |
+
|
216 |
+
# The size of generated masks.
|
217 |
+
_C.AUG.MASK_WINDOW_SIZE = [8, 7, 7]
|
218 |
+
|
219 |
+
# The ratio of masked tokens out of all tokens. Also applies to MViT supervised training
|
220 |
+
_C.AUG.MASK_RATIO = 0.0
|
221 |
+
|
222 |
+
# The maximum number of a masked block. None means no maximum limit. (Used only in image MaskFeat.)
|
223 |
+
_C.AUG.MAX_MASK_PATCHES_PER_BLOCK = None
|
224 |
+
|
225 |
+
# ---------------------------------------------------------------------------- #
|
226 |
+
# Masked pretraining visualization options.
|
227 |
+
# ---------------------------------------------------------------------------- #
|
228 |
+
_C.VIS_MASK = CfgNode()
|
229 |
+
|
230 |
+
# Whether to do visualization.
|
231 |
+
_C.VIS_MASK.ENABLE = False
|
232 |
+
|
233 |
+
# ---------------------------------------------------------------------------- #
|
234 |
+
# MipUp options.
|
235 |
+
# ---------------------------------------------------------------------------- #
|
236 |
+
_C.MIXUP = CfgNode()
|
237 |
+
|
238 |
+
# Whether to use mixup.
|
239 |
+
_C.MIXUP.ENABLE = False
|
240 |
+
|
241 |
+
# Mixup alpha.
|
242 |
+
_C.MIXUP.ALPHA = 0.8
|
243 |
+
|
244 |
+
# Cutmix alpha.
|
245 |
+
_C.MIXUP.CUTMIX_ALPHA = 1.0
|
246 |
+
|
247 |
+
# Probability of performing mixup or cutmix when either/both is enabled.
|
248 |
+
_C.MIXUP.PROB = 1.0
|
249 |
+
|
250 |
+
# Probability of switching to cutmix when both mixup and cutmix enabled.
|
251 |
+
_C.MIXUP.SWITCH_PROB = 0.5
|
252 |
+
|
253 |
+
# Label smoothing.
|
254 |
+
_C.MIXUP.LABEL_SMOOTH_VALUE = 0.1
|
255 |
+
|
256 |
+
# ---------------------------------------------------------------------------- #
|
257 |
+
# Testing options
|
258 |
+
# ---------------------------------------------------------------------------- #
|
259 |
+
_C.TEST = CfgNode()
|
260 |
+
|
261 |
+
# If True test the model, else skip the testing.
|
262 |
+
_C.TEST.ENABLE = True
|
263 |
+
|
264 |
+
# Dataset for testing.
|
265 |
+
_C.TEST.DATASET = "kinetics"
|
266 |
+
|
267 |
+
# Total mini-batch size
|
268 |
+
_C.TEST.BATCH_SIZE = 8
|
269 |
+
|
270 |
+
# Path to the checkpoint to load the initial weight.
|
271 |
+
_C.TEST.CHECKPOINT_FILE_PATH = ""
|
272 |
+
|
273 |
+
# Number of clips to sample from a video uniformly for aggregating the
|
274 |
+
# prediction results.
|
275 |
+
_C.TEST.NUM_ENSEMBLE_VIEWS = 10
|
276 |
+
|
277 |
+
# Number of crops to sample from a frame spatially for aggregating the
|
278 |
+
# prediction results.
|
279 |
+
_C.TEST.NUM_SPATIAL_CROPS = 3
|
280 |
+
|
281 |
+
# Checkpoint types include `caffe2` or `pytorch`.
|
282 |
+
_C.TEST.CHECKPOINT_TYPE = "pytorch"
|
283 |
+
# Path to saving prediction results file.
|
284 |
+
_C.TEST.SAVE_RESULTS_PATH = ""
|
285 |
+
|
286 |
+
_C.TEST.NUM_TEMPORAL_CLIPS = []
|
287 |
+
# -----------------------------------------------------------------------------
|
288 |
+
# ResNet options
|
289 |
+
# -----------------------------------------------------------------------------
|
290 |
+
_C.RESNET = CfgNode()
|
291 |
+
|
292 |
+
# Transformation function.
|
293 |
+
_C.RESNET.TRANS_FUNC = "bottleneck_transform"
|
294 |
+
|
295 |
+
# Number of groups. 1 for ResNet, and larger than 1 for ResNeXt).
|
296 |
+
_C.RESNET.NUM_GROUPS = 1
|
297 |
+
|
298 |
+
# Width of each group (64 -> ResNet; 4 -> ResNeXt).
|
299 |
+
_C.RESNET.WIDTH_PER_GROUP = 64
|
300 |
+
|
301 |
+
# Apply relu in a inplace manner.
|
302 |
+
_C.RESNET.INPLACE_RELU = True
|
303 |
+
|
304 |
+
# Apply stride to 1x1 conv.
|
305 |
+
_C.RESNET.STRIDE_1X1 = False
|
306 |
+
|
307 |
+
# If true, initialize the gamma of the final BN of each block to zero.
|
308 |
+
_C.RESNET.ZERO_INIT_FINAL_BN = False
|
309 |
+
|
310 |
+
# If true, initialize the final conv layer of each block to zero.
|
311 |
+
_C.RESNET.ZERO_INIT_FINAL_CONV = False
|
312 |
+
|
313 |
+
# Number of weight layers.
|
314 |
+
_C.RESNET.DEPTH = 50
|
315 |
+
|
316 |
+
# If the current block has more than NUM_BLOCK_TEMP_KERNEL blocks, use temporal
|
317 |
+
# kernel of 1 for the rest of the blocks.
|
318 |
+
_C.RESNET.NUM_BLOCK_TEMP_KERNEL = [[3], [4], [6], [3]]
|
319 |
+
|
320 |
+
# Size of stride on different res stages.
|
321 |
+
_C.RESNET.SPATIAL_STRIDES = [[1], [2], [2], [2]]
|
322 |
+
|
323 |
+
# Size of dilation on different res stages.
|
324 |
+
_C.RESNET.SPATIAL_DILATIONS = [[1], [1], [1], [1]]
|
325 |
+
|
326 |
+
# ---------------------------------------------------------------------------- #
|
327 |
+
# X3D options
|
328 |
+
# See https://arxiv.org/abs/2004.04730 for details about X3D Networks.
|
329 |
+
# ---------------------------------------------------------------------------- #
|
330 |
+
_C.X3D = CfgNode()
|
331 |
+
|
332 |
+
# Width expansion factor.
|
333 |
+
_C.X3D.WIDTH_FACTOR = 1.0
|
334 |
+
|
335 |
+
# Depth expansion factor.
|
336 |
+
_C.X3D.DEPTH_FACTOR = 1.0
|
337 |
+
|
338 |
+
# Bottleneck expansion factor for the 3x3x3 conv.
|
339 |
+
_C.X3D.BOTTLENECK_FACTOR = 1.0 #
|
340 |
+
|
341 |
+
# Dimensions of the last linear layer before classificaiton.
|
342 |
+
_C.X3D.DIM_C5 = 2048
|
343 |
+
|
344 |
+
# Dimensions of the first 3x3 conv layer.
|
345 |
+
_C.X3D.DIM_C1 = 12
|
346 |
+
|
347 |
+
# Whether to scale the width of Res2, default is false.
|
348 |
+
_C.X3D.SCALE_RES2 = False
|
349 |
+
|
350 |
+
# Whether to use a BatchNorm (BN) layer before the classifier, default is false.
|
351 |
+
_C.X3D.BN_LIN5 = False
|
352 |
+
|
353 |
+
# Whether to use channelwise (=depthwise) convolution in the center (3x3x3)
|
354 |
+
# convolution operation of the residual blocks.
|
355 |
+
_C.X3D.CHANNELWISE_3x3x3 = True
|
356 |
+
|
357 |
+
# -----------------------------------------------------------------------------
|
358 |
+
# Nonlocal options
|
359 |
+
# -----------------------------------------------------------------------------
|
360 |
+
_C.NONLOCAL = CfgNode()
|
361 |
+
|
362 |
+
# Index of each stage and block to add nonlocal layers.
|
363 |
+
_C.NONLOCAL.LOCATION = [[[]], [[]], [[]], [[]]]
|
364 |
+
|
365 |
+
# Number of group for nonlocal for each stage.
|
366 |
+
_C.NONLOCAL.GROUP = [[1], [1], [1], [1]]
|
367 |
+
|
368 |
+
# Instatiation to use for non-local layer.
|
369 |
+
_C.NONLOCAL.INSTANTIATION = "dot_product"
|
370 |
+
|
371 |
+
|
372 |
+
# Size of pooling layers used in Non-Local.
|
373 |
+
_C.NONLOCAL.POOL = [
|
374 |
+
# Res2
|
375 |
+
[[1, 2, 2], [1, 2, 2]],
|
376 |
+
# Res3
|
377 |
+
[[1, 2, 2], [1, 2, 2]],
|
378 |
+
# Res4
|
379 |
+
[[1, 2, 2], [1, 2, 2]],
|
380 |
+
# Res5
|
381 |
+
[[1, 2, 2], [1, 2, 2]],
|
382 |
+
]
|
383 |
+
|
384 |
+
# -----------------------------------------------------------------------------
|
385 |
+
# Model options
|
386 |
+
# -----------------------------------------------------------------------------
|
387 |
+
_C.MODEL = CfgNode()
|
388 |
+
|
389 |
+
# Model architecture.
|
390 |
+
_C.MODEL.ARCH = "slowfast"
|
391 |
+
|
392 |
+
# Model name
|
393 |
+
_C.MODEL.MODEL_NAME = "SlowFast"
|
394 |
+
|
395 |
+
# The number of classes to predict for the model.
|
396 |
+
_C.MODEL.NUM_CLASSES = 400
|
397 |
+
|
398 |
+
# Loss function.
|
399 |
+
_C.MODEL.LOSS_FUNC = "cross_entropy"
|
400 |
+
|
401 |
+
# Model architectures that has one single pathway.
|
402 |
+
_C.MODEL.SINGLE_PATHWAY_ARCH = [
|
403 |
+
"2d",
|
404 |
+
"c2d",
|
405 |
+
"i3d",
|
406 |
+
"slow",
|
407 |
+
"x3d",
|
408 |
+
"mvit",
|
409 |
+
"maskmvit",
|
410 |
+
]
|
411 |
+
|
412 |
+
# Model architectures that has multiple pathways.
|
413 |
+
_C.MODEL.MULTI_PATHWAY_ARCH = ["slowfast"]
|
414 |
+
|
415 |
+
# Dropout rate before final projection in the backbone.
|
416 |
+
_C.MODEL.DROPOUT_RATE = 0.5
|
417 |
+
|
418 |
+
# Randomly drop rate for Res-blocks, linearly increase from res2 to res5
|
419 |
+
_C.MODEL.DROPCONNECT_RATE = 0.0
|
420 |
+
|
421 |
+
# The std to initialize the fc layer(s).
|
422 |
+
_C.MODEL.FC_INIT_STD = 0.01
|
423 |
+
|
424 |
+
# Activation layer for the output head.
|
425 |
+
_C.MODEL.HEAD_ACT = "softmax"
|
426 |
+
|
427 |
+
# Activation checkpointing enabled or not to save GPU memory.
|
428 |
+
_C.MODEL.ACT_CHECKPOINT = False
|
429 |
+
|
430 |
+
# If True, detach the final fc layer from the network, by doing so, only the
|
431 |
+
# final fc layer will be trained.
|
432 |
+
_C.MODEL.DETACH_FINAL_FC = False
|
433 |
+
|
434 |
+
# If True, frozen batch norm stats during training.
|
435 |
+
_C.MODEL.FROZEN_BN = False
|
436 |
+
|
437 |
+
# If True, AllReduce gradients are compressed to fp16
|
438 |
+
_C.MODEL.FP16_ALLREDUCE = False
|
439 |
+
|
440 |
+
|
441 |
+
# -----------------------------------------------------------------------------
|
442 |
+
# MViT options
|
443 |
+
# -----------------------------------------------------------------------------
|
444 |
+
_C.MVIT = CfgNode()
|
445 |
+
|
446 |
+
# Options include `conv`, `max`.
|
447 |
+
_C.MVIT.MODE = "conv"
|
448 |
+
|
449 |
+
# If True, perform pool before projection in attention.
|
450 |
+
_C.MVIT.POOL_FIRST = False
|
451 |
+
|
452 |
+
# If True, use cls embed in the network, otherwise don't use cls_embed in transformer.
|
453 |
+
_C.MVIT.CLS_EMBED_ON = True
|
454 |
+
|
455 |
+
# Kernel size for patchtification.
|
456 |
+
_C.MVIT.PATCH_KERNEL = [3, 7, 7]
|
457 |
+
|
458 |
+
# Stride size for patchtification.
|
459 |
+
_C.MVIT.PATCH_STRIDE = [2, 4, 4]
|
460 |
+
|
461 |
+
# Padding size for patchtification.
|
462 |
+
_C.MVIT.PATCH_PADDING = [2, 4, 4]
|
463 |
+
|
464 |
+
# If True, use 2d patch, otherwise use 3d patch.
|
465 |
+
_C.MVIT.PATCH_2D = False
|
466 |
+
|
467 |
+
# Base embedding dimension for the transformer.
|
468 |
+
_C.MVIT.EMBED_DIM = 96
|
469 |
+
|
470 |
+
# Base num of heads for the transformer.
|
471 |
+
_C.MVIT.NUM_HEADS = 1
|
472 |
+
|
473 |
+
# Dimension reduction ratio for the MLP layers.
|
474 |
+
_C.MVIT.MLP_RATIO = 4.0
|
475 |
+
|
476 |
+
# If use, use bias term in attention fc layers.
|
477 |
+
_C.MVIT.QKV_BIAS = True
|
478 |
+
|
479 |
+
# Drop path rate for the tranfomer.
|
480 |
+
_C.MVIT.DROPPATH_RATE = 0.1
|
481 |
+
|
482 |
+
# The initial value of layer scale gamma. Set 0.0 to disable layer scale.
|
483 |
+
_C.MVIT.LAYER_SCALE_INIT_VALUE = 0.0
|
484 |
+
|
485 |
+
# Depth of the transformer.
|
486 |
+
_C.MVIT.DEPTH = 16
|
487 |
+
|
488 |
+
# Normalization layer for the transformer. Only layernorm is supported now.
|
489 |
+
_C.MVIT.NORM = "layernorm"
|
490 |
+
|
491 |
+
# Dimension multiplication at layer i. If 2.0 is used, then the next block will increase
|
492 |
+
# the dimension by 2 times. Format: [depth_i: mul_dim_ratio]
|
493 |
+
_C.MVIT.DIM_MUL = []
|
494 |
+
|
495 |
+
# Head number multiplication at layer i. If 2.0 is used, then the next block will
|
496 |
+
# increase the number of heads by 2 times. Format: [depth_i: head_mul_ratio]
|
497 |
+
_C.MVIT.HEAD_MUL = []
|
498 |
+
|
499 |
+
# Stride size for the Pool KV at layer i.
|
500 |
+
# Format: [[i, stride_t_i, stride_h_i, stride_w_i], ...,]
|
501 |
+
_C.MVIT.POOL_KV_STRIDE = []
|
502 |
+
|
503 |
+
# Initial stride size for KV at layer 1. The stride size will be further reduced with
|
504 |
+
# the raio of MVIT.DIM_MUL. If will overwrite MVIT.POOL_KV_STRIDE if not None.
|
505 |
+
_C.MVIT.POOL_KV_STRIDE_ADAPTIVE = None
|
506 |
+
|
507 |
+
# Stride size for the Pool Q at layer i.
|
508 |
+
# Format: [[i, stride_t_i, stride_h_i, stride_w_i], ...,]
|
509 |
+
_C.MVIT.POOL_Q_STRIDE = []
|
510 |
+
|
511 |
+
# If not None, overwrite the KV_KERNEL and Q_KERNEL size with POOL_KVQ_CONV_SIZ.
|
512 |
+
# Otherwise the kernel_size is [s + 1 if s > 1 else s for s in stride_size].
|
513 |
+
_C.MVIT.POOL_KVQ_KERNEL = None
|
514 |
+
|
515 |
+
# If True, perform no decay on positional embedding and cls embedding.
|
516 |
+
_C.MVIT.ZERO_DECAY_POS_CLS = True
|
517 |
+
|
518 |
+
# If True, use norm after stem.
|
519 |
+
_C.MVIT.NORM_STEM = False
|
520 |
+
|
521 |
+
# If True, perform separate positional embedding.
|
522 |
+
_C.MVIT.SEP_POS_EMBED = False
|
523 |
+
|
524 |
+
# Dropout rate for the MViT backbone.
|
525 |
+
_C.MVIT.DROPOUT_RATE = 0.0
|
526 |
+
|
527 |
+
# If True, use absolute positional embedding.
|
528 |
+
_C.MVIT.USE_ABS_POS = True
|
529 |
+
|
530 |
+
# If True, use relative positional embedding for spatial dimentions
|
531 |
+
_C.MVIT.REL_POS_SPATIAL = False
|
532 |
+
|
533 |
+
# If True, use relative positional embedding for temporal dimentions
|
534 |
+
_C.MVIT.REL_POS_TEMPORAL = False
|
535 |
+
|
536 |
+
# If True, init rel with zero
|
537 |
+
_C.MVIT.REL_POS_ZERO_INIT = False
|
538 |
+
|
539 |
+
# If True, using Residual Pooling connection
|
540 |
+
_C.MVIT.RESIDUAL_POOLING = False
|
541 |
+
|
542 |
+
# Dim mul in qkv linear layers of attention block instead of MLP
|
543 |
+
_C.MVIT.DIM_MUL_IN_ATT = False
|
544 |
+
|
545 |
+
# If True, using separate linear layers for Q, K, V in attention blocks.
|
546 |
+
_C.MVIT.SEPARATE_QKV = False
|
547 |
+
|
548 |
+
# The initialization scale factor for the head parameters.
|
549 |
+
_C.MVIT.HEAD_INIT_SCALE = 1.0
|
550 |
+
|
551 |
+
# Whether to use the mean pooling of all patch tokens as the output.
|
552 |
+
_C.MVIT.USE_MEAN_POOLING = False
|
553 |
+
|
554 |
+
# If True, use frozen sin cos positional embedding.
|
555 |
+
_C.MVIT.USE_FIXED_SINCOS_POS = False
|
556 |
+
|
557 |
+
# -----------------------------------------------------------------------------
|
558 |
+
# Masked pretraining options
|
559 |
+
# -----------------------------------------------------------------------------
|
560 |
+
_C.MASK = CfgNode()
|
561 |
+
|
562 |
+
# Whether to enable Masked style pretraining.
|
563 |
+
_C.MASK.ENABLE = False
|
564 |
+
|
565 |
+
# Whether to enable MAE (discard encoder tokens).
|
566 |
+
_C.MASK.MAE_ON = False
|
567 |
+
|
568 |
+
# Whether to enable random masking in mae
|
569 |
+
_C.MASK.MAE_RND_MASK = False
|
570 |
+
|
571 |
+
# Whether to do random masking per-frame in mae
|
572 |
+
_C.MASK.PER_FRAME_MASKING = False
|
573 |
+
|
574 |
+
# only predict loss on temporal strided patches, or predict full time extent
|
575 |
+
_C.MASK.TIME_STRIDE_LOSS = True
|
576 |
+
|
577 |
+
# Whether to normalize the pred pixel loss
|
578 |
+
_C.MASK.NORM_PRED_PIXEL = True
|
579 |
+
|
580 |
+
# Whether to fix initialization with inverse depth of layer for pretraining.
|
581 |
+
_C.MASK.SCALE_INIT_BY_DEPTH = False
|
582 |
+
|
583 |
+
# Base embedding dimension for the decoder transformer.
|
584 |
+
_C.MASK.DECODER_EMBED_DIM = 512
|
585 |
+
|
586 |
+
# Base embedding dimension for the decoder transformer.
|
587 |
+
_C.MASK.DECODER_SEP_POS_EMBED = False
|
588 |
+
|
589 |
+
# Use a KV kernel in decoder?
|
590 |
+
_C.MASK.DEC_KV_KERNEL = []
|
591 |
+
|
592 |
+
# Use a KV stride in decoder?
|
593 |
+
_C.MASK.DEC_KV_STRIDE = []
|
594 |
+
|
595 |
+
# The depths of features which are inputs of the prediction head.
|
596 |
+
_C.MASK.PRETRAIN_DEPTH = [15]
|
597 |
+
|
598 |
+
# The type of Masked pretraining prediction head.
|
599 |
+
# Can be "separate", "separate_xformer".
|
600 |
+
_C.MASK.HEAD_TYPE = "separate"
|
601 |
+
|
602 |
+
# The depth of MAE's decoder
|
603 |
+
_C.MASK.DECODER_DEPTH = 0
|
604 |
+
|
605 |
+
# The weight of HOG target loss.
|
606 |
+
_C.MASK.PRED_HOG = False
|
607 |
+
# Reversible Configs
|
608 |
+
_C.MVIT.REV = CfgNode()
|
609 |
+
|
610 |
+
# Enable Reversible Model
|
611 |
+
_C.MVIT.REV.ENABLE = False
|
612 |
+
|
613 |
+
# Method to fuse the reversible paths
|
614 |
+
# see :class: `TwoStreamFusion` for all the options
|
615 |
+
_C.MVIT.REV.RESPATH_FUSE = "concat"
|
616 |
+
|
617 |
+
# Layers to buffer activations at
|
618 |
+
# (at least Q-pooling layers needed)
|
619 |
+
_C.MVIT.REV.BUFFER_LAYERS = []
|
620 |
+
|
621 |
+
# 'conv' or 'max' operator for the respath in Qpooling
|
622 |
+
_C.MVIT.REV.RES_PATH = "conv"
|
623 |
+
|
624 |
+
# Method to merge hidden states before Qpoolinglayers
|
625 |
+
_C.MVIT.REV.PRE_Q_FUSION = "avg"
|
626 |
+
|
627 |
+
# -----------------------------------------------------------------------------
|
628 |
+
# SlowFast options
|
629 |
+
# -----------------------------------------------------------------------------
|
630 |
+
_C.SLOWFAST = CfgNode()
|
631 |
+
|
632 |
+
# Corresponds to the inverse of the channel reduction ratio, $\beta$ between
|
633 |
+
# the Slow and Fast pathways.
|
634 |
+
_C.SLOWFAST.BETA_INV = 8
|
635 |
+
|
636 |
+
# Corresponds to the frame rate reduction ratio, $\alpha$ between the Slow and
|
637 |
+
# Fast pathways.
|
638 |
+
_C.SLOWFAST.ALPHA = 8
|
639 |
+
|
640 |
+
# Ratio of channel dimensions between the Slow and Fast pathways.
|
641 |
+
_C.SLOWFAST.FUSION_CONV_CHANNEL_RATIO = 2
|
642 |
+
|
643 |
+
# Kernel dimension used for fusing information from Fast pathway to Slow
|
644 |
+
# pathway.
|
645 |
+
_C.SLOWFAST.FUSION_KERNEL_SZ = 5
|
646 |
+
|
647 |
+
|
648 |
+
# -----------------------------------------------------------------------------
|
649 |
+
# Data options
|
650 |
+
# -----------------------------------------------------------------------------
|
651 |
+
_C.DATA = CfgNode()
|
652 |
+
|
653 |
+
# The path to the data directory.
|
654 |
+
_C.DATA.PATH_TO_DATA_DIR = ""
|
655 |
+
|
656 |
+
# The separator used between path and label.
|
657 |
+
_C.DATA.PATH_LABEL_SEPARATOR = " "
|
658 |
+
|
659 |
+
# Video path prefix if any.
|
660 |
+
_C.DATA.PATH_PREFIX = ""
|
661 |
+
|
662 |
+
# The number of frames of the input clip.
|
663 |
+
_C.DATA.NUM_FRAMES = 8
|
664 |
+
|
665 |
+
# The video sampling rate of the input clip.
|
666 |
+
_C.DATA.SAMPLING_RATE = 8
|
667 |
+
|
668 |
+
# Eigenvalues for PCA jittering. Note PCA is RGB based.
|
669 |
+
_C.DATA.TRAIN_PCA_EIGVAL = [0.225, 0.224, 0.229]
|
670 |
+
|
671 |
+
# Eigenvectors for PCA jittering.
|
672 |
+
_C.DATA.TRAIN_PCA_EIGVEC = [
|
673 |
+
[-0.5675, 0.7192, 0.4009],
|
674 |
+
[-0.5808, -0.0045, -0.8140],
|
675 |
+
[-0.5836, -0.6948, 0.4203],
|
676 |
+
]
|
677 |
+
|
678 |
+
# If a imdb have been dumpped to a local file with the following format:
|
679 |
+
# `{"im_path": im_path, "class": cont_id}`
|
680 |
+
# then we can skip the construction of imdb and load it from the local file.
|
681 |
+
_C.DATA.PATH_TO_PRELOAD_IMDB = ""
|
682 |
+
|
683 |
+
# The mean value of the video raw pixels across the R G B channels.
|
684 |
+
_C.DATA.MEAN = [0.45, 0.45, 0.45]
|
685 |
+
# List of input frame channel dimensions.
|
686 |
+
|
687 |
+
_C.DATA.INPUT_CHANNEL_NUM = [3, 3]
|
688 |
+
|
689 |
+
# The std value of the video raw pixels across the R G B channels.
|
690 |
+
_C.DATA.STD = [0.225, 0.225, 0.225]
|
691 |
+
|
692 |
+
# The spatial augmentation jitter scales for training.
|
693 |
+
_C.DATA.TRAIN_JITTER_SCALES = [256, 320]
|
694 |
+
|
695 |
+
# The relative scale range of Inception-style area based random resizing augmentation.
|
696 |
+
# If this is provided, DATA.TRAIN_JITTER_SCALES above is ignored.
|
697 |
+
_C.DATA.TRAIN_JITTER_SCALES_RELATIVE = []
|
698 |
+
|
699 |
+
# The relative aspect ratio range of Inception-style area based random resizing
|
700 |
+
# augmentation.
|
701 |
+
_C.DATA.TRAIN_JITTER_ASPECT_RELATIVE = []
|
702 |
+
|
703 |
+
# If True, perform stride length uniform temporal sampling.
|
704 |
+
_C.DATA.USE_OFFSET_SAMPLING = False
|
705 |
+
|
706 |
+
# Whether to apply motion shift for augmentation.
|
707 |
+
_C.DATA.TRAIN_JITTER_MOTION_SHIFT = False
|
708 |
+
|
709 |
+
# The spatial crop size for training.
|
710 |
+
_C.DATA.TRAIN_CROP_SIZE = 224
|
711 |
+
|
712 |
+
# The spatial crop size for testing.
|
713 |
+
_C.DATA.TEST_CROP_SIZE = 256
|
714 |
+
|
715 |
+
# Input videos may has different fps, convert it to the target video fps before
|
716 |
+
# frame sampling.
|
717 |
+
_C.DATA.TARGET_FPS = 30
|
718 |
+
|
719 |
+
# JITTER TARGET_FPS by +- this number randomly
|
720 |
+
_C.DATA.TRAIN_JITTER_FPS = 0.0
|
721 |
+
|
722 |
+
# Decoding backend, options include `pyav` or `torchvision`
|
723 |
+
_C.DATA.DECODING_BACKEND = "torchvision"
|
724 |
+
|
725 |
+
# Decoding resize to short size (set to native size for best speed)
|
726 |
+
_C.DATA.DECODING_SHORT_SIZE = 256
|
727 |
+
|
728 |
+
# if True, sample uniformly in [1 / max_scale, 1 / min_scale] and take a
|
729 |
+
# reciprocal to get the scale. If False, take a uniform sample from
|
730 |
+
# [min_scale, max_scale].
|
731 |
+
_C.DATA.INV_UNIFORM_SAMPLE = False
|
732 |
+
|
733 |
+
# If True, perform random horizontal flip on the video frames during training.
|
734 |
+
_C.DATA.RANDOM_FLIP = True
|
735 |
+
|
736 |
+
# If True, calculdate the map as metric.
|
737 |
+
_C.DATA.MULTI_LABEL = False
|
738 |
+
|
739 |
+
# Method to perform the ensemble, options include "sum" and "max".
|
740 |
+
_C.DATA.ENSEMBLE_METHOD = "sum"
|
741 |
+
|
742 |
+
# If True, revert the default input channel (RBG <-> BGR).
|
743 |
+
_C.DATA.REVERSE_INPUT_CHANNEL = False
|
744 |
+
|
745 |
+
# how many samples (=clips) to decode from a single video
|
746 |
+
_C.DATA.TRAIN_CROP_NUM_TEMPORAL = 1
|
747 |
+
|
748 |
+
# how many spatial samples to crop from a single clip
|
749 |
+
_C.DATA.TRAIN_CROP_NUM_SPATIAL = 1
|
750 |
+
|
751 |
+
# color random percentage for grayscale conversion
|
752 |
+
_C.DATA.COLOR_RND_GRAYSCALE = 0.0
|
753 |
+
|
754 |
+
# loader can read .csv file in chunks of this chunk size
|
755 |
+
_C.DATA.LOADER_CHUNK_SIZE = 0
|
756 |
+
|
757 |
+
# if LOADER_CHUNK_SIZE > 0, define overall length of .csv file
|
758 |
+
_C.DATA.LOADER_CHUNK_OVERALL_SIZE = 0
|
759 |
+
|
760 |
+
# for chunked reading, dataloader can skip rows in (large)
|
761 |
+
# training csv file
|
762 |
+
_C.DATA.SKIP_ROWS = 0
|
763 |
+
|
764 |
+
# The separator used between path and label.
|
765 |
+
_C.DATA.PATH_LABEL_SEPARATOR = " "
|
766 |
+
|
767 |
+
# augmentation probability to convert raw decoded video to
|
768 |
+
# grayscale temporal difference
|
769 |
+
_C.DATA.TIME_DIFF_PROB = 0.0
|
770 |
+
|
771 |
+
# Apply SSL-based SimCLR / MoCo v1/v2 color augmentations,
|
772 |
+
# with params below
|
773 |
+
_C.DATA.SSL_COLOR_JITTER = False
|
774 |
+
|
775 |
+
# color jitter percentage for brightness, contrast, saturation
|
776 |
+
_C.DATA.SSL_COLOR_BRI_CON_SAT = [0.4, 0.4, 0.4]
|
777 |
+
|
778 |
+
# color jitter percentage for hue
|
779 |
+
_C.DATA.SSL_COLOR_HUE = 0.1
|
780 |
+
|
781 |
+
# SimCLR / MoCo v2 augmentations on/off
|
782 |
+
_C.DATA.SSL_MOCOV2_AUG = False
|
783 |
+
|
784 |
+
# SimCLR / MoCo v2 blur augmentation minimum gaussian sigma
|
785 |
+
_C.DATA.SSL_BLUR_SIGMA_MIN = [0.0, 0.1]
|
786 |
+
|
787 |
+
# SimCLR / MoCo v2 blur augmentation maximum gaussian sigma
|
788 |
+
_C.DATA.SSL_BLUR_SIGMA_MAX = [0.0, 2.0]
|
789 |
+
|
790 |
+
|
791 |
+
# If combine train/val split as training for in21k
|
792 |
+
_C.DATA.IN22K_TRAINVAL = False
|
793 |
+
|
794 |
+
# If not None, use IN1k as val split when training in21k
|
795 |
+
_C.DATA.IN22k_VAL_IN1K = ""
|
796 |
+
|
797 |
+
# Large resolution models may use different crop ratios
|
798 |
+
_C.DATA.IN_VAL_CROP_RATIO = 0.875 # 224/256 = 0.875
|
799 |
+
|
800 |
+
# don't use real video for kinetics.py
|
801 |
+
_C.DATA.DUMMY_LOAD = False
|
802 |
+
|
803 |
+
# ---------------------------------------------------------------------------- #
|
804 |
+
# Optimizer options
|
805 |
+
# ---------------------------------------------------------------------------- #
|
806 |
+
_C.SOLVER = CfgNode()
|
807 |
+
|
808 |
+
# Base learning rate.
|
809 |
+
_C.SOLVER.BASE_LR = 0.1
|
810 |
+
|
811 |
+
# Learning rate policy (see utils/lr_policy.py for options and examples).
|
812 |
+
_C.SOLVER.LR_POLICY = "cosine"
|
813 |
+
|
814 |
+
# Final learning rates for 'cosine' policy.
|
815 |
+
_C.SOLVER.COSINE_END_LR = 0.0
|
816 |
+
|
817 |
+
# Exponential decay factor.
|
818 |
+
_C.SOLVER.GAMMA = 0.1
|
819 |
+
|
820 |
+
# Step size for 'exp' and 'cos' policies (in epochs).
|
821 |
+
_C.SOLVER.STEP_SIZE = 1
|
822 |
+
|
823 |
+
# Steps for 'steps_' policies (in epochs).
|
824 |
+
_C.SOLVER.STEPS = []
|
825 |
+
|
826 |
+
# Learning rates for 'steps_' policies.
|
827 |
+
_C.SOLVER.LRS = []
|
828 |
+
|
829 |
+
# Maximal number of epochs.
|
830 |
+
_C.SOLVER.MAX_EPOCH = 300
|
831 |
+
|
832 |
+
# Momentum.
|
833 |
+
_C.SOLVER.MOMENTUM = 0.9
|
834 |
+
|
835 |
+
# Momentum dampening.
|
836 |
+
_C.SOLVER.DAMPENING = 0.0
|
837 |
+
|
838 |
+
# Nesterov momentum.
|
839 |
+
_C.SOLVER.NESTEROV = True
|
840 |
+
|
841 |
+
# L2 regularization.
|
842 |
+
_C.SOLVER.WEIGHT_DECAY = 1e-4
|
843 |
+
|
844 |
+
# Start the warm up from SOLVER.BASE_LR * SOLVER.WARMUP_FACTOR.
|
845 |
+
_C.SOLVER.WARMUP_FACTOR = 0.1
|
846 |
+
|
847 |
+
# Gradually warm up the SOLVER.BASE_LR over this number of epochs.
|
848 |
+
_C.SOLVER.WARMUP_EPOCHS = 0.0
|
849 |
+
|
850 |
+
# The start learning rate of the warm up.
|
851 |
+
_C.SOLVER.WARMUP_START_LR = 0.01
|
852 |
+
|
853 |
+
# Optimization method.
|
854 |
+
_C.SOLVER.OPTIMIZING_METHOD = "sgd"
|
855 |
+
|
856 |
+
# Base learning rate is linearly scaled with NUM_SHARDS.
|
857 |
+
_C.SOLVER.BASE_LR_SCALE_NUM_SHARDS = False
|
858 |
+
|
859 |
+
# If True, start from the peak cosine learning rate after warm up.
|
860 |
+
_C.SOLVER.COSINE_AFTER_WARMUP = False
|
861 |
+
|
862 |
+
# If True, perform no weight decay on parameter with one dimension (bias term, etc).
|
863 |
+
_C.SOLVER.ZERO_WD_1D_PARAM = False
|
864 |
+
|
865 |
+
# Clip gradient at this value before optimizer update
|
866 |
+
_C.SOLVER.CLIP_GRAD_VAL = None
|
867 |
+
|
868 |
+
# Clip gradient at this norm before optimizer update
|
869 |
+
_C.SOLVER.CLIP_GRAD_L2NORM = None
|
870 |
+
|
871 |
+
# LARS optimizer
|
872 |
+
_C.SOLVER.LARS_ON = False
|
873 |
+
|
874 |
+
# The layer-wise decay of learning rate. Set to 1. to disable.
|
875 |
+
_C.SOLVER.LAYER_DECAY = 1.0
|
876 |
+
|
877 |
+
# Adam's beta
|
878 |
+
_C.SOLVER.BETAS = (0.9, 0.999)
|
879 |
+
# ---------------------------------------------------------------------------- #
|
880 |
+
# Misc options
|
881 |
+
# ---------------------------------------------------------------------------- #
|
882 |
+
|
883 |
+
# The name of the current task; e.g. "ssl"/"sl" for (self)supervised learning
|
884 |
+
_C.TASK = ""
|
885 |
+
|
886 |
+
# Number of GPUs to use (applies to both training and testing).
|
887 |
+
_C.NUM_GPUS = 1
|
888 |
+
|
889 |
+
# Number of machine to use for the job.
|
890 |
+
_C.NUM_SHARDS = 1
|
891 |
+
|
892 |
+
# The index of the current machine.
|
893 |
+
_C.SHARD_ID = 0
|
894 |
+
|
895 |
+
# Output basedir.
|
896 |
+
_C.OUTPUT_DIR = "."
|
897 |
+
|
898 |
+
# Note that non-determinism may still be present due to non-deterministic
|
899 |
+
# operator implementations in GPU operator libraries.
|
900 |
+
_C.RNG_SEED = 1
|
901 |
+
|
902 |
+
# Log period in iters.
|
903 |
+
_C.LOG_PERIOD = 10
|
904 |
+
|
905 |
+
# If True, log the model info.
|
906 |
+
_C.LOG_MODEL_INFO = True
|
907 |
+
|
908 |
+
# Distributed backend.
|
909 |
+
_C.DIST_BACKEND = "nccl"
|
910 |
+
|
911 |
+
# ---------------------------------------------------------------------------- #
|
912 |
+
# Benchmark options
|
913 |
+
# ---------------------------------------------------------------------------- #
|
914 |
+
_C.BENCHMARK = CfgNode()
|
915 |
+
|
916 |
+
# Number of epochs for data loading benchmark.
|
917 |
+
_C.BENCHMARK.NUM_EPOCHS = 5
|
918 |
+
|
919 |
+
# Log period in iters for data loading benchmark.
|
920 |
+
_C.BENCHMARK.LOG_PERIOD = 100
|
921 |
+
|
922 |
+
# If True, shuffle dataloader for epoch during benchmark.
|
923 |
+
_C.BENCHMARK.SHUFFLE = True
|
924 |
+
|
925 |
+
|
926 |
+
# ---------------------------------------------------------------------------- #
|
927 |
+
# Common train/test data loader options
|
928 |
+
# ---------------------------------------------------------------------------- #
|
929 |
+
_C.DATA_LOADER = CfgNode()
|
930 |
+
|
931 |
+
# Number of data loader workers per training process.
|
932 |
+
_C.DATA_LOADER.NUM_WORKERS = 8
|
933 |
+
|
934 |
+
# Load data to pinned host memory.
|
935 |
+
_C.DATA_LOADER.PIN_MEMORY = True
|
936 |
+
|
937 |
+
# Enable multi thread decoding.
|
938 |
+
_C.DATA_LOADER.ENABLE_MULTI_THREAD_DECODE = False
|
939 |
+
|
940 |
+
|
941 |
+
# ---------------------------------------------------------------------------- #
|
942 |
+
# Detection options.
|
943 |
+
# ---------------------------------------------------------------------------- #
|
944 |
+
_C.DETECTION = CfgNode()
|
945 |
+
|
946 |
+
# Whether enable video detection.
|
947 |
+
_C.DETECTION.ENABLE = False
|
948 |
+
|
949 |
+
# Aligned version of RoI. More details can be found at slowfast/models/head_helper.py
|
950 |
+
_C.DETECTION.ALIGNED = True
|
951 |
+
|
952 |
+
# Spatial scale factor.
|
953 |
+
_C.DETECTION.SPATIAL_SCALE_FACTOR = 16
|
954 |
+
|
955 |
+
# RoI tranformation resolution.
|
956 |
+
_C.DETECTION.ROI_XFORM_RESOLUTION = 7
|
957 |
+
|
958 |
+
|
959 |
+
# -----------------------------------------------------------------------------
|
960 |
+
# AVA Dataset options
|
961 |
+
# -----------------------------------------------------------------------------
|
962 |
+
_C.AVA = CfgNode()
|
963 |
+
|
964 |
+
# Directory path of frames.
|
965 |
+
_C.AVA.FRAME_DIR = "/mnt/fair-flash3-east/ava_trainval_frames.img/"
|
966 |
+
|
967 |
+
# Directory path for files of frame lists.
|
968 |
+
_C.AVA.FRAME_LIST_DIR = (
|
969 |
+
"/mnt/vol/gfsai-flash3-east/ai-group/users/haoqifan/ava/frame_list/"
|
970 |
+
)
|
971 |
+
|
972 |
+
# Directory path for annotation files.
|
973 |
+
_C.AVA.ANNOTATION_DIR = (
|
974 |
+
"/mnt/vol/gfsai-flash3-east/ai-group/users/haoqifan/ava/frame_list/"
|
975 |
+
)
|
976 |
+
|
977 |
+
# Filenames of training samples list files.
|
978 |
+
_C.AVA.TRAIN_LISTS = ["train.csv"]
|
979 |
+
|
980 |
+
# Filenames of test samples list files.
|
981 |
+
_C.AVA.TEST_LISTS = ["val.csv"]
|
982 |
+
|
983 |
+
# Filenames of box list files for training. Note that we assume files which
|
984 |
+
# contains predicted boxes will have a suffix "predicted_boxes" in the
|
985 |
+
# filename.
|
986 |
+
_C.AVA.TRAIN_GT_BOX_LISTS = ["ava_train_v2.2.csv"]
|
987 |
+
_C.AVA.TRAIN_PREDICT_BOX_LISTS = []
|
988 |
+
|
989 |
+
# Filenames of box list files for test.
|
990 |
+
_C.AVA.TEST_PREDICT_BOX_LISTS = ["ava_val_predicted_boxes.csv"]
|
991 |
+
|
992 |
+
# This option controls the score threshold for the predicted boxes to use.
|
993 |
+
_C.AVA.DETECTION_SCORE_THRESH = 0.9
|
994 |
+
|
995 |
+
# If use BGR as the format of input frames.
|
996 |
+
_C.AVA.BGR = False
|
997 |
+
|
998 |
+
# Training augmentation parameters
|
999 |
+
# Whether to use color augmentation method.
|
1000 |
+
_C.AVA.TRAIN_USE_COLOR_AUGMENTATION = False
|
1001 |
+
|
1002 |
+
# Whether to only use PCA jitter augmentation when using color augmentation
|
1003 |
+
# method (otherwise combine with color jitter method).
|
1004 |
+
_C.AVA.TRAIN_PCA_JITTER_ONLY = True
|
1005 |
+
|
1006 |
+
# Whether to do horizontal flipping during test.
|
1007 |
+
_C.AVA.TEST_FORCE_FLIP = False
|
1008 |
+
|
1009 |
+
# Whether to use full test set for validation split.
|
1010 |
+
_C.AVA.FULL_TEST_ON_VAL = False
|
1011 |
+
|
1012 |
+
# The name of the file to the ava label map.
|
1013 |
+
_C.AVA.LABEL_MAP_FILE = "ava_action_list_v2.2_for_activitynet_2019.pbtxt"
|
1014 |
+
|
1015 |
+
# The name of the file to the ava exclusion.
|
1016 |
+
_C.AVA.EXCLUSION_FILE = "ava_val_excluded_timestamps_v2.2.csv"
|
1017 |
+
|
1018 |
+
# The name of the file to the ava groundtruth.
|
1019 |
+
_C.AVA.GROUNDTRUTH_FILE = "ava_val_v2.2.csv"
|
1020 |
+
|
1021 |
+
# Backend to process image, includes `pytorch` and `cv2`.
|
1022 |
+
_C.AVA.IMG_PROC_BACKEND = "cv2"
|
1023 |
+
|
1024 |
+
# ---------------------------------------------------------------------------- #
|
1025 |
+
# Multigrid training options
|
1026 |
+
# See https://arxiv.org/abs/1912.00998 for details about multigrid training.
|
1027 |
+
# ---------------------------------------------------------------------------- #
|
1028 |
+
_C.MULTIGRID = CfgNode()
|
1029 |
+
|
1030 |
+
# Multigrid training allows us to train for more epochs with fewer iterations.
|
1031 |
+
# This hyperparameter specifies how many times more epochs to train.
|
1032 |
+
# The default setting in paper trains for 1.5x more epochs than baseline.
|
1033 |
+
_C.MULTIGRID.EPOCH_FACTOR = 1.5
|
1034 |
+
|
1035 |
+
# Enable short cycles.
|
1036 |
+
_C.MULTIGRID.SHORT_CYCLE = False
|
1037 |
+
# Short cycle additional spatial dimensions relative to the default crop size.
|
1038 |
+
_C.MULTIGRID.SHORT_CYCLE_FACTORS = [0.5, 0.5**0.5]
|
1039 |
+
|
1040 |
+
_C.MULTIGRID.LONG_CYCLE = False
|
1041 |
+
# (Temporal, Spatial) dimensions relative to the default shape.
|
1042 |
+
_C.MULTIGRID.LONG_CYCLE_FACTORS = [
|
1043 |
+
(0.25, 0.5**0.5),
|
1044 |
+
(0.5, 0.5**0.5),
|
1045 |
+
(0.5, 1),
|
1046 |
+
(1, 1),
|
1047 |
+
]
|
1048 |
+
|
1049 |
+
# While a standard BN computes stats across all examples in a GPU,
|
1050 |
+
# for multigrid training we fix the number of clips to compute BN stats on.
|
1051 |
+
# See https://arxiv.org/abs/1912.00998 for details.
|
1052 |
+
_C.MULTIGRID.BN_BASE_SIZE = 8
|
1053 |
+
|
1054 |
+
# Multigrid training epochs are not proportional to actual training time or
|
1055 |
+
# computations, so _C.TRAIN.EVAL_PERIOD leads to too frequent or rare
|
1056 |
+
# evaluation. We use a multigrid-specific rule to determine when to evaluate:
|
1057 |
+
# This hyperparameter defines how many times to evaluate a model per long
|
1058 |
+
# cycle shape.
|
1059 |
+
_C.MULTIGRID.EVAL_FREQ = 3
|
1060 |
+
|
1061 |
+
# No need to specify; Set automatically and used as global variables.
|
1062 |
+
_C.MULTIGRID.LONG_CYCLE_SAMPLING_RATE = 0
|
1063 |
+
_C.MULTIGRID.DEFAULT_B = 0
|
1064 |
+
_C.MULTIGRID.DEFAULT_T = 0
|
1065 |
+
_C.MULTIGRID.DEFAULT_S = 0
|
1066 |
+
|
1067 |
+
# -----------------------------------------------------------------------------
|
1068 |
+
# Tensorboard Visualization Options
|
1069 |
+
# -----------------------------------------------------------------------------
|
1070 |
+
_C.TENSORBOARD = CfgNode()
|
1071 |
+
|
1072 |
+
# Log to summary writer, this will automatically.
|
1073 |
+
# log loss, lr and metrics during train/eval.
|
1074 |
+
_C.TENSORBOARD.ENABLE = False
|
1075 |
+
# Provide path to prediction results for visualization.
|
1076 |
+
# This is a pickle file of [prediction_tensor, label_tensor]
|
1077 |
+
_C.TENSORBOARD.PREDICTIONS_PATH = ""
|
1078 |
+
# Path to directory for tensorboard logs.
|
1079 |
+
# Default to to cfg.OUTPUT_DIR/runs-{cfg.TRAIN.DATASET}.
|
1080 |
+
_C.TENSORBOARD.LOG_DIR = ""
|
1081 |
+
# Path to a json file providing class_name - id mapping
|
1082 |
+
# in the format {"class_name1": id1, "class_name2": id2, ...}.
|
1083 |
+
# This file must be provided to enable plotting confusion matrix
|
1084 |
+
# by a subset or parent categories.
|
1085 |
+
_C.TENSORBOARD.CLASS_NAMES_PATH = ""
|
1086 |
+
|
1087 |
+
# Path to a json file for categories -> classes mapping
|
1088 |
+
# in the format {"parent_class": ["child_class1", "child_class2",...], ...}.
|
1089 |
+
_C.TENSORBOARD.CATEGORIES_PATH = ""
|
1090 |
+
|
1091 |
+
# Config for confusion matrices visualization.
|
1092 |
+
_C.TENSORBOARD.CONFUSION_MATRIX = CfgNode()
|
1093 |
+
# Visualize confusion matrix.
|
1094 |
+
_C.TENSORBOARD.CONFUSION_MATRIX.ENABLE = False
|
1095 |
+
# Figure size of the confusion matrices plotted.
|
1096 |
+
_C.TENSORBOARD.CONFUSION_MATRIX.FIGSIZE = [8, 8]
|
1097 |
+
# Path to a subset of categories to visualize.
|
1098 |
+
# File contains class names separated by newline characters.
|
1099 |
+
_C.TENSORBOARD.CONFUSION_MATRIX.SUBSET_PATH = ""
|
1100 |
+
|
1101 |
+
# Config for histogram visualization.
|
1102 |
+
_C.TENSORBOARD.HISTOGRAM = CfgNode()
|
1103 |
+
# Visualize histograms.
|
1104 |
+
_C.TENSORBOARD.HISTOGRAM.ENABLE = False
|
1105 |
+
# Path to a subset of classes to plot histograms.
|
1106 |
+
# Class names must be separated by newline characters.
|
1107 |
+
_C.TENSORBOARD.HISTOGRAM.SUBSET_PATH = ""
|
1108 |
+
# Visualize top-k most predicted classes on histograms for each
|
1109 |
+
# chosen true label.
|
1110 |
+
_C.TENSORBOARD.HISTOGRAM.TOPK = 10
|
1111 |
+
# Figure size of the histograms plotted.
|
1112 |
+
_C.TENSORBOARD.HISTOGRAM.FIGSIZE = [8, 8]
|
1113 |
+
|
1114 |
+
# Config for layers' weights and activations visualization.
|
1115 |
+
# _C.TENSORBOARD.ENABLE must be True.
|
1116 |
+
_C.TENSORBOARD.MODEL_VIS = CfgNode()
|
1117 |
+
|
1118 |
+
# If False, skip model visualization.
|
1119 |
+
_C.TENSORBOARD.MODEL_VIS.ENABLE = False
|
1120 |
+
|
1121 |
+
# If False, skip visualizing model weights.
|
1122 |
+
_C.TENSORBOARD.MODEL_VIS.MODEL_WEIGHTS = False
|
1123 |
+
|
1124 |
+
# If False, skip visualizing model activations.
|
1125 |
+
_C.TENSORBOARD.MODEL_VIS.ACTIVATIONS = False
|
1126 |
+
|
1127 |
+
# If False, skip visualizing input videos.
|
1128 |
+
_C.TENSORBOARD.MODEL_VIS.INPUT_VIDEO = False
|
1129 |
+
|
1130 |
+
|
1131 |
+
# List of strings containing data about layer names and their indexing to
|
1132 |
+
# visualize weights and activations for. The indexing is meant for
|
1133 |
+
# choosing a subset of activations outputed by a layer for visualization.
|
1134 |
+
# If indexing is not specified, visualize all activations outputed by the layer.
|
1135 |
+
# For each string, layer name and indexing is separated by whitespaces.
|
1136 |
+
# e.g.: [layer1 1,2;1,2, layer2, layer3 150,151;3,4]; this means for each array `arr`
|
1137 |
+
# along the batch dimension in `layer1`, we take arr[[1, 2], [1, 2]]
|
1138 |
+
_C.TENSORBOARD.MODEL_VIS.LAYER_LIST = []
|
1139 |
+
# Top-k predictions to plot on videos
|
1140 |
+
_C.TENSORBOARD.MODEL_VIS.TOPK_PREDS = 1
|
1141 |
+
# Colormap to for text boxes and bounding boxes colors
|
1142 |
+
_C.TENSORBOARD.MODEL_VIS.COLORMAP = "Pastel2"
|
1143 |
+
# Config for visualization video inputs with Grad-CAM.
|
1144 |
+
# _C.TENSORBOARD.ENABLE must be True.
|
1145 |
+
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM = CfgNode()
|
1146 |
+
# Whether to run visualization using Grad-CAM technique.
|
1147 |
+
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM.ENABLE = True
|
1148 |
+
# CNN layers to use for Grad-CAM. The number of layers must be equal to
|
1149 |
+
# number of pathway(s).
|
1150 |
+
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM.LAYER_LIST = []
|
1151 |
+
# If True, visualize Grad-CAM using true labels for each instances.
|
1152 |
+
# If False, use the highest predicted class.
|
1153 |
+
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM.USE_TRUE_LABEL = False
|
1154 |
+
# Colormap to for text boxes and bounding boxes colors
|
1155 |
+
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM.COLORMAP = "viridis"
|
1156 |
+
|
1157 |
+
# Config for visualization for wrong prediction visualization.
|
1158 |
+
# _C.TENSORBOARD.ENABLE must be True.
|
1159 |
+
_C.TENSORBOARD.WRONG_PRED_VIS = CfgNode()
|
1160 |
+
_C.TENSORBOARD.WRONG_PRED_VIS.ENABLE = False
|
1161 |
+
# Folder tag to origanize model eval videos under.
|
1162 |
+
_C.TENSORBOARD.WRONG_PRED_VIS.TAG = "Incorrectly classified videos."
|
1163 |
+
# Subset of labels to visualize. Only wrong predictions with true labels
|
1164 |
+
# within this subset is visualized.
|
1165 |
+
_C.TENSORBOARD.WRONG_PRED_VIS.SUBSET_PATH = ""
|
1166 |
+
|
1167 |
+
|
1168 |
+
# ---------------------------------------------------------------------------- #
|
1169 |
+
# Demo options
|
1170 |
+
# ---------------------------------------------------------------------------- #
|
1171 |
+
_C.DEMO = CfgNode()
|
1172 |
+
|
1173 |
+
# Run model in DEMO mode.
|
1174 |
+
_C.DEMO.ENABLE = False
|
1175 |
+
|
1176 |
+
# Path to a json file providing class_name - id mapping
|
1177 |
+
# in the format {"class_name1": id1, "class_name2": id2, ...}.
|
1178 |
+
_C.DEMO.LABEL_FILE_PATH = ""
|
1179 |
+
|
1180 |
+
# Specify a camera device as input. This will be prioritized
|
1181 |
+
# over input video if set.
|
1182 |
+
# If -1, use input video instead.
|
1183 |
+
_C.DEMO.WEBCAM = -1
|
1184 |
+
|
1185 |
+
# Path to input video for demo.
|
1186 |
+
_C.DEMO.INPUT_VIDEO = ""
|
1187 |
+
# Custom width for reading input video data.
|
1188 |
+
_C.DEMO.DISPLAY_WIDTH = 0
|
1189 |
+
# Custom height for reading input video data.
|
1190 |
+
_C.DEMO.DISPLAY_HEIGHT = 0
|
1191 |
+
# Path to Detectron2 object detection model configuration,
|
1192 |
+
# only used for detection tasks.
|
1193 |
+
_C.DEMO.DETECTRON2_CFG = "COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml"
|
1194 |
+
# Path to Detectron2 object detection model pre-trained weights.
|
1195 |
+
_C.DEMO.DETECTRON2_WEIGHTS = "detectron2://COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
|
1196 |
+
# Threshold for choosing predicted bounding boxes by Detectron2.
|
1197 |
+
_C.DEMO.DETECTRON2_THRESH = 0.9
|
1198 |
+
# Number of overlapping frames between 2 consecutive clips.
|
1199 |
+
# Increase this number for more frequent action predictions.
|
1200 |
+
# The number of overlapping frames cannot be larger than
|
1201 |
+
# half of the sequence length `cfg.DATA.NUM_FRAMES * cfg.DATA.SAMPLING_RATE`
|
1202 |
+
_C.DEMO.BUFFER_SIZE = 0
|
1203 |
+
# If specified, the visualized outputs will be written this a video file of
|
1204 |
+
# this path. Otherwise, the visualized outputs will be displayed in a window.
|
1205 |
+
_C.DEMO.OUTPUT_FILE = ""
|
1206 |
+
# Frames per second rate for writing to output video file.
|
1207 |
+
# If not set (-1), use fps rate from input file.
|
1208 |
+
_C.DEMO.OUTPUT_FPS = -1
|
1209 |
+
# Input format from demo video reader ("RGB" or "BGR").
|
1210 |
+
_C.DEMO.INPUT_FORMAT = "BGR"
|
1211 |
+
# Draw visualization frames in [keyframe_idx - CLIP_VIS_SIZE, keyframe_idx + CLIP_VIS_SIZE] inclusively.
|
1212 |
+
_C.DEMO.CLIP_VIS_SIZE = 10
|
1213 |
+
# Number of processes to run video visualizer.
|
1214 |
+
_C.DEMO.NUM_VIS_INSTANCES = 2
|
1215 |
+
|
1216 |
+
# Path to pre-computed predicted boxes
|
1217 |
+
_C.DEMO.PREDS_BOXES = ""
|
1218 |
+
# Whether to run in with multi-threaded video reader.
|
1219 |
+
_C.DEMO.THREAD_ENABLE = False
|
1220 |
+
# Take one clip for every `DEMO.NUM_CLIPS_SKIP` + 1 for prediction and visualization.
|
1221 |
+
# This is used for fast demo speed by reducing the prediction/visualiztion frequency.
|
1222 |
+
# If -1, take the most recent read clip for visualization. This mode is only supported
|
1223 |
+
# if `DEMO.THREAD_ENABLE` is set to True.
|
1224 |
+
_C.DEMO.NUM_CLIPS_SKIP = 0
|
1225 |
+
# Path to ground-truth boxes and labels (optional)
|
1226 |
+
_C.DEMO.GT_BOXES = ""
|
1227 |
+
# The starting second of the video w.r.t bounding boxes file.
|
1228 |
+
_C.DEMO.STARTING_SECOND = 900
|
1229 |
+
# Frames per second of the input video/folder of images.
|
1230 |
+
_C.DEMO.FPS = 30
|
1231 |
+
# Visualize with top-k predictions or predictions above certain threshold(s).
|
1232 |
+
# Option: {"thres", "top-k"}
|
1233 |
+
_C.DEMO.VIS_MODE = "thres"
|
1234 |
+
# Threshold for common class names.
|
1235 |
+
_C.DEMO.COMMON_CLASS_THRES = 0.7
|
1236 |
+
# Theshold for uncommon class names. This will not be
|
1237 |
+
# used if `_C.DEMO.COMMON_CLASS_NAMES` is empty.
|
1238 |
+
_C.DEMO.UNCOMMON_CLASS_THRES = 0.3
|
1239 |
+
# This is chosen based on distribution of examples in
|
1240 |
+
# each classes in AVA dataset.
|
1241 |
+
_C.DEMO.COMMON_CLASS_NAMES = [
|
1242 |
+
"watch (a person)",
|
1243 |
+
"talk to (e.g., self, a person, a group)",
|
1244 |
+
"listen to (a person)",
|
1245 |
+
"touch (an object)",
|
1246 |
+
"carry/hold (an object)",
|
1247 |
+
"walk",
|
1248 |
+
"sit",
|
1249 |
+
"lie/sleep",
|
1250 |
+
"bend/bow (at the waist)",
|
1251 |
+
]
|
1252 |
+
# Slow-motion rate for the visualization. The visualized portions of the
|
1253 |
+
# video will be played `_C.DEMO.SLOWMO` times slower than usual speed.
|
1254 |
+
_C.DEMO.SLOWMO = 1
|
1255 |
+
|
1256 |
+
|
1257 |
+
def assert_and_infer_cfg(cfg):
|
1258 |
+
# BN assertions.
|
1259 |
+
if cfg.BN.USE_PRECISE_STATS:
|
1260 |
+
assert cfg.BN.NUM_BATCHES_PRECISE >= 0
|
1261 |
+
# TRAIN assertions.
|
1262 |
+
assert cfg.TRAIN.CHECKPOINT_TYPE in ["pytorch", "caffe2"]
|
1263 |
+
assert cfg.NUM_GPUS == 0 or cfg.TRAIN.BATCH_SIZE % cfg.NUM_GPUS == 0
|
1264 |
+
|
1265 |
+
# TEST assertions.
|
1266 |
+
assert cfg.TEST.CHECKPOINT_TYPE in ["pytorch", "caffe2"]
|
1267 |
+
assert cfg.NUM_GPUS == 0 or cfg.TEST.BATCH_SIZE % cfg.NUM_GPUS == 0
|
1268 |
+
|
1269 |
+
# RESNET assertions.
|
1270 |
+
assert cfg.RESNET.NUM_GROUPS > 0
|
1271 |
+
assert cfg.RESNET.WIDTH_PER_GROUP > 0
|
1272 |
+
assert cfg.RESNET.WIDTH_PER_GROUP % cfg.RESNET.NUM_GROUPS == 0
|
1273 |
+
|
1274 |
+
# Execute LR scaling by num_shards.
|
1275 |
+
if cfg.SOLVER.BASE_LR_SCALE_NUM_SHARDS:
|
1276 |
+
cfg.SOLVER.BASE_LR *= cfg.NUM_SHARDS
|
1277 |
+
cfg.SOLVER.WARMUP_START_LR *= cfg.NUM_SHARDS
|
1278 |
+
cfg.SOLVER.COSINE_END_LR *= cfg.NUM_SHARDS
|
1279 |
+
|
1280 |
+
# General assertions.
|
1281 |
+
assert cfg.SHARD_ID < cfg.NUM_SHARDS
|
1282 |
+
return cfg
|
1283 |
+
|
1284 |
+
|
1285 |
+
def get_cfg():
|
1286 |
+
return _C.clone()
|
1287 |
|
1288 |
def load_config(path_to_config=None):
|
1289 |
# Setup cfg.
|
helpers/cfg.py
DELETED
@@ -1,1286 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
3 |
-
|
4 |
-
"""Configs."""
|
5 |
-
import math
|
6 |
-
|
7 |
-
from fvcore.common.config import CfgNode
|
8 |
-
|
9 |
-
# -----------------------------------------------------------------------------
|
10 |
-
# Config definition
|
11 |
-
# -----------------------------------------------------------------------------
|
12 |
-
_C = CfgNode()
|
13 |
-
|
14 |
-
# -----------------------------------------------------------------------------
|
15 |
-
# Contrastive Model (for MoCo, SimCLR, SwAV, BYOL)
|
16 |
-
# -----------------------------------------------------------------------------
|
17 |
-
|
18 |
-
_C.CONTRASTIVE = CfgNode()
|
19 |
-
|
20 |
-
# temperature used for contrastive losses
|
21 |
-
_C.CONTRASTIVE.T = 0.07
|
22 |
-
|
23 |
-
# output dimension for the loss
|
24 |
-
_C.CONTRASTIVE.DIM = 128
|
25 |
-
|
26 |
-
# number of training samples (for kNN bank)
|
27 |
-
_C.CONTRASTIVE.LENGTH = 239975
|
28 |
-
|
29 |
-
# the length of MoCo's and MemBanks' queues
|
30 |
-
_C.CONTRASTIVE.QUEUE_LEN = 65536
|
31 |
-
|
32 |
-
# momentum for momentum encoder updates
|
33 |
-
_C.CONTRASTIVE.MOMENTUM = 0.5
|
34 |
-
|
35 |
-
# wether to anneal momentum to value above with cosine schedule
|
36 |
-
_C.CONTRASTIVE.MOMENTUM_ANNEALING = False
|
37 |
-
|
38 |
-
# either memorybank, moco, simclr, byol, swav
|
39 |
-
_C.CONTRASTIVE.TYPE = "mem"
|
40 |
-
|
41 |
-
# wether to interpolate memorybank in time
|
42 |
-
_C.CONTRASTIVE.INTERP_MEMORY = False
|
43 |
-
|
44 |
-
# 1d or 2d (+temporal) memory
|
45 |
-
_C.CONTRASTIVE.MEM_TYPE = "1d"
|
46 |
-
|
47 |
-
# number of classes for online kNN evaluation
|
48 |
-
_C.CONTRASTIVE.NUM_CLASSES_DOWNSTREAM = 400
|
49 |
-
|
50 |
-
# use an MLP projection with these num layers
|
51 |
-
_C.CONTRASTIVE.NUM_MLP_LAYERS = 1
|
52 |
-
|
53 |
-
# dimension of projection and predictor MLPs
|
54 |
-
_C.CONTRASTIVE.MLP_DIM = 2048
|
55 |
-
|
56 |
-
# use BN in projection/prediction MLP
|
57 |
-
_C.CONTRASTIVE.BN_MLP = False
|
58 |
-
|
59 |
-
# use synchronized BN in projection/prediction MLP
|
60 |
-
_C.CONTRASTIVE.BN_SYNC_MLP = False
|
61 |
-
|
62 |
-
# shuffle BN only locally vs. across machines
|
63 |
-
_C.CONTRASTIVE.LOCAL_SHUFFLE_BN = True
|
64 |
-
|
65 |
-
# Wether to fill multiple clips (or just the first) into queue
|
66 |
-
_C.CONTRASTIVE.MOCO_MULTI_VIEW_QUEUE = False
|
67 |
-
|
68 |
-
# if sampling multiple clips per vid they need to be at least min frames apart
|
69 |
-
_C.CONTRASTIVE.DELTA_CLIPS_MIN = -math.inf
|
70 |
-
|
71 |
-
# if sampling multiple clips per vid they can be max frames apart
|
72 |
-
_C.CONTRASTIVE.DELTA_CLIPS_MAX = math.inf
|
73 |
-
|
74 |
-
# if non empty, use predictors with depth specified
|
75 |
-
_C.CONTRASTIVE.PREDICTOR_DEPTHS = []
|
76 |
-
|
77 |
-
# Wether to sequentially process multiple clips (=lower mem usage) or batch them
|
78 |
-
_C.CONTRASTIVE.SEQUENTIAL = False
|
79 |
-
|
80 |
-
# Wether to perform SimCLR loss across machines (or only locally)
|
81 |
-
_C.CONTRASTIVE.SIMCLR_DIST_ON = True
|
82 |
-
|
83 |
-
# Length of queue used in SwAV
|
84 |
-
_C.CONTRASTIVE.SWAV_QEUE_LEN = 0
|
85 |
-
|
86 |
-
# Wether to run online kNN evaluation during training
|
87 |
-
_C.CONTRASTIVE.KNN_ON = True
|
88 |
-
|
89 |
-
|
90 |
-
# ---------------------------------------------------------------------------- #
|
91 |
-
# Batch norm options
|
92 |
-
# ---------------------------------------------------------------------------- #
|
93 |
-
_C.BN = CfgNode()
|
94 |
-
|
95 |
-
# Precise BN stats.
|
96 |
-
_C.BN.USE_PRECISE_STATS = False
|
97 |
-
|
98 |
-
# Number of samples use to compute precise bn.
|
99 |
-
_C.BN.NUM_BATCHES_PRECISE = 200
|
100 |
-
|
101 |
-
# Weight decay value that applies on BN.
|
102 |
-
_C.BN.WEIGHT_DECAY = 0.0
|
103 |
-
|
104 |
-
# Norm type, options include `batchnorm`, `sub_batchnorm`, `sync_batchnorm`
|
105 |
-
_C.BN.NORM_TYPE = "batchnorm"
|
106 |
-
|
107 |
-
# Parameter for SubBatchNorm, where it splits the batch dimension into
|
108 |
-
# NUM_SPLITS splits, and run BN on each of them separately independently.
|
109 |
-
_C.BN.NUM_SPLITS = 1
|
110 |
-
|
111 |
-
# Parameter for NaiveSyncBatchNorm, where the stats across `NUM_SYNC_DEVICES`
|
112 |
-
# devices will be synchronized. `NUM_SYNC_DEVICES` cannot be larger than number of
|
113 |
-
# devices per machine; if global sync is desired, set `GLOBAL_SYNC`.
|
114 |
-
# By default ONLY applies to NaiveSyncBatchNorm3d; consider also setting
|
115 |
-
# CONTRASTIVE.BN_SYNC_MLP if appropriate.
|
116 |
-
_C.BN.NUM_SYNC_DEVICES = 1
|
117 |
-
|
118 |
-
# Parameter for NaiveSyncBatchNorm. Setting `GLOBAL_SYNC` to True synchronizes
|
119 |
-
# stats across all devices, across all machines; in this case, `NUM_SYNC_DEVICES`
|
120 |
-
# must be set to None.
|
121 |
-
# By default ONLY applies to NaiveSyncBatchNorm3d; consider also setting
|
122 |
-
# CONTRASTIVE.BN_SYNC_MLP if appropriate.
|
123 |
-
_C.BN.GLOBAL_SYNC = False
|
124 |
-
|
125 |
-
# ---------------------------------------------------------------------------- #
|
126 |
-
# Training options.
|
127 |
-
# ---------------------------------------------------------------------------- #
|
128 |
-
_C.TRAIN = CfgNode()
|
129 |
-
|
130 |
-
# If True Train the model, else skip training.
|
131 |
-
_C.TRAIN.ENABLE = True
|
132 |
-
|
133 |
-
# Kill training if loss explodes over this ratio from the previous 5 measurements.
|
134 |
-
# Only enforced if > 0.0
|
135 |
-
_C.TRAIN.KILL_LOSS_EXPLOSION_FACTOR = 0.0
|
136 |
-
|
137 |
-
# Dataset.
|
138 |
-
_C.TRAIN.DATASET = "kinetics"
|
139 |
-
|
140 |
-
# Total mini-batch size.
|
141 |
-
_C.TRAIN.BATCH_SIZE = 64
|
142 |
-
|
143 |
-
# Evaluate model on test data every eval period epochs.
|
144 |
-
_C.TRAIN.EVAL_PERIOD = 10
|
145 |
-
|
146 |
-
# Save model checkpoint every checkpoint period epochs.
|
147 |
-
_C.TRAIN.CHECKPOINT_PERIOD = 10
|
148 |
-
|
149 |
-
# Resume training from the latest checkpoint in the output directory.
|
150 |
-
_C.TRAIN.AUTO_RESUME = True
|
151 |
-
|
152 |
-
# Path to the checkpoint to load the initial weight.
|
153 |
-
_C.TRAIN.CHECKPOINT_FILE_PATH = ""
|
154 |
-
|
155 |
-
# Checkpoint types include `caffe2` or `pytorch`.
|
156 |
-
_C.TRAIN.CHECKPOINT_TYPE = "pytorch"
|
157 |
-
|
158 |
-
# If True, perform inflation when loading checkpoint.
|
159 |
-
_C.TRAIN.CHECKPOINT_INFLATE = False
|
160 |
-
|
161 |
-
# If True, reset epochs when loading checkpoint.
|
162 |
-
_C.TRAIN.CHECKPOINT_EPOCH_RESET = False
|
163 |
-
|
164 |
-
# If set, clear all layer names according to the pattern provided.
|
165 |
-
_C.TRAIN.CHECKPOINT_CLEAR_NAME_PATTERN = () # ("backbone.",)
|
166 |
-
|
167 |
-
# If True, use FP16 for activations
|
168 |
-
_C.TRAIN.MIXED_PRECISION = False
|
169 |
-
|
170 |
-
# if True, inflate some params from imagenet model.
|
171 |
-
_C.TRAIN.CHECKPOINT_IN_INIT = False
|
172 |
-
|
173 |
-
# ---------------------------------------------------------------------------- #
|
174 |
-
# Augmentation options.
|
175 |
-
# ---------------------------------------------------------------------------- #
|
176 |
-
_C.AUG = CfgNode()
|
177 |
-
|
178 |
-
# Whether to enable randaug.
|
179 |
-
_C.AUG.ENABLE = False
|
180 |
-
|
181 |
-
# Number of repeated augmentations to used during training.
|
182 |
-
# If this is greater than 1, then the actual batch size is
|
183 |
-
# TRAIN.BATCH_SIZE * AUG.NUM_SAMPLE.
|
184 |
-
_C.AUG.NUM_SAMPLE = 1
|
185 |
-
|
186 |
-
# Not used if using randaug.
|
187 |
-
_C.AUG.COLOR_JITTER = 0.4
|
188 |
-
|
189 |
-
# RandAug parameters.
|
190 |
-
_C.AUG.AA_TYPE = "rand-m9-mstd0.5-inc1"
|
191 |
-
|
192 |
-
# Interpolation method.
|
193 |
-
_C.AUG.INTERPOLATION = "bicubic"
|
194 |
-
|
195 |
-
# Probability of random erasing.
|
196 |
-
_C.AUG.RE_PROB = 0.25
|
197 |
-
|
198 |
-
# Random erasing mode.
|
199 |
-
_C.AUG.RE_MODE = "pixel"
|
200 |
-
|
201 |
-
# Random erase count.
|
202 |
-
_C.AUG.RE_COUNT = 1
|
203 |
-
|
204 |
-
# Do not random erase first (clean) augmentation split.
|
205 |
-
_C.AUG.RE_SPLIT = False
|
206 |
-
|
207 |
-
# Whether to generate input mask during image processing.
|
208 |
-
_C.AUG.GEN_MASK_LOADER = False
|
209 |
-
|
210 |
-
# If True, masking mode is "tube". Default is "cube".
|
211 |
-
_C.AUG.MASK_TUBE = False
|
212 |
-
|
213 |
-
# If True, masking mode is "frame". Default is "cube".
|
214 |
-
_C.AUG.MASK_FRAMES = False
|
215 |
-
|
216 |
-
# The size of generated masks.
|
217 |
-
_C.AUG.MASK_WINDOW_SIZE = [8, 7, 7]
|
218 |
-
|
219 |
-
# The ratio of masked tokens out of all tokens. Also applies to MViT supervised training
|
220 |
-
_C.AUG.MASK_RATIO = 0.0
|
221 |
-
|
222 |
-
# The maximum number of a masked block. None means no maximum limit. (Used only in image MaskFeat.)
|
223 |
-
_C.AUG.MAX_MASK_PATCHES_PER_BLOCK = None
|
224 |
-
|
225 |
-
# ---------------------------------------------------------------------------- #
|
226 |
-
# Masked pretraining visualization options.
|
227 |
-
# ---------------------------------------------------------------------------- #
|
228 |
-
_C.VIS_MASK = CfgNode()
|
229 |
-
|
230 |
-
# Whether to do visualization.
|
231 |
-
_C.VIS_MASK.ENABLE = False
|
232 |
-
|
233 |
-
# ---------------------------------------------------------------------------- #
|
234 |
-
# MipUp options.
|
235 |
-
# ---------------------------------------------------------------------------- #
|
236 |
-
_C.MIXUP = CfgNode()
|
237 |
-
|
238 |
-
# Whether to use mixup.
|
239 |
-
_C.MIXUP.ENABLE = False
|
240 |
-
|
241 |
-
# Mixup alpha.
|
242 |
-
_C.MIXUP.ALPHA = 0.8
|
243 |
-
|
244 |
-
# Cutmix alpha.
|
245 |
-
_C.MIXUP.CUTMIX_ALPHA = 1.0
|
246 |
-
|
247 |
-
# Probability of performing mixup or cutmix when either/both is enabled.
|
248 |
-
_C.MIXUP.PROB = 1.0
|
249 |
-
|
250 |
-
# Probability of switching to cutmix when both mixup and cutmix enabled.
|
251 |
-
_C.MIXUP.SWITCH_PROB = 0.5
|
252 |
-
|
253 |
-
# Label smoothing.
|
254 |
-
_C.MIXUP.LABEL_SMOOTH_VALUE = 0.1
|
255 |
-
|
256 |
-
# ---------------------------------------------------------------------------- #
|
257 |
-
# Testing options
|
258 |
-
# ---------------------------------------------------------------------------- #
|
259 |
-
_C.TEST = CfgNode()
|
260 |
-
|
261 |
-
# If True test the model, else skip the testing.
|
262 |
-
_C.TEST.ENABLE = True
|
263 |
-
|
264 |
-
# Dataset for testing.
|
265 |
-
_C.TEST.DATASET = "kinetics"
|
266 |
-
|
267 |
-
# Total mini-batch size
|
268 |
-
_C.TEST.BATCH_SIZE = 8
|
269 |
-
|
270 |
-
# Path to the checkpoint to load the initial weight.
|
271 |
-
_C.TEST.CHECKPOINT_FILE_PATH = ""
|
272 |
-
|
273 |
-
# Number of clips to sample from a video uniformly for aggregating the
|
274 |
-
# prediction results.
|
275 |
-
_C.TEST.NUM_ENSEMBLE_VIEWS = 10
|
276 |
-
|
277 |
-
# Number of crops to sample from a frame spatially for aggregating the
|
278 |
-
# prediction results.
|
279 |
-
_C.TEST.NUM_SPATIAL_CROPS = 3
|
280 |
-
|
281 |
-
# Checkpoint types include `caffe2` or `pytorch`.
|
282 |
-
_C.TEST.CHECKPOINT_TYPE = "pytorch"
|
283 |
-
# Path to saving prediction results file.
|
284 |
-
_C.TEST.SAVE_RESULTS_PATH = ""
|
285 |
-
|
286 |
-
_C.TEST.NUM_TEMPORAL_CLIPS = []
|
287 |
-
# -----------------------------------------------------------------------------
|
288 |
-
# ResNet options
|
289 |
-
# -----------------------------------------------------------------------------
|
290 |
-
_C.RESNET = CfgNode()
|
291 |
-
|
292 |
-
# Transformation function.
|
293 |
-
_C.RESNET.TRANS_FUNC = "bottleneck_transform"
|
294 |
-
|
295 |
-
# Number of groups. 1 for ResNet, and larger than 1 for ResNeXt).
|
296 |
-
_C.RESNET.NUM_GROUPS = 1
|
297 |
-
|
298 |
-
# Width of each group (64 -> ResNet; 4 -> ResNeXt).
|
299 |
-
_C.RESNET.WIDTH_PER_GROUP = 64
|
300 |
-
|
301 |
-
# Apply relu in a inplace manner.
|
302 |
-
_C.RESNET.INPLACE_RELU = True
|
303 |
-
|
304 |
-
# Apply stride to 1x1 conv.
|
305 |
-
_C.RESNET.STRIDE_1X1 = False
|
306 |
-
|
307 |
-
# If true, initialize the gamma of the final BN of each block to zero.
|
308 |
-
_C.RESNET.ZERO_INIT_FINAL_BN = False
|
309 |
-
|
310 |
-
# If true, initialize the final conv layer of each block to zero.
|
311 |
-
_C.RESNET.ZERO_INIT_FINAL_CONV = False
|
312 |
-
|
313 |
-
# Number of weight layers.
|
314 |
-
_C.RESNET.DEPTH = 50
|
315 |
-
|
316 |
-
# If the current block has more than NUM_BLOCK_TEMP_KERNEL blocks, use temporal
|
317 |
-
# kernel of 1 for the rest of the blocks.
|
318 |
-
_C.RESNET.NUM_BLOCK_TEMP_KERNEL = [[3], [4], [6], [3]]
|
319 |
-
|
320 |
-
# Size of stride on different res stages.
|
321 |
-
_C.RESNET.SPATIAL_STRIDES = [[1], [2], [2], [2]]
|
322 |
-
|
323 |
-
# Size of dilation on different res stages.
|
324 |
-
_C.RESNET.SPATIAL_DILATIONS = [[1], [1], [1], [1]]
|
325 |
-
|
326 |
-
# ---------------------------------------------------------------------------- #
|
327 |
-
# X3D options
|
328 |
-
# See https://arxiv.org/abs/2004.04730 for details about X3D Networks.
|
329 |
-
# ---------------------------------------------------------------------------- #
|
330 |
-
_C.X3D = CfgNode()
|
331 |
-
|
332 |
-
# Width expansion factor.
|
333 |
-
_C.X3D.WIDTH_FACTOR = 1.0
|
334 |
-
|
335 |
-
# Depth expansion factor.
|
336 |
-
_C.X3D.DEPTH_FACTOR = 1.0
|
337 |
-
|
338 |
-
# Bottleneck expansion factor for the 3x3x3 conv.
|
339 |
-
_C.X3D.BOTTLENECK_FACTOR = 1.0 #
|
340 |
-
|
341 |
-
# Dimensions of the last linear layer before classificaiton.
|
342 |
-
_C.X3D.DIM_C5 = 2048
|
343 |
-
|
344 |
-
# Dimensions of the first 3x3 conv layer.
|
345 |
-
_C.X3D.DIM_C1 = 12
|
346 |
-
|
347 |
-
# Whether to scale the width of Res2, default is false.
|
348 |
-
_C.X3D.SCALE_RES2 = False
|
349 |
-
|
350 |
-
# Whether to use a BatchNorm (BN) layer before the classifier, default is false.
|
351 |
-
_C.X3D.BN_LIN5 = False
|
352 |
-
|
353 |
-
# Whether to use channelwise (=depthwise) convolution in the center (3x3x3)
|
354 |
-
# convolution operation of the residual blocks.
|
355 |
-
_C.X3D.CHANNELWISE_3x3x3 = True
|
356 |
-
|
357 |
-
# -----------------------------------------------------------------------------
|
358 |
-
# Nonlocal options
|
359 |
-
# -----------------------------------------------------------------------------
|
360 |
-
_C.NONLOCAL = CfgNode()
|
361 |
-
|
362 |
-
# Index of each stage and block to add nonlocal layers.
|
363 |
-
_C.NONLOCAL.LOCATION = [[[]], [[]], [[]], [[]]]
|
364 |
-
|
365 |
-
# Number of group for nonlocal for each stage.
|
366 |
-
_C.NONLOCAL.GROUP = [[1], [1], [1], [1]]
|
367 |
-
|
368 |
-
# Instatiation to use for non-local layer.
|
369 |
-
_C.NONLOCAL.INSTANTIATION = "dot_product"
|
370 |
-
|
371 |
-
|
372 |
-
# Size of pooling layers used in Non-Local.
|
373 |
-
_C.NONLOCAL.POOL = [
|
374 |
-
# Res2
|
375 |
-
[[1, 2, 2], [1, 2, 2]],
|
376 |
-
# Res3
|
377 |
-
[[1, 2, 2], [1, 2, 2]],
|
378 |
-
# Res4
|
379 |
-
[[1, 2, 2], [1, 2, 2]],
|
380 |
-
# Res5
|
381 |
-
[[1, 2, 2], [1, 2, 2]],
|
382 |
-
]
|
383 |
-
|
384 |
-
# -----------------------------------------------------------------------------
|
385 |
-
# Model options
|
386 |
-
# -----------------------------------------------------------------------------
|
387 |
-
_C.MODEL = CfgNode()
|
388 |
-
|
389 |
-
# Model architecture.
|
390 |
-
_C.MODEL.ARCH = "slowfast"
|
391 |
-
|
392 |
-
# Model name
|
393 |
-
_C.MODEL.MODEL_NAME = "SlowFast"
|
394 |
-
|
395 |
-
# The number of classes to predict for the model.
|
396 |
-
_C.MODEL.NUM_CLASSES = 400
|
397 |
-
|
398 |
-
# Loss function.
|
399 |
-
_C.MODEL.LOSS_FUNC = "cross_entropy"
|
400 |
-
|
401 |
-
# Model architectures that has one single pathway.
|
402 |
-
_C.MODEL.SINGLE_PATHWAY_ARCH = [
|
403 |
-
"2d",
|
404 |
-
"c2d",
|
405 |
-
"i3d",
|
406 |
-
"slow",
|
407 |
-
"x3d",
|
408 |
-
"mvit",
|
409 |
-
"maskmvit",
|
410 |
-
]
|
411 |
-
|
412 |
-
# Model architectures that has multiple pathways.
|
413 |
-
_C.MODEL.MULTI_PATHWAY_ARCH = ["slowfast"]
|
414 |
-
|
415 |
-
# Dropout rate before final projection in the backbone.
|
416 |
-
_C.MODEL.DROPOUT_RATE = 0.5
|
417 |
-
|
418 |
-
# Randomly drop rate for Res-blocks, linearly increase from res2 to res5
|
419 |
-
_C.MODEL.DROPCONNECT_RATE = 0.0
|
420 |
-
|
421 |
-
# The std to initialize the fc layer(s).
|
422 |
-
_C.MODEL.FC_INIT_STD = 0.01
|
423 |
-
|
424 |
-
# Activation layer for the output head.
|
425 |
-
_C.MODEL.HEAD_ACT = "softmax"
|
426 |
-
|
427 |
-
# Activation checkpointing enabled or not to save GPU memory.
|
428 |
-
_C.MODEL.ACT_CHECKPOINT = False
|
429 |
-
|
430 |
-
# If True, detach the final fc layer from the network, by doing so, only the
|
431 |
-
# final fc layer will be trained.
|
432 |
-
_C.MODEL.DETACH_FINAL_FC = False
|
433 |
-
|
434 |
-
# If True, frozen batch norm stats during training.
|
435 |
-
_C.MODEL.FROZEN_BN = False
|
436 |
-
|
437 |
-
# If True, AllReduce gradients are compressed to fp16
|
438 |
-
_C.MODEL.FP16_ALLREDUCE = False
|
439 |
-
|
440 |
-
|
441 |
-
# -----------------------------------------------------------------------------
|
442 |
-
# MViT options
|
443 |
-
# -----------------------------------------------------------------------------
|
444 |
-
_C.MVIT = CfgNode()
|
445 |
-
|
446 |
-
# Options include `conv`, `max`.
|
447 |
-
_C.MVIT.MODE = "conv"
|
448 |
-
|
449 |
-
# If True, perform pool before projection in attention.
|
450 |
-
_C.MVIT.POOL_FIRST = False
|
451 |
-
|
452 |
-
# If True, use cls embed in the network, otherwise don't use cls_embed in transformer.
|
453 |
-
_C.MVIT.CLS_EMBED_ON = True
|
454 |
-
|
455 |
-
# Kernel size for patchtification.
|
456 |
-
_C.MVIT.PATCH_KERNEL = [3, 7, 7]
|
457 |
-
|
458 |
-
# Stride size for patchtification.
|
459 |
-
_C.MVIT.PATCH_STRIDE = [2, 4, 4]
|
460 |
-
|
461 |
-
# Padding size for patchtification.
|
462 |
-
_C.MVIT.PATCH_PADDING = [2, 4, 4]
|
463 |
-
|
464 |
-
# If True, use 2d patch, otherwise use 3d patch.
|
465 |
-
_C.MVIT.PATCH_2D = False
|
466 |
-
|
467 |
-
# Base embedding dimension for the transformer.
|
468 |
-
_C.MVIT.EMBED_DIM = 96
|
469 |
-
|
470 |
-
# Base num of heads for the transformer.
|
471 |
-
_C.MVIT.NUM_HEADS = 1
|
472 |
-
|
473 |
-
# Dimension reduction ratio for the MLP layers.
|
474 |
-
_C.MVIT.MLP_RATIO = 4.0
|
475 |
-
|
476 |
-
# If use, use bias term in attention fc layers.
|
477 |
-
_C.MVIT.QKV_BIAS = True
|
478 |
-
|
479 |
-
# Drop path rate for the tranfomer.
|
480 |
-
_C.MVIT.DROPPATH_RATE = 0.1
|
481 |
-
|
482 |
-
# The initial value of layer scale gamma. Set 0.0 to disable layer scale.
|
483 |
-
_C.MVIT.LAYER_SCALE_INIT_VALUE = 0.0
|
484 |
-
|
485 |
-
# Depth of the transformer.
|
486 |
-
_C.MVIT.DEPTH = 16
|
487 |
-
|
488 |
-
# Normalization layer for the transformer. Only layernorm is supported now.
|
489 |
-
_C.MVIT.NORM = "layernorm"
|
490 |
-
|
491 |
-
# Dimension multiplication at layer i. If 2.0 is used, then the next block will increase
|
492 |
-
# the dimension by 2 times. Format: [depth_i: mul_dim_ratio]
|
493 |
-
_C.MVIT.DIM_MUL = []
|
494 |
-
|
495 |
-
# Head number multiplication at layer i. If 2.0 is used, then the next block will
|
496 |
-
# increase the number of heads by 2 times. Format: [depth_i: head_mul_ratio]
|
497 |
-
_C.MVIT.HEAD_MUL = []
|
498 |
-
|
499 |
-
# Stride size for the Pool KV at layer i.
|
500 |
-
# Format: [[i, stride_t_i, stride_h_i, stride_w_i], ...,]
|
501 |
-
_C.MVIT.POOL_KV_STRIDE = []
|
502 |
-
|
503 |
-
# Initial stride size for KV at layer 1. The stride size will be further reduced with
|
504 |
-
# the raio of MVIT.DIM_MUL. If will overwrite MVIT.POOL_KV_STRIDE if not None.
|
505 |
-
_C.MVIT.POOL_KV_STRIDE_ADAPTIVE = None
|
506 |
-
|
507 |
-
# Stride size for the Pool Q at layer i.
|
508 |
-
# Format: [[i, stride_t_i, stride_h_i, stride_w_i], ...,]
|
509 |
-
_C.MVIT.POOL_Q_STRIDE = []
|
510 |
-
|
511 |
-
# If not None, overwrite the KV_KERNEL and Q_KERNEL size with POOL_KVQ_CONV_SIZ.
|
512 |
-
# Otherwise the kernel_size is [s + 1 if s > 1 else s for s in stride_size].
|
513 |
-
_C.MVIT.POOL_KVQ_KERNEL = None
|
514 |
-
|
515 |
-
# If True, perform no decay on positional embedding and cls embedding.
|
516 |
-
_C.MVIT.ZERO_DECAY_POS_CLS = True
|
517 |
-
|
518 |
-
# If True, use norm after stem.
|
519 |
-
_C.MVIT.NORM_STEM = False
|
520 |
-
|
521 |
-
# If True, perform separate positional embedding.
|
522 |
-
_C.MVIT.SEP_POS_EMBED = False
|
523 |
-
|
524 |
-
# Dropout rate for the MViT backbone.
|
525 |
-
_C.MVIT.DROPOUT_RATE = 0.0
|
526 |
-
|
527 |
-
# If True, use absolute positional embedding.
|
528 |
-
_C.MVIT.USE_ABS_POS = True
|
529 |
-
|
530 |
-
# If True, use relative positional embedding for spatial dimentions
|
531 |
-
_C.MVIT.REL_POS_SPATIAL = False
|
532 |
-
|
533 |
-
# If True, use relative positional embedding for temporal dimentions
|
534 |
-
_C.MVIT.REL_POS_TEMPORAL = False
|
535 |
-
|
536 |
-
# If True, init rel with zero
|
537 |
-
_C.MVIT.REL_POS_ZERO_INIT = False
|
538 |
-
|
539 |
-
# If True, using Residual Pooling connection
|
540 |
-
_C.MVIT.RESIDUAL_POOLING = False
|
541 |
-
|
542 |
-
# Dim mul in qkv linear layers of attention block instead of MLP
|
543 |
-
_C.MVIT.DIM_MUL_IN_ATT = False
|
544 |
-
|
545 |
-
# If True, using separate linear layers for Q, K, V in attention blocks.
|
546 |
-
_C.MVIT.SEPARATE_QKV = False
|
547 |
-
|
548 |
-
# The initialization scale factor for the head parameters.
|
549 |
-
_C.MVIT.HEAD_INIT_SCALE = 1.0
|
550 |
-
|
551 |
-
# Whether to use the mean pooling of all patch tokens as the output.
|
552 |
-
_C.MVIT.USE_MEAN_POOLING = False
|
553 |
-
|
554 |
-
# If True, use frozen sin cos positional embedding.
|
555 |
-
_C.MVIT.USE_FIXED_SINCOS_POS = False
|
556 |
-
|
557 |
-
# -----------------------------------------------------------------------------
|
558 |
-
# Masked pretraining options
|
559 |
-
# -----------------------------------------------------------------------------
|
560 |
-
_C.MASK = CfgNode()
|
561 |
-
|
562 |
-
# Whether to enable Masked style pretraining.
|
563 |
-
_C.MASK.ENABLE = False
|
564 |
-
|
565 |
-
# Whether to enable MAE (discard encoder tokens).
|
566 |
-
_C.MASK.MAE_ON = False
|
567 |
-
|
568 |
-
# Whether to enable random masking in mae
|
569 |
-
_C.MASK.MAE_RND_MASK = False
|
570 |
-
|
571 |
-
# Whether to do random masking per-frame in mae
|
572 |
-
_C.MASK.PER_FRAME_MASKING = False
|
573 |
-
|
574 |
-
# only predict loss on temporal strided patches, or predict full time extent
|
575 |
-
_C.MASK.TIME_STRIDE_LOSS = True
|
576 |
-
|
577 |
-
# Whether to normalize the pred pixel loss
|
578 |
-
_C.MASK.NORM_PRED_PIXEL = True
|
579 |
-
|
580 |
-
# Whether to fix initialization with inverse depth of layer for pretraining.
|
581 |
-
_C.MASK.SCALE_INIT_BY_DEPTH = False
|
582 |
-
|
583 |
-
# Base embedding dimension for the decoder transformer.
|
584 |
-
_C.MASK.DECODER_EMBED_DIM = 512
|
585 |
-
|
586 |
-
# Base embedding dimension for the decoder transformer.
|
587 |
-
_C.MASK.DECODER_SEP_POS_EMBED = False
|
588 |
-
|
589 |
-
# Use a KV kernel in decoder?
|
590 |
-
_C.MASK.DEC_KV_KERNEL = []
|
591 |
-
|
592 |
-
# Use a KV stride in decoder?
|
593 |
-
_C.MASK.DEC_KV_STRIDE = []
|
594 |
-
|
595 |
-
# The depths of features which are inputs of the prediction head.
|
596 |
-
_C.MASK.PRETRAIN_DEPTH = [15]
|
597 |
-
|
598 |
-
# The type of Masked pretraining prediction head.
|
599 |
-
# Can be "separate", "separate_xformer".
|
600 |
-
_C.MASK.HEAD_TYPE = "separate"
|
601 |
-
|
602 |
-
# The depth of MAE's decoder
|
603 |
-
_C.MASK.DECODER_DEPTH = 0
|
604 |
-
|
605 |
-
# The weight of HOG target loss.
|
606 |
-
_C.MASK.PRED_HOG = False
|
607 |
-
# Reversible Configs
|
608 |
-
_C.MVIT.REV = CfgNode()
|
609 |
-
|
610 |
-
# Enable Reversible Model
|
611 |
-
_C.MVIT.REV.ENABLE = False
|
612 |
-
|
613 |
-
# Method to fuse the reversible paths
|
614 |
-
# see :class: `TwoStreamFusion` for all the options
|
615 |
-
_C.MVIT.REV.RESPATH_FUSE = "concat"
|
616 |
-
|
617 |
-
# Layers to buffer activations at
|
618 |
-
# (at least Q-pooling layers needed)
|
619 |
-
_C.MVIT.REV.BUFFER_LAYERS = []
|
620 |
-
|
621 |
-
# 'conv' or 'max' operator for the respath in Qpooling
|
622 |
-
_C.MVIT.REV.RES_PATH = "conv"
|
623 |
-
|
624 |
-
# Method to merge hidden states before Qpoolinglayers
|
625 |
-
_C.MVIT.REV.PRE_Q_FUSION = "avg"
|
626 |
-
|
627 |
-
# -----------------------------------------------------------------------------
|
628 |
-
# SlowFast options
|
629 |
-
# -----------------------------------------------------------------------------
|
630 |
-
_C.SLOWFAST = CfgNode()
|
631 |
-
|
632 |
-
# Corresponds to the inverse of the channel reduction ratio, $\beta$ between
|
633 |
-
# the Slow and Fast pathways.
|
634 |
-
_C.SLOWFAST.BETA_INV = 8
|
635 |
-
|
636 |
-
# Corresponds to the frame rate reduction ratio, $\alpha$ between the Slow and
|
637 |
-
# Fast pathways.
|
638 |
-
_C.SLOWFAST.ALPHA = 8
|
639 |
-
|
640 |
-
# Ratio of channel dimensions between the Slow and Fast pathways.
|
641 |
-
_C.SLOWFAST.FUSION_CONV_CHANNEL_RATIO = 2
|
642 |
-
|
643 |
-
# Kernel dimension used for fusing information from Fast pathway to Slow
|
644 |
-
# pathway.
|
645 |
-
_C.SLOWFAST.FUSION_KERNEL_SZ = 5
|
646 |
-
|
647 |
-
|
648 |
-
# -----------------------------------------------------------------------------
|
649 |
-
# Data options
|
650 |
-
# -----------------------------------------------------------------------------
|
651 |
-
_C.DATA = CfgNode()
|
652 |
-
|
653 |
-
# The path to the data directory.
|
654 |
-
_C.DATA.PATH_TO_DATA_DIR = ""
|
655 |
-
|
656 |
-
# The separator used between path and label.
|
657 |
-
_C.DATA.PATH_LABEL_SEPARATOR = " "
|
658 |
-
|
659 |
-
# Video path prefix if any.
|
660 |
-
_C.DATA.PATH_PREFIX = ""
|
661 |
-
|
662 |
-
# The number of frames of the input clip.
|
663 |
-
_C.DATA.NUM_FRAMES = 8
|
664 |
-
|
665 |
-
# The video sampling rate of the input clip.
|
666 |
-
_C.DATA.SAMPLING_RATE = 8
|
667 |
-
|
668 |
-
# Eigenvalues for PCA jittering. Note PCA is RGB based.
|
669 |
-
_C.DATA.TRAIN_PCA_EIGVAL = [0.225, 0.224, 0.229]
|
670 |
-
|
671 |
-
# Eigenvectors for PCA jittering.
|
672 |
-
_C.DATA.TRAIN_PCA_EIGVEC = [
|
673 |
-
[-0.5675, 0.7192, 0.4009],
|
674 |
-
[-0.5808, -0.0045, -0.8140],
|
675 |
-
[-0.5836, -0.6948, 0.4203],
|
676 |
-
]
|
677 |
-
|
678 |
-
# If a imdb have been dumpped to a local file with the following format:
|
679 |
-
# `{"im_path": im_path, "class": cont_id}`
|
680 |
-
# then we can skip the construction of imdb and load it from the local file.
|
681 |
-
_C.DATA.PATH_TO_PRELOAD_IMDB = ""
|
682 |
-
|
683 |
-
# The mean value of the video raw pixels across the R G B channels.
|
684 |
-
_C.DATA.MEAN = [0.45, 0.45, 0.45]
|
685 |
-
# List of input frame channel dimensions.
|
686 |
-
|
687 |
-
_C.DATA.INPUT_CHANNEL_NUM = [3, 3]
|
688 |
-
|
689 |
-
# The std value of the video raw pixels across the R G B channels.
|
690 |
-
_C.DATA.STD = [0.225, 0.225, 0.225]
|
691 |
-
|
692 |
-
# The spatial augmentation jitter scales for training.
|
693 |
-
_C.DATA.TRAIN_JITTER_SCALES = [256, 320]
|
694 |
-
|
695 |
-
# The relative scale range of Inception-style area based random resizing augmentation.
|
696 |
-
# If this is provided, DATA.TRAIN_JITTER_SCALES above is ignored.
|
697 |
-
_C.DATA.TRAIN_JITTER_SCALES_RELATIVE = []
|
698 |
-
|
699 |
-
# The relative aspect ratio range of Inception-style area based random resizing
|
700 |
-
# augmentation.
|
701 |
-
_C.DATA.TRAIN_JITTER_ASPECT_RELATIVE = []
|
702 |
-
|
703 |
-
# If True, perform stride length uniform temporal sampling.
|
704 |
-
_C.DATA.USE_OFFSET_SAMPLING = False
|
705 |
-
|
706 |
-
# Whether to apply motion shift for augmentation.
|
707 |
-
_C.DATA.TRAIN_JITTER_MOTION_SHIFT = False
|
708 |
-
|
709 |
-
# The spatial crop size for training.
|
710 |
-
_C.DATA.TRAIN_CROP_SIZE = 224
|
711 |
-
|
712 |
-
# The spatial crop size for testing.
|
713 |
-
_C.DATA.TEST_CROP_SIZE = 256
|
714 |
-
|
715 |
-
# Input videos may has different fps, convert it to the target video fps before
|
716 |
-
# frame sampling.
|
717 |
-
_C.DATA.TARGET_FPS = 30
|
718 |
-
|
719 |
-
# JITTER TARGET_FPS by +- this number randomly
|
720 |
-
_C.DATA.TRAIN_JITTER_FPS = 0.0
|
721 |
-
|
722 |
-
# Decoding backend, options include `pyav` or `torchvision`
|
723 |
-
_C.DATA.DECODING_BACKEND = "torchvision"
|
724 |
-
|
725 |
-
# Decoding resize to short size (set to native size for best speed)
|
726 |
-
_C.DATA.DECODING_SHORT_SIZE = 256
|
727 |
-
|
728 |
-
# if True, sample uniformly in [1 / max_scale, 1 / min_scale] and take a
|
729 |
-
# reciprocal to get the scale. If False, take a uniform sample from
|
730 |
-
# [min_scale, max_scale].
|
731 |
-
_C.DATA.INV_UNIFORM_SAMPLE = False
|
732 |
-
|
733 |
-
# If True, perform random horizontal flip on the video frames during training.
|
734 |
-
_C.DATA.RANDOM_FLIP = True
|
735 |
-
|
736 |
-
# If True, calculdate the map as metric.
|
737 |
-
_C.DATA.MULTI_LABEL = False
|
738 |
-
|
739 |
-
# Method to perform the ensemble, options include "sum" and "max".
|
740 |
-
_C.DATA.ENSEMBLE_METHOD = "sum"
|
741 |
-
|
742 |
-
# If True, revert the default input channel (RBG <-> BGR).
|
743 |
-
_C.DATA.REVERSE_INPUT_CHANNEL = False
|
744 |
-
|
745 |
-
# how many samples (=clips) to decode from a single video
|
746 |
-
_C.DATA.TRAIN_CROP_NUM_TEMPORAL = 1
|
747 |
-
|
748 |
-
# how many spatial samples to crop from a single clip
|
749 |
-
_C.DATA.TRAIN_CROP_NUM_SPATIAL = 1
|
750 |
-
|
751 |
-
# color random percentage for grayscale conversion
|
752 |
-
_C.DATA.COLOR_RND_GRAYSCALE = 0.0
|
753 |
-
|
754 |
-
# loader can read .csv file in chunks of this chunk size
|
755 |
-
_C.DATA.LOADER_CHUNK_SIZE = 0
|
756 |
-
|
757 |
-
# if LOADER_CHUNK_SIZE > 0, define overall length of .csv file
|
758 |
-
_C.DATA.LOADER_CHUNK_OVERALL_SIZE = 0
|
759 |
-
|
760 |
-
# for chunked reading, dataloader can skip rows in (large)
|
761 |
-
# training csv file
|
762 |
-
_C.DATA.SKIP_ROWS = 0
|
763 |
-
|
764 |
-
# The separator used between path and label.
|
765 |
-
_C.DATA.PATH_LABEL_SEPARATOR = " "
|
766 |
-
|
767 |
-
# augmentation probability to convert raw decoded video to
|
768 |
-
# grayscale temporal difference
|
769 |
-
_C.DATA.TIME_DIFF_PROB = 0.0
|
770 |
-
|
771 |
-
# Apply SSL-based SimCLR / MoCo v1/v2 color augmentations,
|
772 |
-
# with params below
|
773 |
-
_C.DATA.SSL_COLOR_JITTER = False
|
774 |
-
|
775 |
-
# color jitter percentage for brightness, contrast, saturation
|
776 |
-
_C.DATA.SSL_COLOR_BRI_CON_SAT = [0.4, 0.4, 0.4]
|
777 |
-
|
778 |
-
# color jitter percentage for hue
|
779 |
-
_C.DATA.SSL_COLOR_HUE = 0.1
|
780 |
-
|
781 |
-
# SimCLR / MoCo v2 augmentations on/off
|
782 |
-
_C.DATA.SSL_MOCOV2_AUG = False
|
783 |
-
|
784 |
-
# SimCLR / MoCo v2 blur augmentation minimum gaussian sigma
|
785 |
-
_C.DATA.SSL_BLUR_SIGMA_MIN = [0.0, 0.1]
|
786 |
-
|
787 |
-
# SimCLR / MoCo v2 blur augmentation maximum gaussian sigma
|
788 |
-
_C.DATA.SSL_BLUR_SIGMA_MAX = [0.0, 2.0]
|
789 |
-
|
790 |
-
|
791 |
-
# If combine train/val split as training for in21k
|
792 |
-
_C.DATA.IN22K_TRAINVAL = False
|
793 |
-
|
794 |
-
# If not None, use IN1k as val split when training in21k
|
795 |
-
_C.DATA.IN22k_VAL_IN1K = ""
|
796 |
-
|
797 |
-
# Large resolution models may use different crop ratios
|
798 |
-
_C.DATA.IN_VAL_CROP_RATIO = 0.875 # 224/256 = 0.875
|
799 |
-
|
800 |
-
# don't use real video for kinetics.py
|
801 |
-
_C.DATA.DUMMY_LOAD = False
|
802 |
-
|
803 |
-
# ---------------------------------------------------------------------------- #
|
804 |
-
# Optimizer options
|
805 |
-
# ---------------------------------------------------------------------------- #
|
806 |
-
_C.SOLVER = CfgNode()
|
807 |
-
|
808 |
-
# Base learning rate.
|
809 |
-
_C.SOLVER.BASE_LR = 0.1
|
810 |
-
|
811 |
-
# Learning rate policy (see utils/lr_policy.py for options and examples).
|
812 |
-
_C.SOLVER.LR_POLICY = "cosine"
|
813 |
-
|
814 |
-
# Final learning rates for 'cosine' policy.
|
815 |
-
_C.SOLVER.COSINE_END_LR = 0.0
|
816 |
-
|
817 |
-
# Exponential decay factor.
|
818 |
-
_C.SOLVER.GAMMA = 0.1
|
819 |
-
|
820 |
-
# Step size for 'exp' and 'cos' policies (in epochs).
|
821 |
-
_C.SOLVER.STEP_SIZE = 1
|
822 |
-
|
823 |
-
# Steps for 'steps_' policies (in epochs).
|
824 |
-
_C.SOLVER.STEPS = []
|
825 |
-
|
826 |
-
# Learning rates for 'steps_' policies.
|
827 |
-
_C.SOLVER.LRS = []
|
828 |
-
|
829 |
-
# Maximal number of epochs.
|
830 |
-
_C.SOLVER.MAX_EPOCH = 300
|
831 |
-
|
832 |
-
# Momentum.
|
833 |
-
_C.SOLVER.MOMENTUM = 0.9
|
834 |
-
|
835 |
-
# Momentum dampening.
|
836 |
-
_C.SOLVER.DAMPENING = 0.0
|
837 |
-
|
838 |
-
# Nesterov momentum.
|
839 |
-
_C.SOLVER.NESTEROV = True
|
840 |
-
|
841 |
-
# L2 regularization.
|
842 |
-
_C.SOLVER.WEIGHT_DECAY = 1e-4
|
843 |
-
|
844 |
-
# Start the warm up from SOLVER.BASE_LR * SOLVER.WARMUP_FACTOR.
|
845 |
-
_C.SOLVER.WARMUP_FACTOR = 0.1
|
846 |
-
|
847 |
-
# Gradually warm up the SOLVER.BASE_LR over this number of epochs.
|
848 |
-
_C.SOLVER.WARMUP_EPOCHS = 0.0
|
849 |
-
|
850 |
-
# The start learning rate of the warm up.
|
851 |
-
_C.SOLVER.WARMUP_START_LR = 0.01
|
852 |
-
|
853 |
-
# Optimization method.
|
854 |
-
_C.SOLVER.OPTIMIZING_METHOD = "sgd"
|
855 |
-
|
856 |
-
# Base learning rate is linearly scaled with NUM_SHARDS.
|
857 |
-
_C.SOLVER.BASE_LR_SCALE_NUM_SHARDS = False
|
858 |
-
|
859 |
-
# If True, start from the peak cosine learning rate after warm up.
|
860 |
-
_C.SOLVER.COSINE_AFTER_WARMUP = False
|
861 |
-
|
862 |
-
# If True, perform no weight decay on parameter with one dimension (bias term, etc).
|
863 |
-
_C.SOLVER.ZERO_WD_1D_PARAM = False
|
864 |
-
|
865 |
-
# Clip gradient at this value before optimizer update
|
866 |
-
_C.SOLVER.CLIP_GRAD_VAL = None
|
867 |
-
|
868 |
-
# Clip gradient at this norm before optimizer update
|
869 |
-
_C.SOLVER.CLIP_GRAD_L2NORM = None
|
870 |
-
|
871 |
-
# LARS optimizer
|
872 |
-
_C.SOLVER.LARS_ON = False
|
873 |
-
|
874 |
-
# The layer-wise decay of learning rate. Set to 1. to disable.
|
875 |
-
_C.SOLVER.LAYER_DECAY = 1.0
|
876 |
-
|
877 |
-
# Adam's beta
|
878 |
-
_C.SOLVER.BETAS = (0.9, 0.999)
|
879 |
-
# ---------------------------------------------------------------------------- #
|
880 |
-
# Misc options
|
881 |
-
# ---------------------------------------------------------------------------- #
|
882 |
-
|
883 |
-
# The name of the current task; e.g. "ssl"/"sl" for (self)supervised learning
|
884 |
-
_C.TASK = ""
|
885 |
-
|
886 |
-
# Number of GPUs to use (applies to both training and testing).
|
887 |
-
_C.NUM_GPUS = 1
|
888 |
-
|
889 |
-
# Number of machine to use for the job.
|
890 |
-
_C.NUM_SHARDS = 1
|
891 |
-
|
892 |
-
# The index of the current machine.
|
893 |
-
_C.SHARD_ID = 0
|
894 |
-
|
895 |
-
# Output basedir.
|
896 |
-
_C.OUTPUT_DIR = "."
|
897 |
-
|
898 |
-
# Note that non-determinism may still be present due to non-deterministic
|
899 |
-
# operator implementations in GPU operator libraries.
|
900 |
-
_C.RNG_SEED = 1
|
901 |
-
|
902 |
-
# Log period in iters.
|
903 |
-
_C.LOG_PERIOD = 10
|
904 |
-
|
905 |
-
# If True, log the model info.
|
906 |
-
_C.LOG_MODEL_INFO = True
|
907 |
-
|
908 |
-
# Distributed backend.
|
909 |
-
_C.DIST_BACKEND = "nccl"
|
910 |
-
|
911 |
-
# ---------------------------------------------------------------------------- #
|
912 |
-
# Benchmark options
|
913 |
-
# ---------------------------------------------------------------------------- #
|
914 |
-
_C.BENCHMARK = CfgNode()
|
915 |
-
|
916 |
-
# Number of epochs for data loading benchmark.
|
917 |
-
_C.BENCHMARK.NUM_EPOCHS = 5
|
918 |
-
|
919 |
-
# Log period in iters for data loading benchmark.
|
920 |
-
_C.BENCHMARK.LOG_PERIOD = 100
|
921 |
-
|
922 |
-
# If True, shuffle dataloader for epoch during benchmark.
|
923 |
-
_C.BENCHMARK.SHUFFLE = True
|
924 |
-
|
925 |
-
|
926 |
-
# ---------------------------------------------------------------------------- #
|
927 |
-
# Common train/test data loader options
|
928 |
-
# ---------------------------------------------------------------------------- #
|
929 |
-
_C.DATA_LOADER = CfgNode()
|
930 |
-
|
931 |
-
# Number of data loader workers per training process.
|
932 |
-
_C.DATA_LOADER.NUM_WORKERS = 8
|
933 |
-
|
934 |
-
# Load data to pinned host memory.
|
935 |
-
_C.DATA_LOADER.PIN_MEMORY = True
|
936 |
-
|
937 |
-
# Enable multi thread decoding.
|
938 |
-
_C.DATA_LOADER.ENABLE_MULTI_THREAD_DECODE = False
|
939 |
-
|
940 |
-
|
941 |
-
# ---------------------------------------------------------------------------- #
|
942 |
-
# Detection options.
|
943 |
-
# ---------------------------------------------------------------------------- #
|
944 |
-
_C.DETECTION = CfgNode()
|
945 |
-
|
946 |
-
# Whether enable video detection.
|
947 |
-
_C.DETECTION.ENABLE = False
|
948 |
-
|
949 |
-
# Aligned version of RoI. More details can be found at slowfast/models/head_helper.py
|
950 |
-
_C.DETECTION.ALIGNED = True
|
951 |
-
|
952 |
-
# Spatial scale factor.
|
953 |
-
_C.DETECTION.SPATIAL_SCALE_FACTOR = 16
|
954 |
-
|
955 |
-
# RoI tranformation resolution.
|
956 |
-
_C.DETECTION.ROI_XFORM_RESOLUTION = 7
|
957 |
-
|
958 |
-
|
959 |
-
# -----------------------------------------------------------------------------
|
960 |
-
# AVA Dataset options
|
961 |
-
# -----------------------------------------------------------------------------
|
962 |
-
_C.AVA = CfgNode()
|
963 |
-
|
964 |
-
# Directory path of frames.
|
965 |
-
_C.AVA.FRAME_DIR = "/mnt/fair-flash3-east/ava_trainval_frames.img/"
|
966 |
-
|
967 |
-
# Directory path for files of frame lists.
|
968 |
-
_C.AVA.FRAME_LIST_DIR = (
|
969 |
-
"/mnt/vol/gfsai-flash3-east/ai-group/users/haoqifan/ava/frame_list/"
|
970 |
-
)
|
971 |
-
|
972 |
-
# Directory path for annotation files.
|
973 |
-
_C.AVA.ANNOTATION_DIR = (
|
974 |
-
"/mnt/vol/gfsai-flash3-east/ai-group/users/haoqifan/ava/frame_list/"
|
975 |
-
)
|
976 |
-
|
977 |
-
# Filenames of training samples list files.
|
978 |
-
_C.AVA.TRAIN_LISTS = ["train.csv"]
|
979 |
-
|
980 |
-
# Filenames of test samples list files.
|
981 |
-
_C.AVA.TEST_LISTS = ["val.csv"]
|
982 |
-
|
983 |
-
# Filenames of box list files for training. Note that we assume files which
|
984 |
-
# contains predicted boxes will have a suffix "predicted_boxes" in the
|
985 |
-
# filename.
|
986 |
-
_C.AVA.TRAIN_GT_BOX_LISTS = ["ava_train_v2.2.csv"]
|
987 |
-
_C.AVA.TRAIN_PREDICT_BOX_LISTS = []
|
988 |
-
|
989 |
-
# Filenames of box list files for test.
|
990 |
-
_C.AVA.TEST_PREDICT_BOX_LISTS = ["ava_val_predicted_boxes.csv"]
|
991 |
-
|
992 |
-
# This option controls the score threshold for the predicted boxes to use.
|
993 |
-
_C.AVA.DETECTION_SCORE_THRESH = 0.9
|
994 |
-
|
995 |
-
# If use BGR as the format of input frames.
|
996 |
-
_C.AVA.BGR = False
|
997 |
-
|
998 |
-
# Training augmentation parameters
|
999 |
-
# Whether to use color augmentation method.
|
1000 |
-
_C.AVA.TRAIN_USE_COLOR_AUGMENTATION = False
|
1001 |
-
|
1002 |
-
# Whether to only use PCA jitter augmentation when using color augmentation
|
1003 |
-
# method (otherwise combine with color jitter method).
|
1004 |
-
_C.AVA.TRAIN_PCA_JITTER_ONLY = True
|
1005 |
-
|
1006 |
-
# Whether to do horizontal flipping during test.
|
1007 |
-
_C.AVA.TEST_FORCE_FLIP = False
|
1008 |
-
|
1009 |
-
# Whether to use full test set for validation split.
|
1010 |
-
_C.AVA.FULL_TEST_ON_VAL = False
|
1011 |
-
|
1012 |
-
# The name of the file to the ava label map.
|
1013 |
-
_C.AVA.LABEL_MAP_FILE = "ava_action_list_v2.2_for_activitynet_2019.pbtxt"
|
1014 |
-
|
1015 |
-
# The name of the file to the ava exclusion.
|
1016 |
-
_C.AVA.EXCLUSION_FILE = "ava_val_excluded_timestamps_v2.2.csv"
|
1017 |
-
|
1018 |
-
# The name of the file to the ava groundtruth.
|
1019 |
-
_C.AVA.GROUNDTRUTH_FILE = "ava_val_v2.2.csv"
|
1020 |
-
|
1021 |
-
# Backend to process image, includes `pytorch` and `cv2`.
|
1022 |
-
_C.AVA.IMG_PROC_BACKEND = "cv2"
|
1023 |
-
|
1024 |
-
# ---------------------------------------------------------------------------- #
|
1025 |
-
# Multigrid training options
|
1026 |
-
# See https://arxiv.org/abs/1912.00998 for details about multigrid training.
|
1027 |
-
# ---------------------------------------------------------------------------- #
|
1028 |
-
_C.MULTIGRID = CfgNode()
|
1029 |
-
|
1030 |
-
# Multigrid training allows us to train for more epochs with fewer iterations.
|
1031 |
-
# This hyperparameter specifies how many times more epochs to train.
|
1032 |
-
# The default setting in paper trains for 1.5x more epochs than baseline.
|
1033 |
-
_C.MULTIGRID.EPOCH_FACTOR = 1.5
|
1034 |
-
|
1035 |
-
# Enable short cycles.
|
1036 |
-
_C.MULTIGRID.SHORT_CYCLE = False
|
1037 |
-
# Short cycle additional spatial dimensions relative to the default crop size.
|
1038 |
-
_C.MULTIGRID.SHORT_CYCLE_FACTORS = [0.5, 0.5**0.5]
|
1039 |
-
|
1040 |
-
_C.MULTIGRID.LONG_CYCLE = False
|
1041 |
-
# (Temporal, Spatial) dimensions relative to the default shape.
|
1042 |
-
_C.MULTIGRID.LONG_CYCLE_FACTORS = [
|
1043 |
-
(0.25, 0.5**0.5),
|
1044 |
-
(0.5, 0.5**0.5),
|
1045 |
-
(0.5, 1),
|
1046 |
-
(1, 1),
|
1047 |
-
]
|
1048 |
-
|
1049 |
-
# While a standard BN computes stats across all examples in a GPU,
|
1050 |
-
# for multigrid training we fix the number of clips to compute BN stats on.
|
1051 |
-
# See https://arxiv.org/abs/1912.00998 for details.
|
1052 |
-
_C.MULTIGRID.BN_BASE_SIZE = 8
|
1053 |
-
|
1054 |
-
# Multigrid training epochs are not proportional to actual training time or
|
1055 |
-
# computations, so _C.TRAIN.EVAL_PERIOD leads to too frequent or rare
|
1056 |
-
# evaluation. We use a multigrid-specific rule to determine when to evaluate:
|
1057 |
-
# This hyperparameter defines how many times to evaluate a model per long
|
1058 |
-
# cycle shape.
|
1059 |
-
_C.MULTIGRID.EVAL_FREQ = 3
|
1060 |
-
|
1061 |
-
# No need to specify; Set automatically and used as global variables.
|
1062 |
-
_C.MULTIGRID.LONG_CYCLE_SAMPLING_RATE = 0
|
1063 |
-
_C.MULTIGRID.DEFAULT_B = 0
|
1064 |
-
_C.MULTIGRID.DEFAULT_T = 0
|
1065 |
-
_C.MULTIGRID.DEFAULT_S = 0
|
1066 |
-
|
1067 |
-
# -----------------------------------------------------------------------------
|
1068 |
-
# Tensorboard Visualization Options
|
1069 |
-
# -----------------------------------------------------------------------------
|
1070 |
-
_C.TENSORBOARD = CfgNode()
|
1071 |
-
|
1072 |
-
# Log to summary writer, this will automatically.
|
1073 |
-
# log loss, lr and metrics during train/eval.
|
1074 |
-
_C.TENSORBOARD.ENABLE = False
|
1075 |
-
# Provide path to prediction results for visualization.
|
1076 |
-
# This is a pickle file of [prediction_tensor, label_tensor]
|
1077 |
-
_C.TENSORBOARD.PREDICTIONS_PATH = ""
|
1078 |
-
# Path to directory for tensorboard logs.
|
1079 |
-
# Default to to cfg.OUTPUT_DIR/runs-{cfg.TRAIN.DATASET}.
|
1080 |
-
_C.TENSORBOARD.LOG_DIR = ""
|
1081 |
-
# Path to a json file providing class_name - id mapping
|
1082 |
-
# in the format {"class_name1": id1, "class_name2": id2, ...}.
|
1083 |
-
# This file must be provided to enable plotting confusion matrix
|
1084 |
-
# by a subset or parent categories.
|
1085 |
-
_C.TENSORBOARD.CLASS_NAMES_PATH = ""
|
1086 |
-
|
1087 |
-
# Path to a json file for categories -> classes mapping
|
1088 |
-
# in the format {"parent_class": ["child_class1", "child_class2",...], ...}.
|
1089 |
-
_C.TENSORBOARD.CATEGORIES_PATH = ""
|
1090 |
-
|
1091 |
-
# Config for confusion matrices visualization.
|
1092 |
-
_C.TENSORBOARD.CONFUSION_MATRIX = CfgNode()
|
1093 |
-
# Visualize confusion matrix.
|
1094 |
-
_C.TENSORBOARD.CONFUSION_MATRIX.ENABLE = False
|
1095 |
-
# Figure size of the confusion matrices plotted.
|
1096 |
-
_C.TENSORBOARD.CONFUSION_MATRIX.FIGSIZE = [8, 8]
|
1097 |
-
# Path to a subset of categories to visualize.
|
1098 |
-
# File contains class names separated by newline characters.
|
1099 |
-
_C.TENSORBOARD.CONFUSION_MATRIX.SUBSET_PATH = ""
|
1100 |
-
|
1101 |
-
# Config for histogram visualization.
|
1102 |
-
_C.TENSORBOARD.HISTOGRAM = CfgNode()
|
1103 |
-
# Visualize histograms.
|
1104 |
-
_C.TENSORBOARD.HISTOGRAM.ENABLE = False
|
1105 |
-
# Path to a subset of classes to plot histograms.
|
1106 |
-
# Class names must be separated by newline characters.
|
1107 |
-
_C.TENSORBOARD.HISTOGRAM.SUBSET_PATH = ""
|
1108 |
-
# Visualize top-k most predicted classes on histograms for each
|
1109 |
-
# chosen true label.
|
1110 |
-
_C.TENSORBOARD.HISTOGRAM.TOPK = 10
|
1111 |
-
# Figure size of the histograms plotted.
|
1112 |
-
_C.TENSORBOARD.HISTOGRAM.FIGSIZE = [8, 8]
|
1113 |
-
|
1114 |
-
# Config for layers' weights and activations visualization.
|
1115 |
-
# _C.TENSORBOARD.ENABLE must be True.
|
1116 |
-
_C.TENSORBOARD.MODEL_VIS = CfgNode()
|
1117 |
-
|
1118 |
-
# If False, skip model visualization.
|
1119 |
-
_C.TENSORBOARD.MODEL_VIS.ENABLE = False
|
1120 |
-
|
1121 |
-
# If False, skip visualizing model weights.
|
1122 |
-
_C.TENSORBOARD.MODEL_VIS.MODEL_WEIGHTS = False
|
1123 |
-
|
1124 |
-
# If False, skip visualizing model activations.
|
1125 |
-
_C.TENSORBOARD.MODEL_VIS.ACTIVATIONS = False
|
1126 |
-
|
1127 |
-
# If False, skip visualizing input videos.
|
1128 |
-
_C.TENSORBOARD.MODEL_VIS.INPUT_VIDEO = False
|
1129 |
-
|
1130 |
-
|
1131 |
-
# List of strings containing data about layer names and their indexing to
|
1132 |
-
# visualize weights and activations for. The indexing is meant for
|
1133 |
-
# choosing a subset of activations outputed by a layer for visualization.
|
1134 |
-
# If indexing is not specified, visualize all activations outputed by the layer.
|
1135 |
-
# For each string, layer name and indexing is separated by whitespaces.
|
1136 |
-
# e.g.: [layer1 1,2;1,2, layer2, layer3 150,151;3,4]; this means for each array `arr`
|
1137 |
-
# along the batch dimension in `layer1`, we take arr[[1, 2], [1, 2]]
|
1138 |
-
_C.TENSORBOARD.MODEL_VIS.LAYER_LIST = []
|
1139 |
-
# Top-k predictions to plot on videos
|
1140 |
-
_C.TENSORBOARD.MODEL_VIS.TOPK_PREDS = 1
|
1141 |
-
# Colormap to for text boxes and bounding boxes colors
|
1142 |
-
_C.TENSORBOARD.MODEL_VIS.COLORMAP = "Pastel2"
|
1143 |
-
# Config for visualization video inputs with Grad-CAM.
|
1144 |
-
# _C.TENSORBOARD.ENABLE must be True.
|
1145 |
-
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM = CfgNode()
|
1146 |
-
# Whether to run visualization using Grad-CAM technique.
|
1147 |
-
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM.ENABLE = True
|
1148 |
-
# CNN layers to use for Grad-CAM. The number of layers must be equal to
|
1149 |
-
# number of pathway(s).
|
1150 |
-
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM.LAYER_LIST = []
|
1151 |
-
# If True, visualize Grad-CAM using true labels for each instances.
|
1152 |
-
# If False, use the highest predicted class.
|
1153 |
-
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM.USE_TRUE_LABEL = False
|
1154 |
-
# Colormap to for text boxes and bounding boxes colors
|
1155 |
-
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM.COLORMAP = "viridis"
|
1156 |
-
|
1157 |
-
# Config for visualization for wrong prediction visualization.
|
1158 |
-
# _C.TENSORBOARD.ENABLE must be True.
|
1159 |
-
_C.TENSORBOARD.WRONG_PRED_VIS = CfgNode()
|
1160 |
-
_C.TENSORBOARD.WRONG_PRED_VIS.ENABLE = False
|
1161 |
-
# Folder tag to origanize model eval videos under.
|
1162 |
-
_C.TENSORBOARD.WRONG_PRED_VIS.TAG = "Incorrectly classified videos."
|
1163 |
-
# Subset of labels to visualize. Only wrong predictions with true labels
|
1164 |
-
# within this subset is visualized.
|
1165 |
-
_C.TENSORBOARD.WRONG_PRED_VIS.SUBSET_PATH = ""
|
1166 |
-
|
1167 |
-
|
1168 |
-
# ---------------------------------------------------------------------------- #
|
1169 |
-
# Demo options
|
1170 |
-
# ---------------------------------------------------------------------------- #
|
1171 |
-
_C.DEMO = CfgNode()
|
1172 |
-
|
1173 |
-
# Run model in DEMO mode.
|
1174 |
-
_C.DEMO.ENABLE = False
|
1175 |
-
|
1176 |
-
# Path to a json file providing class_name - id mapping
|
1177 |
-
# in the format {"class_name1": id1, "class_name2": id2, ...}.
|
1178 |
-
_C.DEMO.LABEL_FILE_PATH = ""
|
1179 |
-
|
1180 |
-
# Specify a camera device as input. This will be prioritized
|
1181 |
-
# over input video if set.
|
1182 |
-
# If -1, use input video instead.
|
1183 |
-
_C.DEMO.WEBCAM = -1
|
1184 |
-
|
1185 |
-
# Path to input video for demo.
|
1186 |
-
_C.DEMO.INPUT_VIDEO = ""
|
1187 |
-
# Custom width for reading input video data.
|
1188 |
-
_C.DEMO.DISPLAY_WIDTH = 0
|
1189 |
-
# Custom height for reading input video data.
|
1190 |
-
_C.DEMO.DISPLAY_HEIGHT = 0
|
1191 |
-
# Path to Detectron2 object detection model configuration,
|
1192 |
-
# only used for detection tasks.
|
1193 |
-
_C.DEMO.DETECTRON2_CFG = "COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml"
|
1194 |
-
# Path to Detectron2 object detection model pre-trained weights.
|
1195 |
-
_C.DEMO.DETECTRON2_WEIGHTS = "detectron2://COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
|
1196 |
-
# Threshold for choosing predicted bounding boxes by Detectron2.
|
1197 |
-
_C.DEMO.DETECTRON2_THRESH = 0.9
|
1198 |
-
# Number of overlapping frames between 2 consecutive clips.
|
1199 |
-
# Increase this number for more frequent action predictions.
|
1200 |
-
# The number of overlapping frames cannot be larger than
|
1201 |
-
# half of the sequence length `cfg.DATA.NUM_FRAMES * cfg.DATA.SAMPLING_RATE`
|
1202 |
-
_C.DEMO.BUFFER_SIZE = 0
|
1203 |
-
# If specified, the visualized outputs will be written this a video file of
|
1204 |
-
# this path. Otherwise, the visualized outputs will be displayed in a window.
|
1205 |
-
_C.DEMO.OUTPUT_FILE = ""
|
1206 |
-
# Frames per second rate for writing to output video file.
|
1207 |
-
# If not set (-1), use fps rate from input file.
|
1208 |
-
_C.DEMO.OUTPUT_FPS = -1
|
1209 |
-
# Input format from demo video reader ("RGB" or "BGR").
|
1210 |
-
_C.DEMO.INPUT_FORMAT = "BGR"
|
1211 |
-
# Draw visualization frames in [keyframe_idx - CLIP_VIS_SIZE, keyframe_idx + CLIP_VIS_SIZE] inclusively.
|
1212 |
-
_C.DEMO.CLIP_VIS_SIZE = 10
|
1213 |
-
# Number of processes to run video visualizer.
|
1214 |
-
_C.DEMO.NUM_VIS_INSTANCES = 2
|
1215 |
-
|
1216 |
-
# Path to pre-computed predicted boxes
|
1217 |
-
_C.DEMO.PREDS_BOXES = ""
|
1218 |
-
# Whether to run in with multi-threaded video reader.
|
1219 |
-
_C.DEMO.THREAD_ENABLE = False
|
1220 |
-
# Take one clip for every `DEMO.NUM_CLIPS_SKIP` + 1 for prediction and visualization.
|
1221 |
-
# This is used for fast demo speed by reducing the prediction/visualiztion frequency.
|
1222 |
-
# If -1, take the most recent read clip for visualization. This mode is only supported
|
1223 |
-
# if `DEMO.THREAD_ENABLE` is set to True.
|
1224 |
-
_C.DEMO.NUM_CLIPS_SKIP = 0
|
1225 |
-
# Path to ground-truth boxes and labels (optional)
|
1226 |
-
_C.DEMO.GT_BOXES = ""
|
1227 |
-
# The starting second of the video w.r.t bounding boxes file.
|
1228 |
-
_C.DEMO.STARTING_SECOND = 900
|
1229 |
-
# Frames per second of the input video/folder of images.
|
1230 |
-
_C.DEMO.FPS = 30
|
1231 |
-
# Visualize with top-k predictions or predictions above certain threshold(s).
|
1232 |
-
# Option: {"thres", "top-k"}
|
1233 |
-
_C.DEMO.VIS_MODE = "thres"
|
1234 |
-
# Threshold for common class names.
|
1235 |
-
_C.DEMO.COMMON_CLASS_THRES = 0.7
|
1236 |
-
# Theshold for uncommon class names. This will not be
|
1237 |
-
# used if `_C.DEMO.COMMON_CLASS_NAMES` is empty.
|
1238 |
-
_C.DEMO.UNCOMMON_CLASS_THRES = 0.3
|
1239 |
-
# This is chosen based on distribution of examples in
|
1240 |
-
# each classes in AVA dataset.
|
1241 |
-
_C.DEMO.COMMON_CLASS_NAMES = [
|
1242 |
-
"watch (a person)",
|
1243 |
-
"talk to (e.g., self, a person, a group)",
|
1244 |
-
"listen to (a person)",
|
1245 |
-
"touch (an object)",
|
1246 |
-
"carry/hold (an object)",
|
1247 |
-
"walk",
|
1248 |
-
"sit",
|
1249 |
-
"lie/sleep",
|
1250 |
-
"bend/bow (at the waist)",
|
1251 |
-
]
|
1252 |
-
# Slow-motion rate for the visualization. The visualized portions of the
|
1253 |
-
# video will be played `_C.DEMO.SLOWMO` times slower than usual speed.
|
1254 |
-
_C.DEMO.SLOWMO = 1
|
1255 |
-
|
1256 |
-
|
1257 |
-
def assert_and_infer_cfg(cfg):
|
1258 |
-
# BN assertions.
|
1259 |
-
if cfg.BN.USE_PRECISE_STATS:
|
1260 |
-
assert cfg.BN.NUM_BATCHES_PRECISE >= 0
|
1261 |
-
# TRAIN assertions.
|
1262 |
-
assert cfg.TRAIN.CHECKPOINT_TYPE in ["pytorch", "caffe2"]
|
1263 |
-
assert cfg.NUM_GPUS == 0 or cfg.TRAIN.BATCH_SIZE % cfg.NUM_GPUS == 0
|
1264 |
-
|
1265 |
-
# TEST assertions.
|
1266 |
-
assert cfg.TEST.CHECKPOINT_TYPE in ["pytorch", "caffe2"]
|
1267 |
-
assert cfg.NUM_GPUS == 0 or cfg.TEST.BATCH_SIZE % cfg.NUM_GPUS == 0
|
1268 |
-
|
1269 |
-
# RESNET assertions.
|
1270 |
-
assert cfg.RESNET.NUM_GROUPS > 0
|
1271 |
-
assert cfg.RESNET.WIDTH_PER_GROUP > 0
|
1272 |
-
assert cfg.RESNET.WIDTH_PER_GROUP % cfg.RESNET.NUM_GROUPS == 0
|
1273 |
-
|
1274 |
-
# Execute LR scaling by num_shards.
|
1275 |
-
if cfg.SOLVER.BASE_LR_SCALE_NUM_SHARDS:
|
1276 |
-
cfg.SOLVER.BASE_LR *= cfg.NUM_SHARDS
|
1277 |
-
cfg.SOLVER.WARMUP_START_LR *= cfg.NUM_SHARDS
|
1278 |
-
cfg.SOLVER.COSINE_END_LR *= cfg.NUM_SHARDS
|
1279 |
-
|
1280 |
-
# General assertions.
|
1281 |
-
assert cfg.SHARD_ID < cfg.NUM_SHARDS
|
1282 |
-
return cfg
|
1283 |
-
|
1284 |
-
|
1285 |
-
def get_cfg():
|
1286 |
-
return _C.clone()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|