#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """Configs.""" import math from fvcore.common.config import CfgNode # ----------------------------------------------------------------------------- # Config definition # ----------------------------------------------------------------------------- _C = CfgNode() # ----------------------------------------------------------------------------- # Contrastive Model (for MoCo, SimCLR, SwAV, BYOL) # ----------------------------------------------------------------------------- _C.CONTRASTIVE = CfgNode() # temperature used for contrastive losses _C.CONTRASTIVE.T = 0.07 # output dimension for the loss _C.CONTRASTIVE.DIM = 128 # number of training samples (for kNN bank) _C.CONTRASTIVE.LENGTH = 239975 # the length of MoCo's and MemBanks' queues _C.CONTRASTIVE.QUEUE_LEN = 65536 # momentum for momentum encoder updates _C.CONTRASTIVE.MOMENTUM = 0.5 # wether to anneal momentum to value above with cosine schedule _C.CONTRASTIVE.MOMENTUM_ANNEALING = False # either memorybank, moco, simclr, byol, swav _C.CONTRASTIVE.TYPE = "mem" # wether to interpolate memorybank in time _C.CONTRASTIVE.INTERP_MEMORY = False # 1d or 2d (+temporal) memory _C.CONTRASTIVE.MEM_TYPE = "1d" # number of classes for online kNN evaluation _C.CONTRASTIVE.NUM_CLASSES_DOWNSTREAM = 400 # use an MLP projection with these num layers _C.CONTRASTIVE.NUM_MLP_LAYERS = 1 # dimension of projection and predictor MLPs _C.CONTRASTIVE.MLP_DIM = 2048 # use BN in projection/prediction MLP _C.CONTRASTIVE.BN_MLP = False # use synchronized BN in projection/prediction MLP _C.CONTRASTIVE.BN_SYNC_MLP = False # shuffle BN only locally vs. across machines _C.CONTRASTIVE.LOCAL_SHUFFLE_BN = True # Wether to fill multiple clips (or just the first) into queue _C.CONTRASTIVE.MOCO_MULTI_VIEW_QUEUE = False # if sampling multiple clips per vid they need to be at least min frames apart _C.CONTRASTIVE.DELTA_CLIPS_MIN = -math.inf # if sampling multiple clips per vid they can be max frames apart _C.CONTRASTIVE.DELTA_CLIPS_MAX = math.inf # if non empty, use predictors with depth specified _C.CONTRASTIVE.PREDICTOR_DEPTHS = [] # Wether to sequentially process multiple clips (=lower mem usage) or batch them _C.CONTRASTIVE.SEQUENTIAL = False # Wether to perform SimCLR loss across machines (or only locally) _C.CONTRASTIVE.SIMCLR_DIST_ON = True # Length of queue used in SwAV _C.CONTRASTIVE.SWAV_QEUE_LEN = 0 # Wether to run online kNN evaluation during training _C.CONTRASTIVE.KNN_ON = True # ---------------------------------------------------------------------------- # # Batch norm options # ---------------------------------------------------------------------------- # _C.BN = CfgNode() # Precise BN stats. _C.BN.USE_PRECISE_STATS = False # Number of samples use to compute precise bn. _C.BN.NUM_BATCHES_PRECISE = 200 # Weight decay value that applies on BN. _C.BN.WEIGHT_DECAY = 0.0 # Norm type, options include `batchnorm`, `sub_batchnorm`, `sync_batchnorm` _C.BN.NORM_TYPE = "batchnorm" # Parameter for SubBatchNorm, where it splits the batch dimension into # NUM_SPLITS splits, and run BN on each of them separately independently. _C.BN.NUM_SPLITS = 1 # Parameter for NaiveSyncBatchNorm, where the stats across `NUM_SYNC_DEVICES` # devices will be synchronized. `NUM_SYNC_DEVICES` cannot be larger than number of # devices per machine; if global sync is desired, set `GLOBAL_SYNC`. # By default ONLY applies to NaiveSyncBatchNorm3d; consider also setting # CONTRASTIVE.BN_SYNC_MLP if appropriate. _C.BN.NUM_SYNC_DEVICES = 1 # Parameter for NaiveSyncBatchNorm. Setting `GLOBAL_SYNC` to True synchronizes # stats across all devices, across all machines; in this case, `NUM_SYNC_DEVICES` # must be set to None. # By default ONLY applies to NaiveSyncBatchNorm3d; consider also setting # CONTRASTIVE.BN_SYNC_MLP if appropriate. _C.BN.GLOBAL_SYNC = False # ---------------------------------------------------------------------------- # # Training options. # ---------------------------------------------------------------------------- # _C.TRAIN = CfgNode() # If True Train the model, else skip training. _C.TRAIN.ENABLE = True # Kill training if loss explodes over this ratio from the previous 5 measurements. # Only enforced if > 0.0 _C.TRAIN.KILL_LOSS_EXPLOSION_FACTOR = 0.0 # Dataset. _C.TRAIN.DATASET = "kinetics" # Total mini-batch size. _C.TRAIN.BATCH_SIZE = 64 # Evaluate model on test data every eval period epochs. _C.TRAIN.EVAL_PERIOD = 10 # Save model checkpoint every checkpoint period epochs. _C.TRAIN.CHECKPOINT_PERIOD = 10 # Resume training from the latest checkpoint in the output directory. _C.TRAIN.AUTO_RESUME = True # Path to the checkpoint to load the initial weight. _C.TRAIN.CHECKPOINT_FILE_PATH = "" # Checkpoint types include `caffe2` or `pytorch`. _C.TRAIN.CHECKPOINT_TYPE = "pytorch" # If True, perform inflation when loading checkpoint. _C.TRAIN.CHECKPOINT_INFLATE = False # If True, reset epochs when loading checkpoint. _C.TRAIN.CHECKPOINT_EPOCH_RESET = False # If set, clear all layer names according to the pattern provided. _C.TRAIN.CHECKPOINT_CLEAR_NAME_PATTERN = () # ("backbone.",) # If True, use FP16 for activations _C.TRAIN.MIXED_PRECISION = False # if True, inflate some params from imagenet model. _C.TRAIN.CHECKPOINT_IN_INIT = False # ---------------------------------------------------------------------------- # # Augmentation options. # ---------------------------------------------------------------------------- # _C.AUG = CfgNode() # Whether to enable randaug. _C.AUG.ENABLE = False # Number of repeated augmentations to used during training. # If this is greater than 1, then the actual batch size is # TRAIN.BATCH_SIZE * AUG.NUM_SAMPLE. _C.AUG.NUM_SAMPLE = 1 # Not used if using randaug. _C.AUG.COLOR_JITTER = 0.4 # RandAug parameters. _C.AUG.AA_TYPE = "rand-m9-mstd0.5-inc1" # Interpolation method. _C.AUG.INTERPOLATION = "bicubic" # Probability of random erasing. _C.AUG.RE_PROB = 0.25 # Random erasing mode. _C.AUG.RE_MODE = "pixel" # Random erase count. _C.AUG.RE_COUNT = 1 # Do not random erase first (clean) augmentation split. _C.AUG.RE_SPLIT = False # Whether to generate input mask during image processing. _C.AUG.GEN_MASK_LOADER = False # If True, masking mode is "tube". Default is "cube". _C.AUG.MASK_TUBE = False # If True, masking mode is "frame". Default is "cube". _C.AUG.MASK_FRAMES = False # The size of generated masks. _C.AUG.MASK_WINDOW_SIZE = [8, 7, 7] # The ratio of masked tokens out of all tokens. Also applies to MViT supervised training _C.AUG.MASK_RATIO = 0.0 # The maximum number of a masked block. None means no maximum limit. (Used only in image MaskFeat.) _C.AUG.MAX_MASK_PATCHES_PER_BLOCK = None # ---------------------------------------------------------------------------- # # Masked pretraining visualization options. # ---------------------------------------------------------------------------- # _C.VIS_MASK = CfgNode() # Whether to do visualization. _C.VIS_MASK.ENABLE = False # ---------------------------------------------------------------------------- # # MipUp options. # ---------------------------------------------------------------------------- # _C.MIXUP = CfgNode() # Whether to use mixup. _C.MIXUP.ENABLE = False # Mixup alpha. _C.MIXUP.ALPHA = 0.8 # Cutmix alpha. _C.MIXUP.CUTMIX_ALPHA = 1.0 # Probability of performing mixup or cutmix when either/both is enabled. _C.MIXUP.PROB = 1.0 # Probability of switching to cutmix when both mixup and cutmix enabled. _C.MIXUP.SWITCH_PROB = 0.5 # Label smoothing. _C.MIXUP.LABEL_SMOOTH_VALUE = 0.1 # ---------------------------------------------------------------------------- # # Testing options # ---------------------------------------------------------------------------- # _C.TEST = CfgNode() # If True test the model, else skip the testing. _C.TEST.ENABLE = True # Dataset for testing. _C.TEST.DATASET = "kinetics" # Total mini-batch size _C.TEST.BATCH_SIZE = 8 # Path to the checkpoint to load the initial weight. _C.TEST.CHECKPOINT_FILE_PATH = "" # Number of clips to sample from a video uniformly for aggregating the # prediction results. _C.TEST.NUM_ENSEMBLE_VIEWS = 10 # Number of crops to sample from a frame spatially for aggregating the # prediction results. _C.TEST.NUM_SPATIAL_CROPS = 3 # Checkpoint types include `caffe2` or `pytorch`. _C.TEST.CHECKPOINT_TYPE = "pytorch" # Path to saving prediction results file. _C.TEST.SAVE_RESULTS_PATH = "" _C.TEST.NUM_TEMPORAL_CLIPS = [] # ----------------------------------------------------------------------------- # ResNet options # ----------------------------------------------------------------------------- _C.RESNET = CfgNode() # Transformation function. _C.RESNET.TRANS_FUNC = "bottleneck_transform" # Number of groups. 1 for ResNet, and larger than 1 for ResNeXt). _C.RESNET.NUM_GROUPS = 1 # Width of each group (64 -> ResNet; 4 -> ResNeXt). _C.RESNET.WIDTH_PER_GROUP = 64 # Apply relu in a inplace manner. _C.RESNET.INPLACE_RELU = True # Apply stride to 1x1 conv. _C.RESNET.STRIDE_1X1 = False # If true, initialize the gamma of the final BN of each block to zero. _C.RESNET.ZERO_INIT_FINAL_BN = False # If true, initialize the final conv layer of each block to zero. _C.RESNET.ZERO_INIT_FINAL_CONV = False # Number of weight layers. _C.RESNET.DEPTH = 50 # If the current block has more than NUM_BLOCK_TEMP_KERNEL blocks, use temporal # kernel of 1 for the rest of the blocks. _C.RESNET.NUM_BLOCK_TEMP_KERNEL = [[3], [4], [6], [3]] # Size of stride on different res stages. _C.RESNET.SPATIAL_STRIDES = [[1], [2], [2], [2]] # Size of dilation on different res stages. _C.RESNET.SPATIAL_DILATIONS = [[1], [1], [1], [1]] # ---------------------------------------------------------------------------- # # X3D options # See https://arxiv.org/abs/2004.04730 for details about X3D Networks. # ---------------------------------------------------------------------------- # _C.X3D = CfgNode() # Width expansion factor. _C.X3D.WIDTH_FACTOR = 1.0 # Depth expansion factor. _C.X3D.DEPTH_FACTOR = 1.0 # Bottleneck expansion factor for the 3x3x3 conv. _C.X3D.BOTTLENECK_FACTOR = 1.0 # # Dimensions of the last linear layer before classificaiton. _C.X3D.DIM_C5 = 2048 # Dimensions of the first 3x3 conv layer. _C.X3D.DIM_C1 = 12 # Whether to scale the width of Res2, default is false. _C.X3D.SCALE_RES2 = False # Whether to use a BatchNorm (BN) layer before the classifier, default is false. _C.X3D.BN_LIN5 = False # Whether to use channelwise (=depthwise) convolution in the center (3x3x3) # convolution operation of the residual blocks. _C.X3D.CHANNELWISE_3x3x3 = True # ----------------------------------------------------------------------------- # Nonlocal options # ----------------------------------------------------------------------------- _C.NONLOCAL = CfgNode() # Index of each stage and block to add nonlocal layers. _C.NONLOCAL.LOCATION = [[[]], [[]], [[]], [[]]] # Number of group for nonlocal for each stage. _C.NONLOCAL.GROUP = [[1], [1], [1], [1]] # Instatiation to use for non-local layer. _C.NONLOCAL.INSTANTIATION = "dot_product" # Size of pooling layers used in Non-Local. _C.NONLOCAL.POOL = [ # Res2 [[1, 2, 2], [1, 2, 2]], # Res3 [[1, 2, 2], [1, 2, 2]], # Res4 [[1, 2, 2], [1, 2, 2]], # Res5 [[1, 2, 2], [1, 2, 2]], ] # ----------------------------------------------------------------------------- # Model options # ----------------------------------------------------------------------------- _C.MODEL = CfgNode() # Model architecture. _C.MODEL.ARCH = "slowfast" # Model name _C.MODEL.MODEL_NAME = "SlowFast" # The number of classes to predict for the model. _C.MODEL.NUM_CLASSES = 400 # Loss function. _C.MODEL.LOSS_FUNC = "cross_entropy" # Model architectures that has one single pathway. _C.MODEL.SINGLE_PATHWAY_ARCH = [ "2d", "c2d", "i3d", "slow", "x3d", "mvit", "maskmvit", ] # Model architectures that has multiple pathways. _C.MODEL.MULTI_PATHWAY_ARCH = ["slowfast"] # Dropout rate before final projection in the backbone. _C.MODEL.DROPOUT_RATE = 0.5 # Randomly drop rate for Res-blocks, linearly increase from res2 to res5 _C.MODEL.DROPCONNECT_RATE = 0.0 # The std to initialize the fc layer(s). _C.MODEL.FC_INIT_STD = 0.01 # Activation layer for the output head. _C.MODEL.HEAD_ACT = "softmax" # Activation checkpointing enabled or not to save GPU memory. _C.MODEL.ACT_CHECKPOINT = False # If True, detach the final fc layer from the network, by doing so, only the # final fc layer will be trained. _C.MODEL.DETACH_FINAL_FC = False # If True, frozen batch norm stats during training. _C.MODEL.FROZEN_BN = False # If True, AllReduce gradients are compressed to fp16 _C.MODEL.FP16_ALLREDUCE = False # ----------------------------------------------------------------------------- # MViT options # ----------------------------------------------------------------------------- _C.MVIT = CfgNode() # Options include `conv`, `max`. _C.MVIT.MODE = "conv" # If True, perform pool before projection in attention. _C.MVIT.POOL_FIRST = False # If True, use cls embed in the network, otherwise don't use cls_embed in transformer. _C.MVIT.CLS_EMBED_ON = True # Kernel size for patchtification. _C.MVIT.PATCH_KERNEL = [3, 7, 7] # Stride size for patchtification. _C.MVIT.PATCH_STRIDE = [2, 4, 4] # Padding size for patchtification. _C.MVIT.PATCH_PADDING = [2, 4, 4] # If True, use 2d patch, otherwise use 3d patch. _C.MVIT.PATCH_2D = False # Base embedding dimension for the transformer. _C.MVIT.EMBED_DIM = 96 # Base num of heads for the transformer. _C.MVIT.NUM_HEADS = 1 # Dimension reduction ratio for the MLP layers. _C.MVIT.MLP_RATIO = 4.0 # If use, use bias term in attention fc layers. _C.MVIT.QKV_BIAS = True # Drop path rate for the tranfomer. _C.MVIT.DROPPATH_RATE = 0.1 # The initial value of layer scale gamma. Set 0.0 to disable layer scale. _C.MVIT.LAYER_SCALE_INIT_VALUE = 0.0 # Depth of the transformer. _C.MVIT.DEPTH = 16 # Normalization layer for the transformer. Only layernorm is supported now. _C.MVIT.NORM = "layernorm" # Dimension multiplication at layer i. If 2.0 is used, then the next block will increase # the dimension by 2 times. Format: [depth_i: mul_dim_ratio] _C.MVIT.DIM_MUL = [] # Head number multiplication at layer i. If 2.0 is used, then the next block will # increase the number of heads by 2 times. Format: [depth_i: head_mul_ratio] _C.MVIT.HEAD_MUL = [] # Stride size for the Pool KV at layer i. # Format: [[i, stride_t_i, stride_h_i, stride_w_i], ...,] _C.MVIT.POOL_KV_STRIDE = [] # Initial stride size for KV at layer 1. The stride size will be further reduced with # the raio of MVIT.DIM_MUL. If will overwrite MVIT.POOL_KV_STRIDE if not None. _C.MVIT.POOL_KV_STRIDE_ADAPTIVE = None # Stride size for the Pool Q at layer i. # Format: [[i, stride_t_i, stride_h_i, stride_w_i], ...,] _C.MVIT.POOL_Q_STRIDE = [] # If not None, overwrite the KV_KERNEL and Q_KERNEL size with POOL_KVQ_CONV_SIZ. # Otherwise the kernel_size is [s + 1 if s > 1 else s for s in stride_size]. _C.MVIT.POOL_KVQ_KERNEL = None # If True, perform no decay on positional embedding and cls embedding. _C.MVIT.ZERO_DECAY_POS_CLS = True # If True, use norm after stem. _C.MVIT.NORM_STEM = False # If True, perform separate positional embedding. _C.MVIT.SEP_POS_EMBED = False # Dropout rate for the MViT backbone. _C.MVIT.DROPOUT_RATE = 0.0 # If True, use absolute positional embedding. _C.MVIT.USE_ABS_POS = True # If True, use relative positional embedding for spatial dimentions _C.MVIT.REL_POS_SPATIAL = False # If True, use relative positional embedding for temporal dimentions _C.MVIT.REL_POS_TEMPORAL = False # If True, init rel with zero _C.MVIT.REL_POS_ZERO_INIT = False # If True, using Residual Pooling connection _C.MVIT.RESIDUAL_POOLING = False # Dim mul in qkv linear layers of attention block instead of MLP _C.MVIT.DIM_MUL_IN_ATT = False # If True, using separate linear layers for Q, K, V in attention blocks. _C.MVIT.SEPARATE_QKV = False # The initialization scale factor for the head parameters. _C.MVIT.HEAD_INIT_SCALE = 1.0 # Whether to use the mean pooling of all patch tokens as the output. _C.MVIT.USE_MEAN_POOLING = False # If True, use frozen sin cos positional embedding. _C.MVIT.USE_FIXED_SINCOS_POS = False # ----------------------------------------------------------------------------- # Masked pretraining options # ----------------------------------------------------------------------------- _C.MASK = CfgNode() # Whether to enable Masked style pretraining. _C.MASK.ENABLE = False # Whether to enable MAE (discard encoder tokens). _C.MASK.MAE_ON = False # Whether to enable random masking in mae _C.MASK.MAE_RND_MASK = False # Whether to do random masking per-frame in mae _C.MASK.PER_FRAME_MASKING = False # only predict loss on temporal strided patches, or predict full time extent _C.MASK.TIME_STRIDE_LOSS = True # Whether to normalize the pred pixel loss _C.MASK.NORM_PRED_PIXEL = True # Whether to fix initialization with inverse depth of layer for pretraining. _C.MASK.SCALE_INIT_BY_DEPTH = False # Base embedding dimension for the decoder transformer. _C.MASK.DECODER_EMBED_DIM = 512 # Base embedding dimension for the decoder transformer. _C.MASK.DECODER_SEP_POS_EMBED = False # Use a KV kernel in decoder? _C.MASK.DEC_KV_KERNEL = [] # Use a KV stride in decoder? _C.MASK.DEC_KV_STRIDE = [] # The depths of features which are inputs of the prediction head. _C.MASK.PRETRAIN_DEPTH = [15] # The type of Masked pretraining prediction head. # Can be "separate", "separate_xformer". _C.MASK.HEAD_TYPE = "separate" # The depth of MAE's decoder _C.MASK.DECODER_DEPTH = 0 # The weight of HOG target loss. _C.MASK.PRED_HOG = False # Reversible Configs _C.MVIT.REV = CfgNode() # Enable Reversible Model _C.MVIT.REV.ENABLE = False # Method to fuse the reversible paths # see :class: `TwoStreamFusion` for all the options _C.MVIT.REV.RESPATH_FUSE = "concat" # Layers to buffer activations at # (at least Q-pooling layers needed) _C.MVIT.REV.BUFFER_LAYERS = [] # 'conv' or 'max' operator for the respath in Qpooling _C.MVIT.REV.RES_PATH = "conv" # Method to merge hidden states before Qpoolinglayers _C.MVIT.REV.PRE_Q_FUSION = "avg" # ----------------------------------------------------------------------------- # SlowFast options # ----------------------------------------------------------------------------- _C.SLOWFAST = CfgNode() # Corresponds to the inverse of the channel reduction ratio, $\beta$ between # the Slow and Fast pathways. _C.SLOWFAST.BETA_INV = 8 # Corresponds to the frame rate reduction ratio, $\alpha$ between the Slow and # Fast pathways. _C.SLOWFAST.ALPHA = 8 # Ratio of channel dimensions between the Slow and Fast pathways. _C.SLOWFAST.FUSION_CONV_CHANNEL_RATIO = 2 # Kernel dimension used for fusing information from Fast pathway to Slow # pathway. _C.SLOWFAST.FUSION_KERNEL_SZ = 5 # ----------------------------------------------------------------------------- # Data options # ----------------------------------------------------------------------------- _C.DATA = CfgNode() # The path to the data directory. _C.DATA.PATH_TO_DATA_DIR = "" # The separator used between path and label. _C.DATA.PATH_LABEL_SEPARATOR = " " # Video path prefix if any. _C.DATA.PATH_PREFIX = "" # The number of frames of the input clip. _C.DATA.NUM_FRAMES = 8 # The video sampling rate of the input clip. _C.DATA.SAMPLING_RATE = 8 # Eigenvalues for PCA jittering. Note PCA is RGB based. _C.DATA.TRAIN_PCA_EIGVAL = [0.225, 0.224, 0.229] # Eigenvectors for PCA jittering. _C.DATA.TRAIN_PCA_EIGVEC = [ [-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203], ] # If a imdb have been dumpped to a local file with the following format: # `{"im_path": im_path, "class": cont_id}` # then we can skip the construction of imdb and load it from the local file. _C.DATA.PATH_TO_PRELOAD_IMDB = "" # The mean value of the video raw pixels across the R G B channels. _C.DATA.MEAN = [0.45, 0.45, 0.45] # List of input frame channel dimensions. _C.DATA.INPUT_CHANNEL_NUM = [3, 3] # The std value of the video raw pixels across the R G B channels. _C.DATA.STD = [0.225, 0.225, 0.225] # The spatial augmentation jitter scales for training. _C.DATA.TRAIN_JITTER_SCALES = [256, 320] # The relative scale range of Inception-style area based random resizing augmentation. # If this is provided, DATA.TRAIN_JITTER_SCALES above is ignored. _C.DATA.TRAIN_JITTER_SCALES_RELATIVE = [] # The relative aspect ratio range of Inception-style area based random resizing # augmentation. _C.DATA.TRAIN_JITTER_ASPECT_RELATIVE = [] # If True, perform stride length uniform temporal sampling. _C.DATA.USE_OFFSET_SAMPLING = False # Whether to apply motion shift for augmentation. _C.DATA.TRAIN_JITTER_MOTION_SHIFT = False # The spatial crop size for training. _C.DATA.TRAIN_CROP_SIZE = 224 # The spatial crop size for testing. _C.DATA.TEST_CROP_SIZE = 256 # Input videos may has different fps, convert it to the target video fps before # frame sampling. _C.DATA.TARGET_FPS = 30 # JITTER TARGET_FPS by +- this number randomly _C.DATA.TRAIN_JITTER_FPS = 0.0 # Decoding backend, options include `pyav` or `torchvision` _C.DATA.DECODING_BACKEND = "torchvision" # Decoding resize to short size (set to native size for best speed) _C.DATA.DECODING_SHORT_SIZE = 256 # if True, sample uniformly in [1 / max_scale, 1 / min_scale] and take a # reciprocal to get the scale. If False, take a uniform sample from # [min_scale, max_scale]. _C.DATA.INV_UNIFORM_SAMPLE = False # If True, perform random horizontal flip on the video frames during training. _C.DATA.RANDOM_FLIP = True # If True, calculdate the map as metric. _C.DATA.MULTI_LABEL = False # Method to perform the ensemble, options include "sum" and "max". _C.DATA.ENSEMBLE_METHOD = "sum" # If True, revert the default input channel (RBG <-> BGR). _C.DATA.REVERSE_INPUT_CHANNEL = False # how many samples (=clips) to decode from a single video _C.DATA.TRAIN_CROP_NUM_TEMPORAL = 1 # how many spatial samples to crop from a single clip _C.DATA.TRAIN_CROP_NUM_SPATIAL = 1 # color random percentage for grayscale conversion _C.DATA.COLOR_RND_GRAYSCALE = 0.0 # loader can read .csv file in chunks of this chunk size _C.DATA.LOADER_CHUNK_SIZE = 0 # if LOADER_CHUNK_SIZE > 0, define overall length of .csv file _C.DATA.LOADER_CHUNK_OVERALL_SIZE = 0 # for chunked reading, dataloader can skip rows in (large) # training csv file _C.DATA.SKIP_ROWS = 0 # The separator used between path and label. _C.DATA.PATH_LABEL_SEPARATOR = " " # augmentation probability to convert raw decoded video to # grayscale temporal difference _C.DATA.TIME_DIFF_PROB = 0.0 # Apply SSL-based SimCLR / MoCo v1/v2 color augmentations, # with params below _C.DATA.SSL_COLOR_JITTER = False # color jitter percentage for brightness, contrast, saturation _C.DATA.SSL_COLOR_BRI_CON_SAT = [0.4, 0.4, 0.4] # color jitter percentage for hue _C.DATA.SSL_COLOR_HUE = 0.1 # SimCLR / MoCo v2 augmentations on/off _C.DATA.SSL_MOCOV2_AUG = False # SimCLR / MoCo v2 blur augmentation minimum gaussian sigma _C.DATA.SSL_BLUR_SIGMA_MIN = [0.0, 0.1] # SimCLR / MoCo v2 blur augmentation maximum gaussian sigma _C.DATA.SSL_BLUR_SIGMA_MAX = [0.0, 2.0] # If combine train/val split as training for in21k _C.DATA.IN22K_TRAINVAL = False # If not None, use IN1k as val split when training in21k _C.DATA.IN22k_VAL_IN1K = "" # Large resolution models may use different crop ratios _C.DATA.IN_VAL_CROP_RATIO = 0.875 # 224/256 = 0.875 # don't use real video for kinetics.py _C.DATA.DUMMY_LOAD = False # ---------------------------------------------------------------------------- # # Optimizer options # ---------------------------------------------------------------------------- # _C.SOLVER = CfgNode() # Base learning rate. _C.SOLVER.BASE_LR = 0.1 # Learning rate policy (see utils/lr_policy.py for options and examples). _C.SOLVER.LR_POLICY = "cosine" # Final learning rates for 'cosine' policy. _C.SOLVER.COSINE_END_LR = 0.0 # Exponential decay factor. _C.SOLVER.GAMMA = 0.1 # Step size for 'exp' and 'cos' policies (in epochs). _C.SOLVER.STEP_SIZE = 1 # Steps for 'steps_' policies (in epochs). _C.SOLVER.STEPS = [] # Learning rates for 'steps_' policies. _C.SOLVER.LRS = [] # Maximal number of epochs. _C.SOLVER.MAX_EPOCH = 300 # Momentum. _C.SOLVER.MOMENTUM = 0.9 # Momentum dampening. _C.SOLVER.DAMPENING = 0.0 # Nesterov momentum. _C.SOLVER.NESTEROV = True # L2 regularization. _C.SOLVER.WEIGHT_DECAY = 1e-4 # Start the warm up from SOLVER.BASE_LR * SOLVER.WARMUP_FACTOR. _C.SOLVER.WARMUP_FACTOR = 0.1 # Gradually warm up the SOLVER.BASE_LR over this number of epochs. _C.SOLVER.WARMUP_EPOCHS = 0.0 # The start learning rate of the warm up. _C.SOLVER.WARMUP_START_LR = 0.01 # Optimization method. _C.SOLVER.OPTIMIZING_METHOD = "sgd" # Base learning rate is linearly scaled with NUM_SHARDS. _C.SOLVER.BASE_LR_SCALE_NUM_SHARDS = False # If True, start from the peak cosine learning rate after warm up. _C.SOLVER.COSINE_AFTER_WARMUP = False # If True, perform no weight decay on parameter with one dimension (bias term, etc). _C.SOLVER.ZERO_WD_1D_PARAM = False # Clip gradient at this value before optimizer update _C.SOLVER.CLIP_GRAD_VAL = None # Clip gradient at this norm before optimizer update _C.SOLVER.CLIP_GRAD_L2NORM = None # LARS optimizer _C.SOLVER.LARS_ON = False # The layer-wise decay of learning rate. Set to 1. to disable. _C.SOLVER.LAYER_DECAY = 1.0 # Adam's beta _C.SOLVER.BETAS = (0.9, 0.999) # ---------------------------------------------------------------------------- # # Misc options # ---------------------------------------------------------------------------- # # The name of the current task; e.g. "ssl"/"sl" for (self)supervised learning _C.TASK = "" # Number of GPUs to use (applies to both training and testing). _C.NUM_GPUS = 1 # Number of machine to use for the job. _C.NUM_SHARDS = 1 # The index of the current machine. _C.SHARD_ID = 0 # Output basedir. _C.OUTPUT_DIR = "." # Note that non-determinism may still be present due to non-deterministic # operator implementations in GPU operator libraries. _C.RNG_SEED = 1 # Log period in iters. _C.LOG_PERIOD = 10 # If True, log the model info. _C.LOG_MODEL_INFO = True # Distributed backend. _C.DIST_BACKEND = "nccl" # ---------------------------------------------------------------------------- # # Benchmark options # ---------------------------------------------------------------------------- # _C.BENCHMARK = CfgNode() # Number of epochs for data loading benchmark. _C.BENCHMARK.NUM_EPOCHS = 5 # Log period in iters for data loading benchmark. _C.BENCHMARK.LOG_PERIOD = 100 # If True, shuffle dataloader for epoch during benchmark. _C.BENCHMARK.SHUFFLE = True # ---------------------------------------------------------------------------- # # Common train/test data loader options # ---------------------------------------------------------------------------- # _C.DATA_LOADER = CfgNode() # Number of data loader workers per training process. _C.DATA_LOADER.NUM_WORKERS = 8 # Load data to pinned host memory. _C.DATA_LOADER.PIN_MEMORY = True # Enable multi thread decoding. _C.DATA_LOADER.ENABLE_MULTI_THREAD_DECODE = False # ---------------------------------------------------------------------------- # # Detection options. # ---------------------------------------------------------------------------- # _C.DETECTION = CfgNode() # Whether enable video detection. _C.DETECTION.ENABLE = False # Aligned version of RoI. More details can be found at slowfast/models/head_helper.py _C.DETECTION.ALIGNED = True # Spatial scale factor. _C.DETECTION.SPATIAL_SCALE_FACTOR = 16 # RoI tranformation resolution. _C.DETECTION.ROI_XFORM_RESOLUTION = 7 # ----------------------------------------------------------------------------- # AVA Dataset options # ----------------------------------------------------------------------------- _C.AVA = CfgNode() # Directory path of frames. _C.AVA.FRAME_DIR = "/mnt/fair-flash3-east/ava_trainval_frames.img/" # Directory path for files of frame lists. _C.AVA.FRAME_LIST_DIR = ( "/mnt/vol/gfsai-flash3-east/ai-group/users/haoqifan/ava/frame_list/" ) # Directory path for annotation files. _C.AVA.ANNOTATION_DIR = ( "/mnt/vol/gfsai-flash3-east/ai-group/users/haoqifan/ava/frame_list/" ) # Filenames of training samples list files. _C.AVA.TRAIN_LISTS = ["train.csv"] # Filenames of test samples list files. _C.AVA.TEST_LISTS = ["val.csv"] # Filenames of box list files for training. Note that we assume files which # contains predicted boxes will have a suffix "predicted_boxes" in the # filename. _C.AVA.TRAIN_GT_BOX_LISTS = ["ava_train_v2.2.csv"] _C.AVA.TRAIN_PREDICT_BOX_LISTS = [] # Filenames of box list files for test. _C.AVA.TEST_PREDICT_BOX_LISTS = ["ava_val_predicted_boxes.csv"] # This option controls the score threshold for the predicted boxes to use. _C.AVA.DETECTION_SCORE_THRESH = 0.9 # If use BGR as the format of input frames. _C.AVA.BGR = False # Training augmentation parameters # Whether to use color augmentation method. _C.AVA.TRAIN_USE_COLOR_AUGMENTATION = False # Whether to only use PCA jitter augmentation when using color augmentation # method (otherwise combine with color jitter method). _C.AVA.TRAIN_PCA_JITTER_ONLY = True # Whether to do horizontal flipping during test. _C.AVA.TEST_FORCE_FLIP = False # Whether to use full test set for validation split. _C.AVA.FULL_TEST_ON_VAL = False # The name of the file to the ava label map. _C.AVA.LABEL_MAP_FILE = "ava_action_list_v2.2_for_activitynet_2019.pbtxt" # The name of the file to the ava exclusion. _C.AVA.EXCLUSION_FILE = "ava_val_excluded_timestamps_v2.2.csv" # The name of the file to the ava groundtruth. _C.AVA.GROUNDTRUTH_FILE = "ava_val_v2.2.csv" # Backend to process image, includes `pytorch` and `cv2`. _C.AVA.IMG_PROC_BACKEND = "cv2" # ---------------------------------------------------------------------------- # # Multigrid training options # See https://arxiv.org/abs/1912.00998 for details about multigrid training. # ---------------------------------------------------------------------------- # _C.MULTIGRID = CfgNode() # Multigrid training allows us to train for more epochs with fewer iterations. # This hyperparameter specifies how many times more epochs to train. # The default setting in paper trains for 1.5x more epochs than baseline. _C.MULTIGRID.EPOCH_FACTOR = 1.5 # Enable short cycles. _C.MULTIGRID.SHORT_CYCLE = False # Short cycle additional spatial dimensions relative to the default crop size. _C.MULTIGRID.SHORT_CYCLE_FACTORS = [0.5, 0.5**0.5] _C.MULTIGRID.LONG_CYCLE = False # (Temporal, Spatial) dimensions relative to the default shape. _C.MULTIGRID.LONG_CYCLE_FACTORS = [ (0.25, 0.5**0.5), (0.5, 0.5**0.5), (0.5, 1), (1, 1), ] # While a standard BN computes stats across all examples in a GPU, # for multigrid training we fix the number of clips to compute BN stats on. # See https://arxiv.org/abs/1912.00998 for details. _C.MULTIGRID.BN_BASE_SIZE = 8 # Multigrid training epochs are not proportional to actual training time or # computations, so _C.TRAIN.EVAL_PERIOD leads to too frequent or rare # evaluation. We use a multigrid-specific rule to determine when to evaluate: # This hyperparameter defines how many times to evaluate a model per long # cycle shape. _C.MULTIGRID.EVAL_FREQ = 3 # No need to specify; Set automatically and used as global variables. _C.MULTIGRID.LONG_CYCLE_SAMPLING_RATE = 0 _C.MULTIGRID.DEFAULT_B = 0 _C.MULTIGRID.DEFAULT_T = 0 _C.MULTIGRID.DEFAULT_S = 0 # ----------------------------------------------------------------------------- # Tensorboard Visualization Options # ----------------------------------------------------------------------------- _C.TENSORBOARD = CfgNode() # Log to summary writer, this will automatically. # log loss, lr and metrics during train/eval. _C.TENSORBOARD.ENABLE = False # Provide path to prediction results for visualization. # This is a pickle file of [prediction_tensor, label_tensor] _C.TENSORBOARD.PREDICTIONS_PATH = "" # Path to directory for tensorboard logs. # Default to to cfg.OUTPUT_DIR/runs-{cfg.TRAIN.DATASET}. _C.TENSORBOARD.LOG_DIR = "" # Path to a json file providing class_name - id mapping # in the format {"class_name1": id1, "class_name2": id2, ...}. # This file must be provided to enable plotting confusion matrix # by a subset or parent categories. _C.TENSORBOARD.CLASS_NAMES_PATH = "" # Path to a json file for categories -> classes mapping # in the format {"parent_class": ["child_class1", "child_class2",...], ...}. _C.TENSORBOARD.CATEGORIES_PATH = "" # Config for confusion matrices visualization. _C.TENSORBOARD.CONFUSION_MATRIX = CfgNode() # Visualize confusion matrix. _C.TENSORBOARD.CONFUSION_MATRIX.ENABLE = False # Figure size of the confusion matrices plotted. _C.TENSORBOARD.CONFUSION_MATRIX.FIGSIZE = [8, 8] # Path to a subset of categories to visualize. # File contains class names separated by newline characters. _C.TENSORBOARD.CONFUSION_MATRIX.SUBSET_PATH = "" # Config for histogram visualization. _C.TENSORBOARD.HISTOGRAM = CfgNode() # Visualize histograms. _C.TENSORBOARD.HISTOGRAM.ENABLE = False # Path to a subset of classes to plot histograms. # Class names must be separated by newline characters. _C.TENSORBOARD.HISTOGRAM.SUBSET_PATH = "" # Visualize top-k most predicted classes on histograms for each # chosen true label. _C.TENSORBOARD.HISTOGRAM.TOPK = 10 # Figure size of the histograms plotted. _C.TENSORBOARD.HISTOGRAM.FIGSIZE = [8, 8] # Config for layers' weights and activations visualization. # _C.TENSORBOARD.ENABLE must be True. _C.TENSORBOARD.MODEL_VIS = CfgNode() # If False, skip model visualization. _C.TENSORBOARD.MODEL_VIS.ENABLE = False # If False, skip visualizing model weights. _C.TENSORBOARD.MODEL_VIS.MODEL_WEIGHTS = False # If False, skip visualizing model activations. _C.TENSORBOARD.MODEL_VIS.ACTIVATIONS = False # If False, skip visualizing input videos. _C.TENSORBOARD.MODEL_VIS.INPUT_VIDEO = False # List of strings containing data about layer names and their indexing to # visualize weights and activations for. The indexing is meant for # choosing a subset of activations outputed by a layer for visualization. # If indexing is not specified, visualize all activations outputed by the layer. # For each string, layer name and indexing is separated by whitespaces. # e.g.: [layer1 1,2;1,2, layer2, layer3 150,151;3,4]; this means for each array `arr` # along the batch dimension in `layer1`, we take arr[[1, 2], [1, 2]] _C.TENSORBOARD.MODEL_VIS.LAYER_LIST = [] # Top-k predictions to plot on videos _C.TENSORBOARD.MODEL_VIS.TOPK_PREDS = 1 # Colormap to for text boxes and bounding boxes colors _C.TENSORBOARD.MODEL_VIS.COLORMAP = "Pastel2" # Config for visualization video inputs with Grad-CAM. # _C.TENSORBOARD.ENABLE must be True. _C.TENSORBOARD.MODEL_VIS.GRAD_CAM = CfgNode() # Whether to run visualization using Grad-CAM technique. _C.TENSORBOARD.MODEL_VIS.GRAD_CAM.ENABLE = True # CNN layers to use for Grad-CAM. The number of layers must be equal to # number of pathway(s). _C.TENSORBOARD.MODEL_VIS.GRAD_CAM.LAYER_LIST = [] # If True, visualize Grad-CAM using true labels for each instances. # If False, use the highest predicted class. _C.TENSORBOARD.MODEL_VIS.GRAD_CAM.USE_TRUE_LABEL = False # Colormap to for text boxes and bounding boxes colors _C.TENSORBOARD.MODEL_VIS.GRAD_CAM.COLORMAP = "viridis" # Config for visualization for wrong prediction visualization. # _C.TENSORBOARD.ENABLE must be True. _C.TENSORBOARD.WRONG_PRED_VIS = CfgNode() _C.TENSORBOARD.WRONG_PRED_VIS.ENABLE = False # Folder tag to origanize model eval videos under. _C.TENSORBOARD.WRONG_PRED_VIS.TAG = "Incorrectly classified videos." # Subset of labels to visualize. Only wrong predictions with true labels # within this subset is visualized. _C.TENSORBOARD.WRONG_PRED_VIS.SUBSET_PATH = "" # ---------------------------------------------------------------------------- # # Demo options # ---------------------------------------------------------------------------- # _C.DEMO = CfgNode() # Run model in DEMO mode. _C.DEMO.ENABLE = False # Path to a json file providing class_name - id mapping # in the format {"class_name1": id1, "class_name2": id2, ...}. _C.DEMO.LABEL_FILE_PATH = "" # Specify a camera device as input. This will be prioritized # over input video if set. # If -1, use input video instead. _C.DEMO.WEBCAM = -1 # Path to input video for demo. _C.DEMO.INPUT_VIDEO = "" # Custom width for reading input video data. _C.DEMO.DISPLAY_WIDTH = 0 # Custom height for reading input video data. _C.DEMO.DISPLAY_HEIGHT = 0 # Path to Detectron2 object detection model configuration, # only used for detection tasks. _C.DEMO.DETECTRON2_CFG = "COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml" # Path to Detectron2 object detection model pre-trained weights. _C.DEMO.DETECTRON2_WEIGHTS = "detectron2://COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl" # Threshold for choosing predicted bounding boxes by Detectron2. _C.DEMO.DETECTRON2_THRESH = 0.9 # Number of overlapping frames between 2 consecutive clips. # Increase this number for more frequent action predictions. # The number of overlapping frames cannot be larger than # half of the sequence length `cfg.DATA.NUM_FRAMES * cfg.DATA.SAMPLING_RATE` _C.DEMO.BUFFER_SIZE = 0 # If specified, the visualized outputs will be written this a video file of # this path. Otherwise, the visualized outputs will be displayed in a window. _C.DEMO.OUTPUT_FILE = "" # Frames per second rate for writing to output video file. # If not set (-1), use fps rate from input file. _C.DEMO.OUTPUT_FPS = -1 # Input format from demo video reader ("RGB" or "BGR"). _C.DEMO.INPUT_FORMAT = "BGR" # Draw visualization frames in [keyframe_idx - CLIP_VIS_SIZE, keyframe_idx + CLIP_VIS_SIZE] inclusively. _C.DEMO.CLIP_VIS_SIZE = 10 # Number of processes to run video visualizer. _C.DEMO.NUM_VIS_INSTANCES = 2 # Path to pre-computed predicted boxes _C.DEMO.PREDS_BOXES = "" # Whether to run in with multi-threaded video reader. _C.DEMO.THREAD_ENABLE = False # Take one clip for every `DEMO.NUM_CLIPS_SKIP` + 1 for prediction and visualization. # This is used for fast demo speed by reducing the prediction/visualiztion frequency. # If -1, take the most recent read clip for visualization. This mode is only supported # if `DEMO.THREAD_ENABLE` is set to True. _C.DEMO.NUM_CLIPS_SKIP = 0 # Path to ground-truth boxes and labels (optional) _C.DEMO.GT_BOXES = "" # The starting second of the video w.r.t bounding boxes file. _C.DEMO.STARTING_SECOND = 900 # Frames per second of the input video/folder of images. _C.DEMO.FPS = 30 # Visualize with top-k predictions or predictions above certain threshold(s). # Option: {"thres", "top-k"} _C.DEMO.VIS_MODE = "thres" # Threshold for common class names. _C.DEMO.COMMON_CLASS_THRES = 0.7 # Theshold for uncommon class names. This will not be # used if `_C.DEMO.COMMON_CLASS_NAMES` is empty. _C.DEMO.UNCOMMON_CLASS_THRES = 0.3 # This is chosen based on distribution of examples in # each classes in AVA dataset. _C.DEMO.COMMON_CLASS_NAMES = [ "watch (a person)", "talk to (e.g., self, a person, a group)", "listen to (a person)", "touch (an object)", "carry/hold (an object)", "walk", "sit", "lie/sleep", "bend/bow (at the waist)", ] # Slow-motion rate for the visualization. The visualized portions of the # video will be played `_C.DEMO.SLOWMO` times slower than usual speed. _C.DEMO.SLOWMO = 1 def assert_and_infer_cfg(cfg): # BN assertions. if cfg.BN.USE_PRECISE_STATS: assert cfg.BN.NUM_BATCHES_PRECISE >= 0 # TRAIN assertions. assert cfg.TRAIN.CHECKPOINT_TYPE in ["pytorch", "caffe2"] assert cfg.NUM_GPUS == 0 or cfg.TRAIN.BATCH_SIZE % cfg.NUM_GPUS == 0 # TEST assertions. assert cfg.TEST.CHECKPOINT_TYPE in ["pytorch", "caffe2"] assert cfg.NUM_GPUS == 0 or cfg.TEST.BATCH_SIZE % cfg.NUM_GPUS == 0 # RESNET assertions. assert cfg.RESNET.NUM_GROUPS > 0 assert cfg.RESNET.WIDTH_PER_GROUP > 0 assert cfg.RESNET.WIDTH_PER_GROUP % cfg.RESNET.NUM_GROUPS == 0 # Execute LR scaling by num_shards. if cfg.SOLVER.BASE_LR_SCALE_NUM_SHARDS: cfg.SOLVER.BASE_LR *= cfg.NUM_SHARDS cfg.SOLVER.WARMUP_START_LR *= cfg.NUM_SHARDS cfg.SOLVER.COSINE_END_LR *= cfg.NUM_SHARDS # General assertions. assert cfg.SHARD_ID < cfg.NUM_SHARDS return cfg def get_cfg(): return _C.clone() def load_config(path_to_config=None): # Setup cfg. cfg = get_cfg() # Load config from cfg. if path_to_config is not None: cfg.merge_from_file(path_to_config) return cfg