|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
ImageFold function. |
|
|
|
Mostly copy-paste from torchvision references |
|
""" |
|
import os |
|
import os.path |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, cast |
|
|
|
from PIL import Image |
|
from torchvision.datasets.vision import VisionDataset |
|
|
|
|
|
def has_file_allowed_extension(filename: str, extensions: Tuple[str, ...]) -> bool: |
|
"""Checks if a file is an allowed extension. |
|
|
|
Args: |
|
filename (string): path to a file |
|
extensions (tuple of strings): extensions to consider (lowercase) |
|
|
|
Returns: |
|
bool: True if the filename ends with one of given extensions |
|
""" |
|
return filename.lower().endswith(extensions) |
|
|
|
|
|
def is_image_file(filename: str) -> bool: |
|
"""Checks if a file is an allowed image extension. |
|
|
|
Args: |
|
filename (string): path to a file |
|
|
|
Returns: |
|
bool: True if the filename ends with a known image extension |
|
""" |
|
return has_file_allowed_extension(filename, IMG_EXTENSIONS) |
|
|
|
|
|
def find_classes(directory: str, class_num: int) -> Tuple[List[str], Dict[str, int]]: |
|
"""Finds the class folders in a dataset. |
|
|
|
See :class:`DatasetFolder` for details. |
|
""" |
|
classes = sorted(entry.name for entry in os.scandir(directory) if entry.is_dir()) |
|
if not classes: |
|
raise FileNotFoundError(f"Couldn't find any class folder in {directory}.") |
|
classes = classes[:class_num] |
|
class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)} |
|
return classes, class_to_idx |
|
|
|
|
|
def make_dataset( |
|
directory: str, |
|
class_to_idx: Optional[Dict[str, int]] = None, |
|
extensions: Optional[Tuple[str, ...]] = None, |
|
is_valid_file: Optional[Callable[[str], bool]] = None, |
|
class_num=10, |
|
) -> List[Tuple[str, int]]: |
|
"""Generates a list of samples of a form (path_to_sample, class). |
|
|
|
See :class:`DatasetFolder` for details. |
|
|
|
Note: The class_to_idx parameter is here optional and will use the logic of the ``find_classes`` function |
|
by default. |
|
""" |
|
directory = os.path.expanduser(directory) |
|
|
|
if class_to_idx is None: |
|
_, class_to_idx = find_classes(directory, class_num) |
|
elif not class_to_idx: |
|
raise ValueError( |
|
"'class_to_index' must have at least one entry to collect any samples." |
|
) |
|
|
|
both_none = extensions is None and is_valid_file is None |
|
both_something = extensions is not None and is_valid_file is not None |
|
if both_none or both_something: |
|
raise ValueError( |
|
"Both extensions and is_valid_file cannot be None or not None at the same time" |
|
) |
|
|
|
if extensions is not None: |
|
|
|
def is_valid_file(x: str) -> bool: |
|
return has_file_allowed_extension(x, cast(Tuple[str, ...], extensions)) |
|
|
|
is_valid_file = cast(Callable[[str], bool], is_valid_file) |
|
|
|
instances = [] |
|
available_classes = set() |
|
for target_class in sorted(class_to_idx.keys()): |
|
class_index = class_to_idx[target_class] |
|
target_dir = os.path.join(directory, target_class) |
|
if not os.path.isdir(target_dir): |
|
continue |
|
for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)): |
|
for fname in sorted(fnames): |
|
path = os.path.join(root, fname) |
|
if is_valid_file(path): |
|
item = path, class_index |
|
instances.append(item) |
|
|
|
if target_class not in available_classes: |
|
available_classes.add(target_class) |
|
|
|
empty_classes = set(class_to_idx.keys()) - available_classes |
|
if empty_classes: |
|
msg = ( |
|
f"Found no valid file for the classes {', '.join(sorted(empty_classes))}. " |
|
) |
|
if extensions is not None: |
|
msg += f"Supported extensions are: {', '.join(extensions)}" |
|
raise FileNotFoundError(msg) |
|
|
|
return instances |
|
|
|
|
|
class DatasetFolder(VisionDataset): |
|
"""A generic data loader. |
|
|
|
This default directory structure can be customized by overriding the |
|
:meth:`find_classes` method. |
|
|
|
Args: |
|
root (string): Root directory path. |
|
loader (callable): A function to load a sample given its path. |
|
extensions (tuple[string]): A list of allowed extensions. |
|
both extensions and is_valid_file should not be passed. |
|
transform (callable, optional): A function/transform that takes in |
|
a sample and returns a transformed version. |
|
E.g, ``transforms.RandomCrop`` for images. |
|
target_transform (callable, optional): A function/transform that takes |
|
in the target and transforms it. |
|
is_valid_file (callable, optional): A function that takes path of a file |
|
and check if the file is a valid file (used to check of corrupt files) |
|
both extensions and is_valid_file should not be passed. |
|
class_num: how many classes will be loaded |
|
Attributes: |
|
classes (list): List of the class names sorted alphabetically. |
|
class_to_idx (dict): Dict with items (class_name, class_index). |
|
samples (list): List of (sample path, class_index) tuples |
|
targets (list): The class_index value for each image in the dataset |
|
""" |
|
|
|
def __init__( |
|
self, |
|
root: str, |
|
loader: Callable[[str], Any], |
|
extensions: Optional[Tuple[str, ...]] = None, |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
is_valid_file: Optional[Callable[[str], bool]] = None, |
|
class_num=10, |
|
) -> None: |
|
super(DatasetFolder, self).__init__( |
|
root, transform=transform, target_transform=target_transform |
|
) |
|
classes, class_to_idx = self.find_classes(self.root, class_num=class_num) |
|
samples = self.make_dataset( |
|
self.root, class_to_idx, extensions, is_valid_file, class_num=class_num |
|
) |
|
|
|
self.loader = loader |
|
self.extensions = extensions |
|
|
|
self.classes = classes |
|
self.class_to_idx = class_to_idx |
|
self.samples = samples |
|
self.targets = [s[1] for s in samples] |
|
|
|
@staticmethod |
|
def make_dataset( |
|
directory: str, |
|
class_to_idx: Dict[str, int], |
|
extensions: Optional[Tuple[str, ...]] = None, |
|
is_valid_file: Optional[Callable[[str], bool]] = None, |
|
class_num=10, |
|
) -> List[Tuple[str, int]]: |
|
"""Generates a list of samples of a form (path_to_sample, class). |
|
|
|
This can be overridden to e.g. read files from a compressed zip file instead of from the disk. |
|
|
|
Args: |
|
directory (str): root dataset directory, corresponding to ``self.root``. |
|
class_to_idx (Dict[str, int]): Dictionary mapping class name to class index. |
|
extensions (optional): A list of allowed extensions. |
|
Either extensions or is_valid_file should be passed. Defaults to None. |
|
is_valid_file (optional): A function that takes path of a file |
|
and checks if the file is a valid file |
|
(used to check of corrupt files) both extensions and |
|
is_valid_file should not be passed. Defaults to None. |
|
class_num: how many classes will be loaded |
|
Raises: |
|
ValueError: In case ``class_to_idx`` is empty. |
|
ValueError: In case ``extensions`` and ``is_valid_file`` are None or both are not None. |
|
FileNotFoundError: In case no valid file was found for any class. |
|
|
|
Returns: |
|
List[Tuple[str, int]]: samples of a form (path_to_sample, class) |
|
""" |
|
if class_to_idx is None: |
|
|
|
|
|
|
|
raise ValueError("The class_to_idx parameter cannot be None.") |
|
return make_dataset( |
|
directory, |
|
class_to_idx, |
|
extensions=extensions, |
|
is_valid_file=is_valid_file, |
|
class_num=class_num, |
|
) |
|
|
|
def find_classes( |
|
self, directory: str, class_num: int |
|
) -> Tuple[List[str], Dict[str, int]]: |
|
"""Find the class folders in a dataset structured as follows:: |
|
|
|
directory/ |
|
βββ class_x |
|
β βββ xxx.ext |
|
β βββ xxy.ext |
|
β βββ ... |
|
β βββ xxz.ext |
|
βββ class_y |
|
βββ 123.ext |
|
βββ nsdf3.ext |
|
βββ ... |
|
βββ asd932_.ext |
|
|
|
This method can be overridden to only consider |
|
a subset of classes, or to adapt to a different dataset directory structure. |
|
|
|
Args: |
|
directory(str): Root directory path, corresponding to ``self.root`` |
|
|
|
Raises: |
|
FileNotFoundError: If ``dir`` has no class folders. |
|
|
|
Returns: |
|
(Tuple[List[str], Dict[str, int]]): List of all classes and dictionary mapping each class to an index. |
|
""" |
|
return find_classes(directory, class_num=class_num) |
|
|
|
def __getitem__(self, index: int) -> Tuple[Any, Any]: |
|
""" |
|
Args: |
|
index (int): Index |
|
|
|
Returns: |
|
tuple: (sample, target) where target is class_index of the target class. |
|
""" |
|
path, target = self.samples[index] |
|
sample = self.loader(path) |
|
if self.transform is not None: |
|
sample = self.transform(sample) |
|
|
|
|
|
|
|
return sample |
|
|
|
def __len__(self) -> int: |
|
return len(self.samples) |
|
|
|
|
|
IMG_EXTENSIONS = ( |
|
".jpg", |
|
".jpeg", |
|
".png", |
|
".ppm", |
|
".bmp", |
|
".pgm", |
|
".tif", |
|
".tiff", |
|
".webp", |
|
) |
|
|
|
|
|
def pil_loader(path: str) -> Image.Image: |
|
|
|
with open(path, "rb") as f: |
|
img = Image.open(f) |
|
return img.convert("RGB") |
|
|
|
|
|
|
|
def accimage_loader(path: str) -> Any: |
|
import accimage |
|
|
|
try: |
|
return accimage.Image(path) |
|
except IOError: |
|
|
|
return pil_loader(path) |
|
|
|
|
|
def default_loader(path: str) -> Any: |
|
from torchvision import get_image_backend |
|
|
|
if get_image_backend() == "accimage": |
|
return accimage_loader(path) |
|
else: |
|
return pil_loader(path) |
|
|
|
|
|
class ImageFolder(DatasetFolder): |
|
"""A generic data loader where the images are arranged in this way by default: :: |
|
|
|
root/dog/xxx.png |
|
root/dog/xxy.png |
|
root/dog/[...]/xxz.png |
|
|
|
root/cat/123.png |
|
root/cat/nsdf3.png |
|
root/cat/[...]/asd932_.png |
|
|
|
This class inherits from :class:`~torchvision.datasets.DatasetFolder` so |
|
the same methods can be overridden to customize the dataset. |
|
|
|
Args: |
|
root (string): Root directory path. |
|
transform (callable, optional): A function/transform that takes in an PIL image |
|
and returns a transformed version. E.g, ``transforms.RandomCrop`` |
|
target_transform (callable, optional): A function/transform that takes in the |
|
target and transforms it. |
|
loader (callable, optional): A function to load an image given its path. |
|
is_valid_file (callable, optional): A function that takes path of an Image file |
|
and check if the file is a valid file (used to check of corrupt files) |
|
class_num: how many classes will be loaded |
|
Attributes: |
|
classes (list): List of the class names sorted alphabetically. |
|
class_to_idx (dict): Dict with items (class_name, class_index). |
|
imgs (list): List of (image path, class_index) tuples |
|
""" |
|
|
|
def __init__( |
|
self, |
|
root: str, |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
loader: Callable[[str], Any] = default_loader, |
|
is_valid_file: Optional[Callable[[str], bool]] = None, |
|
class_num=10, |
|
): |
|
super(ImageFolder, self).__init__( |
|
root, |
|
loader, |
|
IMG_EXTENSIONS if is_valid_file is None else None, |
|
transform=transform, |
|
target_transform=target_transform, |
|
is_valid_file=is_valid_file, |
|
class_num=class_num, |
|
) |
|
self.imgs = self.samples |
|
|