File size: 1,880 Bytes
8dbbb75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fea0e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dbbb75
 
 
 
9fea0e4
8dbbb75
 
9fea0e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dbbb75
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
  results:
  - task:
      type: reinforcement-learning
      name: reinforcement-learning
    dataset:
      name: LunarLander-v2
      type: LunarLander-v2
    metrics:
    - type: mean_reward
      value: 284.96 +/- 22.41
      name: mean_reward
      verified: false
---

# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).

## Training

```python
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env

env = make_vec_env("LunarLander-v2", n_envs=16)
model = PPO('MlpPolicy',
            env=env,
            n_steps=1024,
            batch_size=64,
            n_epochs=4,
            gamma=0.999,
            gae_lambda=0.98,
            ent_coef=0.01,
            verbose=1)
model.learn(total_timesteps=10000000, progress_bar=True)
```


## Usage (with Stable-baselines3)


```python
from stable_baselines3 import PPO
from huggingface_sb3 import load_from_hub

repo_id = "zhuqi/PPO_LunarLander-v2_steps10M"  # The repo_id
filename = "PPO_LunarLander-v2_steps10000000.zip"  # The model filename.zip

# When the model was trained on Python 3.8 the pickle protocol is 5
# But Python 3.6, 3.7 use protocol 4
# In order to get compatibility we need to:
# 1. Install pickle5 (we done it at the beginning of the colab)
# 2. Create a custom empty object we pass as parameter to PPO.load()
custom_objects = {
    "learning_rate": 0.0,
    "lr_schedule": lambda _: 0.0,
    "clip_range": lambda _: 0.0,
}

checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True)
```