Model save
Browse files
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/swin-tiny-patch4-window7-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: swin-tiny-patch4-window7-224-finetuned-vit
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8061420345489443
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# swin-tiny-patch4-window7-224-finetuned-vit
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.5516
|
36 |
+
- Crack: {'precision': 0.575, 'recall': 0.71875, 'f1-score': 0.6388888888888888, 'support': 32}
|
37 |
+
- Environment - ground: {'precision': 0.9714285714285714, 'recall': 0.9714285714285714, 'f1-score': 0.9714285714285714, 'support': 35}
|
38 |
+
- Environment - other: {'precision': 0.8571428571428571, 'recall': 0.8888888888888888, 'f1-score': 0.8727272727272727, 'support': 27}
|
39 |
+
- Environment - sky: {'precision': 0.9761904761904762, 'recall': 0.9318181818181818, 'f1-score': 0.9534883720930233, 'support': 44}
|
40 |
+
- Environment - vegetation: {'precision': 0.9791666666666666, 'recall': 0.9791666666666666, 'f1-score': 0.9791666666666666, 'support': 48}
|
41 |
+
- Joint defect: {'precision': 0.9166666666666666, 'recall': 0.7096774193548387, 'f1-score': 0.7999999999999999, 'support': 31}
|
42 |
+
- Loss of section: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 2}
|
43 |
+
- Spalling: {'precision': 0.6041666666666666, 'recall': 0.6041666666666666, 'f1-score': 0.6041666666666666, 'support': 48}
|
44 |
+
- Vegetation: {'precision': 0.8309859154929577, 'recall': 0.8939393939393939, 'f1-score': 0.8613138686131386, 'support': 66}
|
45 |
+
- Wall - grafitti: {'precision': 0.7, 'recall': 0.9545454545454546, 'f1-score': 0.8076923076923077, 'support': 22}
|
46 |
+
- Wall - normal: {'precision': 0.6976744186046512, 'recall': 0.7317073170731707, 'f1-score': 0.7142857142857143, 'support': 41}
|
47 |
+
- Wall - other: {'precision': 0.7910447761194029, 'recall': 0.7794117647058824, 'f1-score': 0.7851851851851852, 'support': 68}
|
48 |
+
- Wall - stain: {'precision': 0.8222222222222222, 'recall': 0.6491228070175439, 'f1-score': 0.7254901960784313, 'support': 57}
|
49 |
+
- Accuracy: 0.8061
|
50 |
+
- Macro avg: {'precision': 0.7478222490154723, 'recall': 0.754817164008097, 'f1-score': 0.7472179777173742, 'support': 521}
|
51 |
+
- Weighted avg: {'precision': 0.8107856771401473, 'recall': 0.8061420345489443, 'f1-score': 0.8050072232872345, 'support': 521}
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 5e-05
|
71 |
+
- train_batch_size: 8
|
72 |
+
- eval_batch_size: 8
|
73 |
+
- seed: 42
|
74 |
+
- gradient_accumulation_steps: 4
|
75 |
+
- total_train_batch_size: 32
|
76 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
77 |
+
- lr_scheduler_type: linear
|
78 |
+
- lr_scheduler_warmup_ratio: 0.1
|
79 |
+
- num_epochs: 3
|
80 |
+
|
81 |
+
### Training results
|
82 |
+
|
83 |
+
| Training Loss | Epoch | Step | Validation Loss | Crack | Environment - ground | Environment - other | Environment - sky | Environment - vegetation | Joint defect | Loss of section | Spalling | Vegetation | Wall - grafitti | Wall - normal | Wall - other | Wall - stain | Accuracy | Macro avg | Weighted avg |
|
84 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------:|:---------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------:|
|
85 |
+
| 0.9193 | 1.0 | 146 | 0.7596 | {'precision': 0.5681818181818182, 'recall': 0.78125, 'f1-score': 0.6578947368421052, 'support': 32} | {'precision': 0.9444444444444444, 'recall': 0.9714285714285714, 'f1-score': 0.9577464788732395, 'support': 35} | {'precision': 0.8846153846153846, 'recall': 0.8518518518518519, 'f1-score': 0.8679245283018868, 'support': 27} | {'precision': 0.9736842105263158, 'recall': 0.8409090909090909, 'f1-score': 0.9024390243902439, 'support': 44} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 48} | {'precision': 0.7419354838709677, 'recall': 0.7419354838709677, 'f1-score': 0.7419354838709677, 'support': 31} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 2} | {'precision': 0.5769230769230769, 'recall': 0.3125, 'f1-score': 0.4054054054054054, 'support': 48} | {'precision': 0.75, 'recall': 0.9090909090909091, 'f1-score': 0.821917808219178, 'support': 66} | {'precision': 0.5142857142857142, 'recall': 0.8181818181818182, 'f1-score': 0.6315789473684209, 'support': 22} | {'precision': 0.7692307692307693, 'recall': 0.4878048780487805, 'f1-score': 0.5970149253731344, 'support': 41} | {'precision': 0.7540983606557377, 'recall': 0.6764705882352942, 'f1-score': 0.7131782945736433, 'support': 68} | {'precision': 0.6428571428571429, 'recall': 0.7894736842105263, 'f1-score': 0.7086614173228346, 'support': 57} | 0.7562 | {'precision': 0.7015581850454902, 'recall': 0.7062228366021391, 'f1-score': 0.692745926964697, 'support': 521} | {'precision': 0.7618631381912654, 'recall': 0.7562380038387716, 'f1-score': 0.7479524876767193, 'support': 521} |
|
86 |
+
| 0.7347 | 2.0 | 293 | 0.6495 | {'precision': 0.5526315789473685, 'recall': 0.65625, 'f1-score': 0.6, 'support': 32} | {'precision': 1.0, 'recall': 0.9714285714285714, 'f1-score': 0.9855072463768115, 'support': 35} | {'precision': 0.8461538461538461, 'recall': 0.8148148148148148, 'f1-score': 0.830188679245283, 'support': 27} | {'precision': 0.9761904761904762, 'recall': 0.9318181818181818, 'f1-score': 0.9534883720930233, 'support': 44} | {'precision': 0.9591836734693877, 'recall': 0.9791666666666666, 'f1-score': 0.9690721649484536, 'support': 48} | {'precision': 0.9130434782608695, 'recall': 0.6774193548387096, 'f1-score': 0.7777777777777777, 'support': 31} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 2} | {'precision': 0.5306122448979592, 'recall': 0.5416666666666666, 'f1-score': 0.5360824742268041, 'support': 48} | {'precision': 0.7058823529411765, 'recall': 0.9090909090909091, 'f1-score': 0.794701986754967, 'support': 66} | {'precision': 0.6333333333333333, 'recall': 0.8636363636363636, 'f1-score': 0.7307692307692307, 'support': 22} | {'precision': 0.5510204081632653, 'recall': 0.6585365853658537, 'f1-score': 0.6, 'support': 41} | {'precision': 0.8095238095238095, 'recall': 0.75, 'f1-score': 0.7786259541984734, 'support': 68} | {'precision': 0.9393939393939394, 'recall': 0.543859649122807, 'f1-score': 0.688888888888889, 'support': 57} | 0.7678 | {'precision': 0.7243822416365717, 'recall': 0.7152067510345803, 'f1-score': 0.7111617519445933, 'support': 521} | {'precision': 0.7869554245446998, 'recall': 0.7677543186180422, 'f1-score': 0.7672943491004631, 'support': 521} |
|
87 |
+
| 0.7515 | 2.99 | 438 | 0.5516 | {'precision': 0.575, 'recall': 0.71875, 'f1-score': 0.6388888888888888, 'support': 32} | {'precision': 0.9714285714285714, 'recall': 0.9714285714285714, 'f1-score': 0.9714285714285714, 'support': 35} | {'precision': 0.8571428571428571, 'recall': 0.8888888888888888, 'f1-score': 0.8727272727272727, 'support': 27} | {'precision': 0.9761904761904762, 'recall': 0.9318181818181818, 'f1-score': 0.9534883720930233, 'support': 44} | {'precision': 0.9791666666666666, 'recall': 0.9791666666666666, 'f1-score': 0.9791666666666666, 'support': 48} | {'precision': 0.9166666666666666, 'recall': 0.7096774193548387, 'f1-score': 0.7999999999999999, 'support': 31} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 2} | {'precision': 0.6041666666666666, 'recall': 0.6041666666666666, 'f1-score': 0.6041666666666666, 'support': 48} | {'precision': 0.8309859154929577, 'recall': 0.8939393939393939, 'f1-score': 0.8613138686131386, 'support': 66} | {'precision': 0.7, 'recall': 0.9545454545454546, 'f1-score': 0.8076923076923077, 'support': 22} | {'precision': 0.6976744186046512, 'recall': 0.7317073170731707, 'f1-score': 0.7142857142857143, 'support': 41} | {'precision': 0.7910447761194029, 'recall': 0.7794117647058824, 'f1-score': 0.7851851851851852, 'support': 68} | {'precision': 0.8222222222222222, 'recall': 0.6491228070175439, 'f1-score': 0.7254901960784313, 'support': 57} | 0.8061 | {'precision': 0.7478222490154723, 'recall': 0.754817164008097, 'f1-score': 0.7472179777173742, 'support': 521} | {'precision': 0.8107856771401473, 'recall': 0.8061420345489443, 'f1-score': 0.8050072232872345, 'support': 521} |
|
88 |
+
|
89 |
+
|
90 |
+
### Framework versions
|
91 |
+
|
92 |
+
- Transformers 4.33.2
|
93 |
+
- Pytorch 2.0.1+cu118
|
94 |
+
- Datasets 2.14.5
|
95 |
+
- Tokenizers 0.13.3
|