File size: 2,837 Bytes
b5c8dfa 82374aa b5c8dfa 20c2de0 b5c8dfa 281e737 b5c8dfa e0d4260 b5c8dfa 20c2de0 b5c8dfa 20c2de0 b5c8dfa 20c2de0 b5c8dfa 20c2de0 b5c8dfa 20c2de0 b5c8dfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
tags:
- molecular language model
- SELFIES
- molecule optimization
inference: false
---
# MolGen-large-opt
MolGen-large-opt was introduced in the paper ["Molecular Language Model as Multi-task Generator"](https://arxiv.org/pdf/2301.11259.pdf) and first released in [this repository](https://github.com/zjunlp/MolGen).
## Model description
MolGen-large-opt is the fine-tuned version of [MolGen-large](https://huggingface.co/zjunlp/MolGen-large). MolGen-large is the first pre-trained model that only produces chemically valid molecules.
With a training corpus of over 100 million molecules in SELFIES representation, MolGen-large learns the intrinsic structural patterns of molecules by mapping corrupted SELFIES to their original forms.
Specifically, MolGen-large employs a bidirectional Transformer as its encoder and an autoregressive Transformer as its decoder.
Through its carefully designed multi-task molecular prefix tuning (MPT), MolGen-large-opt can generate molecules with desired properties, making it a valuable tool for molecular optimization.
![image.png](./molgen.png)
## Intended uses
You can use the fine-tuned model for molecule optimization for downstream tasks. See the [repository](https://github.com/zjunlp/MolGen) to look for fine-tune details on a task that interests you.
### How to use
Molecule optimization example:
```python
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> tokenizer = AutoTokenizer.from_pretrained("zjunlp/MolGen-large-opt")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("zjunlp/MolGen-large-opt")
>>> sf_input = tokenizer("[N][#C][C][C][C@@H1][C][C][C][C][C][C][C][C][C][C][C][Ring1][N][=O]", return_tensors="pt")
>>> # beam search
>>> molecules = model.generate(input_ids=sf_input["input_ids"],
attention_mask=sf_input["attention_mask"],
max_length=35,
min_length=5,
num_return_sequences=5,
num_beams=5)
>>> sf_output = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True).replace(" ","") for g in molecules]
['[N][#C][C][C][C@@H1][C][C][C][C][C][C][C][C][C][C][C][C][Ring1][N][=O]',
'[N][#C][C][C][C@@H1][C][C][C][C][C][C][C][C][C][C][C][Ring1][N][=O]',
'[N][#C][C][C][C@@H1][C][C][C][C][C][C][C][C][C][C][C][C][C][Ring1][N][=O]',
'[N][#C][C][C][C@@H1][C][C][C][C][C][C][C][C][C][C][Ring1][N][=O]',
'[N][#C][C][C][C@@H1][C][C][C][C][C][C][C][C][C][C][C][C][C][C][Ring1][N][=O]']
```
### BibTeX entry and citation info
```bibtex
@article{fang2023molecular,
title={Molecular Language Model as Multi-task Generator},
author={Fang, Yin and Zhang, Ningyu and Chen, Zhuo and Fan, Xiaohui and Chen, Huajun},
journal={arXiv preprint arXiv:2301.11259},
year={2023}
}
``` |