--- tags: - molecular language model - SELFIES - molecule generation widget: - text: '[C][=C][C][=C][C][=C][Ring1][=Branch1]' inference: false --- # MolGen MolGen was introduced in the paper ["Molecular Language Model as Multi-task Generator"](https://arxiv.org/pdf/2301.11259.pdf) and first released in [this repository](https://github.com/zjunlp/MolGen). It is a pre-trained molecular generative model built using the 100\% robust molecular language representation, SELFIES. ## Model description MolGen is the first pre-trained model that only produces chemically valid molecules. With a training corpus of over 100 million molecules in SELFIES representation, MolGen learns the intrinsic structural patterns of molecules by mapping corrupted SELFIES to their original forms. Specifically, MolGen employs a bidirectional Transformer as its encoder and an autoregressive Transformer as its decoder. Through its carefully designed multi-task molecular prefix tuning (MPT), MolGen can generate molecules with desired properties, making it a valuable tool for molecular optimization. ![image.png](./model.png) ## Intended uses You can use the raw model for molecule generation or fine-tune it to a downstream task. Please take note that the following examples only demonstrate the utilization of our pre-trained model for molecule generation. See the [repository](https://github.com/zjunlp/MolGen) to look for fine-tune details on a task that interests you. ### How to use Molecule generation example: ```python >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> tokenizer = AutoTokenizer.from_pretrained("zjunlp/MolGen") >>> model = AutoModelForSeq2SeqLM.from_pretrained("zjunlp/MolGen") >>> sf_input = tokenizer("[C][=C][C][=C][C][=C][Ring1][=Branch1]", return_tensors="pt") >>> # beam search >>> molecules = model.generate(input_ids=sf_input["input_ids"], attention_mask=sf_input["attention_mask"], max_length=15, min_length=5, num_return_sequences=5, num_beams=5) >>> sf_output = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True).replace(" ","") for g in molecules] ['[C][=C][C][=C][C][=C][Ring1][=Branch1]', '[C][=C][C][=C][C][=C][C][=C][Ring1][=Branch1]', '[C][=C][C][=C][C][=C][Ring1][=Branch1][C][=C][C][=C]', '[C][=C][C][=C][C][=C][Ring1][=Branch1][C@H1][C][=C][C]', '[C][=C][C][=C][C][=C][Ring1][=Branch1][C@H1][=C][C][=C]'] ``` ### BibTeX entry and citation info ```bibtex @article{fang2023molecular, title={Molecular Language Model as Multi-task Generator}, author={Fang, Yin and Zhang, Ningyu and Chen, Zhuo and Fan, Xiaohui and Chen, Huajun}, journal={arXiv preprint arXiv:2301.11259}, year={2023} } ```