diff --git "a/internlm-full-sft-few-shot/trainer_log.jsonl" "b/internlm-full-sft-few-shot/trainer_log.jsonl" new file mode 100644--- /dev/null +++ "b/internlm-full-sft-few-shot/trainer_log.jsonl" @@ -0,0 +1,4672 @@ +{"current_steps": 1, "total_steps": 4671, "loss": 0.9856, "learning_rate": 2.136752136752137e-08, "epoch": 0.0006422607578676942, "percentage": 0.02, "elapsed_time": "0:00:10", "remaining_time": "13:04:28"} +{"current_steps": 2, "total_steps": 4671, "loss": 0.977, "learning_rate": 4.273504273504274e-08, "epoch": 0.0012845215157353885, "percentage": 0.04, "elapsed_time": "0:00:19", "remaining_time": "12:29:58"} +{"current_steps": 3, "total_steps": 4671, "loss": 1.1203, "learning_rate": 6.41025641025641e-08, "epoch": 0.0019267822736030828, "percentage": 0.06, "elapsed_time": "0:00:28", "remaining_time": "12:25:22"} +{"current_steps": 4, "total_steps": 4671, "loss": 0.9764, "learning_rate": 8.547008547008549e-08, "epoch": 0.002569043031470777, "percentage": 0.09, "elapsed_time": "0:00:38", "remaining_time": "12:35:05"} +{"current_steps": 5, "total_steps": 4671, "loss": 0.8799, "learning_rate": 1.0683760683760685e-07, "epoch": 0.0032113037893384713, "percentage": 0.11, "elapsed_time": "0:00:46", "remaining_time": "12:06:01"} +{"current_steps": 6, "total_steps": 4671, "loss": 0.9558, "learning_rate": 1.282051282051282e-07, "epoch": 0.0038535645472061657, "percentage": 0.13, "elapsed_time": "0:00:56", "remaining_time": "12:08:10"} +{"current_steps": 7, "total_steps": 4671, "loss": 0.9383, "learning_rate": 1.495726495726496e-07, "epoch": 0.00449582530507386, "percentage": 0.15, "elapsed_time": "0:01:06", "remaining_time": "12:16:33"} +{"current_steps": 8, "total_steps": 4671, "loss": 0.8315, "learning_rate": 1.7094017094017097e-07, "epoch": 0.005138086062941554, "percentage": 0.17, "elapsed_time": "0:01:13", "remaining_time": "11:55:04"} +{"current_steps": 9, "total_steps": 4671, "loss": 0.9777, "learning_rate": 1.9230769230769234e-07, "epoch": 0.005780346820809248, "percentage": 0.19, "elapsed_time": "0:01:21", "remaining_time": "11:44:08"} +{"current_steps": 10, "total_steps": 4671, "loss": 0.7651, "learning_rate": 2.136752136752137e-07, "epoch": 0.006422607578676943, "percentage": 0.21, "elapsed_time": "0:01:31", "remaining_time": "11:52:10"} +{"current_steps": 11, "total_steps": 4671, "loss": 0.9194, "learning_rate": 2.3504273504273505e-07, "epoch": 0.007064868336544637, "percentage": 0.24, "elapsed_time": "0:01:40", "remaining_time": "11:48:35"} +{"current_steps": 12, "total_steps": 4671, "loss": 0.9165, "learning_rate": 2.564102564102564e-07, "epoch": 0.007707129094412331, "percentage": 0.26, "elapsed_time": "0:01:50", "remaining_time": "11:55:28"} +{"current_steps": 13, "total_steps": 4671, "loss": 0.8621, "learning_rate": 2.7777777777777776e-07, "epoch": 0.008349389852280027, "percentage": 0.28, "elapsed_time": "0:01:57", "remaining_time": "11:43:30"} +{"current_steps": 14, "total_steps": 4671, "loss": 0.8464, "learning_rate": 2.991452991452992e-07, "epoch": 0.00899165061014772, "percentage": 0.3, "elapsed_time": "0:02:07", "remaining_time": "11:44:55"} +{"current_steps": 15, "total_steps": 4671, "loss": 1.0861, "learning_rate": 3.205128205128205e-07, "epoch": 0.009633911368015413, "percentage": 0.32, "elapsed_time": "0:02:16", "remaining_time": "11:44:20"} +{"current_steps": 16, "total_steps": 4671, "loss": 0.9081, "learning_rate": 3.4188034188034194e-07, "epoch": 0.010276172125883108, "percentage": 0.34, "elapsed_time": "0:02:26", "remaining_time": "11:51:14"} +{"current_steps": 17, "total_steps": 4671, "loss": 1.0094, "learning_rate": 3.632478632478633e-07, "epoch": 0.010918432883750802, "percentage": 0.36, "elapsed_time": "0:02:37", "remaining_time": "11:59:31"} +{"current_steps": 18, "total_steps": 4671, "loss": 0.9832, "learning_rate": 3.846153846153847e-07, "epoch": 0.011560693641618497, "percentage": 0.39, "elapsed_time": "0:02:45", "remaining_time": "11:54:39"} +{"current_steps": 19, "total_steps": 4671, "loss": 0.8348, "learning_rate": 4.05982905982906e-07, "epoch": 0.012202954399486191, "percentage": 0.41, "elapsed_time": "0:02:54", "remaining_time": "11:51:34"} +{"current_steps": 20, "total_steps": 4671, "loss": 0.9352, "learning_rate": 4.273504273504274e-07, "epoch": 0.012845215157353885, "percentage": 0.43, "elapsed_time": "0:03:02", "remaining_time": "11:45:46"} +{"current_steps": 21, "total_steps": 4671, "loss": 0.8224, "learning_rate": 4.4871794871794876e-07, "epoch": 0.01348747591522158, "percentage": 0.45, "elapsed_time": "0:03:12", "remaining_time": "11:49:06"} +{"current_steps": 22, "total_steps": 4671, "loss": 0.7985, "learning_rate": 4.700854700854701e-07, "epoch": 0.014129736673089274, "percentage": 0.47, "elapsed_time": "0:03:19", "remaining_time": "11:43:33"} +{"current_steps": 23, "total_steps": 4671, "loss": 0.817, "learning_rate": 4.914529914529914e-07, "epoch": 0.014771997430956968, "percentage": 0.49, "elapsed_time": "0:03:29", "remaining_time": "11:46:51"} +{"current_steps": 24, "total_steps": 4671, "loss": 0.9004, "learning_rate": 5.128205128205128e-07, "epoch": 0.015414258188824663, "percentage": 0.51, "elapsed_time": "0:03:38", "remaining_time": "11:45:17"} +{"current_steps": 25, "total_steps": 4671, "loss": 0.8642, "learning_rate": 5.341880341880342e-07, "epoch": 0.01605651894669236, "percentage": 0.54, "elapsed_time": "0:03:47", "remaining_time": "11:44:30"} +{"current_steps": 26, "total_steps": 4671, "loss": 0.7714, "learning_rate": 5.555555555555555e-07, "epoch": 0.016698779704560053, "percentage": 0.56, "elapsed_time": "0:03:55", "remaining_time": "11:40:27"} +{"current_steps": 27, "total_steps": 4671, "loss": 0.8073, "learning_rate": 5.76923076923077e-07, "epoch": 0.017341040462427744, "percentage": 0.58, "elapsed_time": "0:04:03", "remaining_time": "11:36:49"} +{"current_steps": 28, "total_steps": 4671, "loss": 0.8878, "learning_rate": 5.982905982905984e-07, "epoch": 0.01798330122029544, "percentage": 0.6, "elapsed_time": "0:04:13", "remaining_time": "11:40:12"} +{"current_steps": 29, "total_steps": 4671, "loss": 0.7701, "learning_rate": 6.196581196581197e-07, "epoch": 0.018625561978163133, "percentage": 0.62, "elapsed_time": "0:04:22", "remaining_time": "11:39:55"} +{"current_steps": 30, "total_steps": 4671, "loss": 0.6594, "learning_rate": 6.41025641025641e-07, "epoch": 0.019267822736030827, "percentage": 0.64, "elapsed_time": "0:04:32", "remaining_time": "11:43:51"} +{"current_steps": 31, "total_steps": 4671, "loss": 0.6873, "learning_rate": 6.623931623931625e-07, "epoch": 0.01991008349389852, "percentage": 0.66, "elapsed_time": "0:04:42", "remaining_time": "11:45:49"} +{"current_steps": 32, "total_steps": 4671, "loss": 0.6088, "learning_rate": 6.837606837606839e-07, "epoch": 0.020552344251766216, "percentage": 0.69, "elapsed_time": "0:04:52", "remaining_time": "11:45:57"} +{"current_steps": 33, "total_steps": 4671, "loss": 0.6539, "learning_rate": 7.051282051282052e-07, "epoch": 0.02119460500963391, "percentage": 0.71, "elapsed_time": "0:05:01", "remaining_time": "11:45:37"} +{"current_steps": 34, "total_steps": 4671, "loss": 0.6497, "learning_rate": 7.264957264957266e-07, "epoch": 0.021836865767501604, "percentage": 0.73, "elapsed_time": "0:05:09", "remaining_time": "11:44:08"} +{"current_steps": 35, "total_steps": 4671, "loss": 0.5914, "learning_rate": 7.478632478632479e-07, "epoch": 0.0224791265253693, "percentage": 0.75, "elapsed_time": "0:05:19", "remaining_time": "11:44:37"} +{"current_steps": 36, "total_steps": 4671, "loss": 0.6812, "learning_rate": 7.692307692307694e-07, "epoch": 0.023121387283236993, "percentage": 0.77, "elapsed_time": "0:05:28", "remaining_time": "11:44:52"} +{"current_steps": 37, "total_steps": 4671, "loss": 0.4456, "learning_rate": 7.905982905982906e-07, "epoch": 0.023763648041104687, "percentage": 0.79, "elapsed_time": "0:05:38", "remaining_time": "11:46:13"} +{"current_steps": 38, "total_steps": 4671, "loss": 0.5661, "learning_rate": 8.11965811965812e-07, "epoch": 0.024405908798972382, "percentage": 0.81, "elapsed_time": "0:05:48", "remaining_time": "11:47:12"} +{"current_steps": 39, "total_steps": 4671, "loss": 0.4887, "learning_rate": 8.333333333333333e-07, "epoch": 0.025048169556840076, "percentage": 0.83, "elapsed_time": "0:05:57", "remaining_time": "11:48:28"} +{"current_steps": 40, "total_steps": 4671, "loss": 0.3786, "learning_rate": 8.547008547008548e-07, "epoch": 0.02569043031470777, "percentage": 0.86, "elapsed_time": "0:06:08", "remaining_time": "11:50:24"} +{"current_steps": 41, "total_steps": 4671, "loss": 0.2596, "learning_rate": 8.760683760683761e-07, "epoch": 0.026332691072575465, "percentage": 0.88, "elapsed_time": "0:06:15", "remaining_time": "11:47:28"} +{"current_steps": 42, "total_steps": 4671, "loss": 0.3851, "learning_rate": 8.974358974358975e-07, "epoch": 0.02697495183044316, "percentage": 0.9, "elapsed_time": "0:06:25", "remaining_time": "11:47:40"} +{"current_steps": 43, "total_steps": 4671, "loss": 0.278, "learning_rate": 9.188034188034189e-07, "epoch": 0.027617212588310854, "percentage": 0.92, "elapsed_time": "0:06:34", "remaining_time": "11:47:29"} +{"current_steps": 44, "total_steps": 4671, "loss": 0.2907, "learning_rate": 9.401709401709402e-07, "epoch": 0.028259473346178548, "percentage": 0.94, "elapsed_time": "0:06:44", "remaining_time": "11:49:46"} +{"current_steps": 45, "total_steps": 4671, "loss": 0.2533, "learning_rate": 9.615384615384617e-07, "epoch": 0.028901734104046242, "percentage": 0.96, "elapsed_time": "0:06:54", "remaining_time": "11:50:17"} +{"current_steps": 46, "total_steps": 4671, "loss": 0.21, "learning_rate": 9.829059829059829e-07, "epoch": 0.029543994861913937, "percentage": 0.98, "elapsed_time": "0:07:02", "remaining_time": "11:48:36"} +{"current_steps": 47, "total_steps": 4671, "loss": 0.184, "learning_rate": 1.0042735042735045e-06, "epoch": 0.03018625561978163, "percentage": 1.01, "elapsed_time": "0:07:13", "remaining_time": "11:51:04"} +{"current_steps": 48, "total_steps": 4671, "loss": 0.2029, "learning_rate": 1.0256410256410257e-06, "epoch": 0.030828516377649325, "percentage": 1.03, "elapsed_time": "0:07:20", "remaining_time": "11:47:28"} +{"current_steps": 49, "total_steps": 4671, "loss": 0.3161, "learning_rate": 1.047008547008547e-06, "epoch": 0.03147077713551702, "percentage": 1.05, "elapsed_time": "0:07:30", "remaining_time": "11:48:34"} +{"current_steps": 50, "total_steps": 4671, "loss": 0.218, "learning_rate": 1.0683760683760685e-06, "epoch": 0.03211303789338472, "percentage": 1.07, "elapsed_time": "0:07:41", "remaining_time": "11:50:08"} +{"current_steps": 51, "total_steps": 4671, "loss": 0.1622, "learning_rate": 1.0897435897435899e-06, "epoch": 0.03275529865125241, "percentage": 1.09, "elapsed_time": "0:07:51", "remaining_time": "11:51:17"} +{"current_steps": 52, "total_steps": 4671, "loss": 0.1082, "learning_rate": 1.111111111111111e-06, "epoch": 0.033397559409120106, "percentage": 1.11, "elapsed_time": "0:07:58", "remaining_time": "11:47:44"} +{"current_steps": 53, "total_steps": 4671, "loss": 0.2911, "learning_rate": 1.1324786324786326e-06, "epoch": 0.0340398201669878, "percentage": 1.13, "elapsed_time": "0:08:07", "remaining_time": "11:47:55"} +{"current_steps": 54, "total_steps": 4671, "loss": 0.1641, "learning_rate": 1.153846153846154e-06, "epoch": 0.03468208092485549, "percentage": 1.16, "elapsed_time": "0:08:16", "remaining_time": "11:47:13"} +{"current_steps": 55, "total_steps": 4671, "loss": 0.1787, "learning_rate": 1.1752136752136752e-06, "epoch": 0.035324341682723186, "percentage": 1.18, "elapsed_time": "0:08:24", "remaining_time": "11:46:08"} +{"current_steps": 56, "total_steps": 4671, "loss": 0.2849, "learning_rate": 1.1965811965811968e-06, "epoch": 0.03596660244059088, "percentage": 1.2, "elapsed_time": "0:08:32", "remaining_time": "11:44:13"} +{"current_steps": 57, "total_steps": 4671, "loss": 0.2251, "learning_rate": 1.217948717948718e-06, "epoch": 0.036608863198458574, "percentage": 1.22, "elapsed_time": "0:08:41", "remaining_time": "11:43:30"} +{"current_steps": 58, "total_steps": 4671, "loss": 0.3049, "learning_rate": 1.2393162393162394e-06, "epoch": 0.037251123956326265, "percentage": 1.24, "elapsed_time": "0:08:53", "remaining_time": "11:47:01"} +{"current_steps": 59, "total_steps": 4671, "loss": 0.0929, "learning_rate": 1.2606837606837608e-06, "epoch": 0.03789338471419396, "percentage": 1.26, "elapsed_time": "0:09:01", "remaining_time": "11:45:32"} +{"current_steps": 60, "total_steps": 4671, "loss": 0.185, "learning_rate": 1.282051282051282e-06, "epoch": 0.038535645472061654, "percentage": 1.28, "elapsed_time": "0:09:10", "remaining_time": "11:44:56"} +{"current_steps": 61, "total_steps": 4671, "loss": 0.1634, "learning_rate": 1.3034188034188036e-06, "epoch": 0.03917790622992935, "percentage": 1.31, "elapsed_time": "0:09:18", "remaining_time": "11:42:58"} +{"current_steps": 62, "total_steps": 4671, "loss": 0.1578, "learning_rate": 1.324786324786325e-06, "epoch": 0.03982016698779704, "percentage": 1.33, "elapsed_time": "0:09:28", "remaining_time": "11:43:50"} +{"current_steps": 63, "total_steps": 4671, "loss": 0.1179, "learning_rate": 1.3461538461538462e-06, "epoch": 0.04046242774566474, "percentage": 1.35, "elapsed_time": "0:09:35", "remaining_time": "11:41:11"} +{"current_steps": 64, "total_steps": 4671, "loss": 0.0892, "learning_rate": 1.3675213675213678e-06, "epoch": 0.04110468850353243, "percentage": 1.37, "elapsed_time": "0:09:44", "remaining_time": "11:41:31"} +{"current_steps": 65, "total_steps": 4671, "loss": 0.0875, "learning_rate": 1.3888888888888892e-06, "epoch": 0.04174694926140013, "percentage": 1.39, "elapsed_time": "0:09:54", "remaining_time": "11:41:33"} +{"current_steps": 66, "total_steps": 4671, "loss": 0.2221, "learning_rate": 1.4102564102564104e-06, "epoch": 0.04238921001926782, "percentage": 1.41, "elapsed_time": "0:10:03", "remaining_time": "11:41:22"} +{"current_steps": 67, "total_steps": 4671, "loss": 0.1206, "learning_rate": 1.4316239316239317e-06, "epoch": 0.04303147077713552, "percentage": 1.43, "elapsed_time": "0:10:11", "remaining_time": "11:40:02"} +{"current_steps": 68, "total_steps": 4671, "loss": 0.1245, "learning_rate": 1.4529914529914531e-06, "epoch": 0.04367373153500321, "percentage": 1.46, "elapsed_time": "0:10:20", "remaining_time": "11:40:03"} +{"current_steps": 69, "total_steps": 4671, "loss": 0.2687, "learning_rate": 1.4743589743589745e-06, "epoch": 0.04431599229287091, "percentage": 1.48, "elapsed_time": "0:10:29", "remaining_time": "11:39:28"} +{"current_steps": 70, "total_steps": 4671, "loss": 0.2352, "learning_rate": 1.4957264957264957e-06, "epoch": 0.0449582530507386, "percentage": 1.5, "elapsed_time": "0:10:38", "remaining_time": "11:39:03"} +{"current_steps": 71, "total_steps": 4671, "loss": 0.126, "learning_rate": 1.5170940170940171e-06, "epoch": 0.045600513808606295, "percentage": 1.52, "elapsed_time": "0:10:48", "remaining_time": "11:40:44"} +{"current_steps": 72, "total_steps": 4671, "loss": 0.0902, "learning_rate": 1.5384615384615387e-06, "epoch": 0.046242774566473986, "percentage": 1.54, "elapsed_time": "0:10:56", "remaining_time": "11:39:03"} +{"current_steps": 73, "total_steps": 4671, "loss": 0.1616, "learning_rate": 1.55982905982906e-06, "epoch": 0.046885035324341684, "percentage": 1.56, "elapsed_time": "0:11:05", "remaining_time": "11:38:09"} +{"current_steps": 74, "total_steps": 4671, "loss": 0.1153, "learning_rate": 1.5811965811965813e-06, "epoch": 0.047527296082209375, "percentage": 1.58, "elapsed_time": "0:11:14", "remaining_time": "11:38:47"} +{"current_steps": 75, "total_steps": 4671, "loss": 0.1918, "learning_rate": 1.602564102564103e-06, "epoch": 0.04816955684007707, "percentage": 1.61, "elapsed_time": "0:11:26", "remaining_time": "11:40:51"} +{"current_steps": 76, "total_steps": 4671, "loss": 0.1717, "learning_rate": 1.623931623931624e-06, "epoch": 0.048811817597944764, "percentage": 1.63, "elapsed_time": "0:11:34", "remaining_time": "11:40:10"} +{"current_steps": 77, "total_steps": 4671, "loss": 0.2, "learning_rate": 1.6452991452991455e-06, "epoch": 0.04945407835581246, "percentage": 1.65, "elapsed_time": "0:11:44", "remaining_time": "11:40:04"} +{"current_steps": 78, "total_steps": 4671, "loss": 0.1216, "learning_rate": 1.6666666666666667e-06, "epoch": 0.05009633911368015, "percentage": 1.67, "elapsed_time": "0:11:52", "remaining_time": "11:39:17"} +{"current_steps": 79, "total_steps": 4671, "loss": 0.1697, "learning_rate": 1.6880341880341883e-06, "epoch": 0.05073859987154785, "percentage": 1.69, "elapsed_time": "0:12:02", "remaining_time": "11:39:30"} +{"current_steps": 80, "total_steps": 4671, "loss": 0.2121, "learning_rate": 1.7094017094017097e-06, "epoch": 0.05138086062941554, "percentage": 1.71, "elapsed_time": "0:12:11", "remaining_time": "11:39:29"} +{"current_steps": 81, "total_steps": 4671, "loss": 0.2311, "learning_rate": 1.7307692307692308e-06, "epoch": 0.05202312138728324, "percentage": 1.73, "elapsed_time": "0:12:21", "remaining_time": "11:39:57"} +{"current_steps": 82, "total_steps": 4671, "loss": 0.1643, "learning_rate": 1.7521367521367522e-06, "epoch": 0.05266538214515093, "percentage": 1.76, "elapsed_time": "0:12:29", "remaining_time": "11:38:44"} +{"current_steps": 83, "total_steps": 4671, "loss": 0.149, "learning_rate": 1.7735042735042736e-06, "epoch": 0.05330764290301863, "percentage": 1.78, "elapsed_time": "0:12:38", "remaining_time": "11:39:12"} +{"current_steps": 84, "total_steps": 4671, "loss": 0.1655, "learning_rate": 1.794871794871795e-06, "epoch": 0.05394990366088632, "percentage": 1.8, "elapsed_time": "0:12:48", "remaining_time": "11:39:21"} +{"current_steps": 85, "total_steps": 4671, "loss": 0.2053, "learning_rate": 1.8162393162393164e-06, "epoch": 0.054592164418754016, "percentage": 1.82, "elapsed_time": "0:12:58", "remaining_time": "11:40:06"} +{"current_steps": 86, "total_steps": 4671, "loss": 0.1765, "learning_rate": 1.8376068376068378e-06, "epoch": 0.05523442517662171, "percentage": 1.84, "elapsed_time": "0:13:06", "remaining_time": "11:39:13"} +{"current_steps": 87, "total_steps": 4671, "loss": 0.1594, "learning_rate": 1.8589743589743592e-06, "epoch": 0.055876685934489405, "percentage": 1.86, "elapsed_time": "0:13:16", "remaining_time": "11:39:13"} +{"current_steps": 88, "total_steps": 4671, "loss": 0.1537, "learning_rate": 1.8803418803418804e-06, "epoch": 0.056518946692357096, "percentage": 1.88, "elapsed_time": "0:13:24", "remaining_time": "11:38:07"} +{"current_steps": 89, "total_steps": 4671, "loss": 0.1859, "learning_rate": 1.9017094017094018e-06, "epoch": 0.057161207450224794, "percentage": 1.91, "elapsed_time": "0:13:32", "remaining_time": "11:36:52"} +{"current_steps": 90, "total_steps": 4671, "loss": 0.1549, "learning_rate": 1.9230769230769234e-06, "epoch": 0.057803468208092484, "percentage": 1.93, "elapsed_time": "0:13:41", "remaining_time": "11:36:30"} +{"current_steps": 91, "total_steps": 4671, "loss": 0.1722, "learning_rate": 1.944444444444445e-06, "epoch": 0.05844572896596018, "percentage": 1.95, "elapsed_time": "0:13:52", "remaining_time": "11:38:25"} +{"current_steps": 92, "total_steps": 4671, "loss": 0.085, "learning_rate": 1.9658119658119658e-06, "epoch": 0.05908798972382787, "percentage": 1.97, "elapsed_time": "0:14:01", "remaining_time": "11:37:49"} +{"current_steps": 93, "total_steps": 4671, "loss": 0.1692, "learning_rate": 1.987179487179487e-06, "epoch": 0.05973025048169557, "percentage": 1.99, "elapsed_time": "0:14:11", "remaining_time": "11:38:57"} +{"current_steps": 94, "total_steps": 4671, "loss": 0.1539, "learning_rate": 2.008547008547009e-06, "epoch": 0.06037251123956326, "percentage": 2.01, "elapsed_time": "0:14:20", "remaining_time": "11:38:20"} +{"current_steps": 95, "total_steps": 4671, "loss": 0.1959, "learning_rate": 2.02991452991453e-06, "epoch": 0.06101477199743096, "percentage": 2.03, "elapsed_time": "0:14:29", "remaining_time": "11:38:23"} +{"current_steps": 96, "total_steps": 4671, "loss": 0.1379, "learning_rate": 2.0512820512820513e-06, "epoch": 0.06165703275529865, "percentage": 2.06, "elapsed_time": "0:14:40", "remaining_time": "11:39:27"} +{"current_steps": 97, "total_steps": 4671, "loss": 0.2198, "learning_rate": 2.072649572649573e-06, "epoch": 0.06229929351316635, "percentage": 2.08, "elapsed_time": "0:14:49", "remaining_time": "11:38:55"} +{"current_steps": 98, "total_steps": 4671, "loss": 0.2104, "learning_rate": 2.094017094017094e-06, "epoch": 0.06294155427103404, "percentage": 2.1, "elapsed_time": "0:14:57", "remaining_time": "11:38:05"} +{"current_steps": 99, "total_steps": 4671, "loss": 0.1467, "learning_rate": 2.1153846153846155e-06, "epoch": 0.06358381502890173, "percentage": 2.12, "elapsed_time": "0:15:06", "remaining_time": "11:37:59"} +{"current_steps": 100, "total_steps": 4671, "loss": 0.3383, "learning_rate": 2.136752136752137e-06, "epoch": 0.06422607578676943, "percentage": 2.14, "elapsed_time": "0:15:17", "remaining_time": "11:39:09"} +{"current_steps": 101, "total_steps": 4671, "loss": 0.25, "learning_rate": 2.1581196581196583e-06, "epoch": 0.06486833654463713, "percentage": 2.16, "elapsed_time": "0:15:28", "remaining_time": "11:40:05"} +{"current_steps": 102, "total_steps": 4671, "loss": 0.1075, "learning_rate": 2.1794871794871797e-06, "epoch": 0.06551059730250482, "percentage": 2.18, "elapsed_time": "0:15:36", "remaining_time": "11:38:48"} +{"current_steps": 103, "total_steps": 4671, "loss": 0.1177, "learning_rate": 2.200854700854701e-06, "epoch": 0.06615285806037251, "percentage": 2.21, "elapsed_time": "0:15:44", "remaining_time": "11:38:17"} +{"current_steps": 104, "total_steps": 4671, "loss": 0.0858, "learning_rate": 2.222222222222222e-06, "epoch": 0.06679511881824021, "percentage": 2.23, "elapsed_time": "0:15:52", "remaining_time": "11:37:00"} +{"current_steps": 105, "total_steps": 4671, "loss": 0.179, "learning_rate": 2.243589743589744e-06, "epoch": 0.0674373795761079, "percentage": 2.25, "elapsed_time": "0:16:01", "remaining_time": "11:36:46"} +{"current_steps": 106, "total_steps": 4671, "loss": 0.1537, "learning_rate": 2.2649572649572653e-06, "epoch": 0.0680796403339756, "percentage": 2.27, "elapsed_time": "0:16:08", "remaining_time": "11:35:05"} +{"current_steps": 107, "total_steps": 4671, "loss": 0.2291, "learning_rate": 2.2863247863247863e-06, "epoch": 0.06872190109184328, "percentage": 2.29, "elapsed_time": "0:16:18", "remaining_time": "11:35:25"} +{"current_steps": 108, "total_steps": 4671, "loss": 0.1501, "learning_rate": 2.307692307692308e-06, "epoch": 0.06936416184971098, "percentage": 2.31, "elapsed_time": "0:16:27", "remaining_time": "11:35:24"} +{"current_steps": 109, "total_steps": 4671, "loss": 0.2089, "learning_rate": 2.3290598290598295e-06, "epoch": 0.07000642260757868, "percentage": 2.33, "elapsed_time": "0:16:37", "remaining_time": "11:35:35"} +{"current_steps": 110, "total_steps": 4671, "loss": 0.1123, "learning_rate": 2.3504273504273504e-06, "epoch": 0.07064868336544637, "percentage": 2.35, "elapsed_time": "0:16:46", "remaining_time": "11:35:30"} +{"current_steps": 111, "total_steps": 4671, "loss": 0.1431, "learning_rate": 2.371794871794872e-06, "epoch": 0.07129094412331406, "percentage": 2.38, "elapsed_time": "0:16:53", "remaining_time": "11:33:54"} +{"current_steps": 112, "total_steps": 4671, "loss": 0.0904, "learning_rate": 2.3931623931623937e-06, "epoch": 0.07193320488118175, "percentage": 2.4, "elapsed_time": "0:17:02", "remaining_time": "11:33:31"} +{"current_steps": 113, "total_steps": 4671, "loss": 0.1185, "learning_rate": 2.4145299145299146e-06, "epoch": 0.07257546563904946, "percentage": 2.42, "elapsed_time": "0:17:12", "remaining_time": "11:34:22"} +{"current_steps": 114, "total_steps": 4671, "loss": 0.1422, "learning_rate": 2.435897435897436e-06, "epoch": 0.07321772639691715, "percentage": 2.44, "elapsed_time": "0:17:22", "remaining_time": "11:34:40"} +{"current_steps": 115, "total_steps": 4671, "loss": 0.0912, "learning_rate": 2.4572649572649574e-06, "epoch": 0.07385998715478484, "percentage": 2.46, "elapsed_time": "0:17:31", "remaining_time": "11:34:02"} +{"current_steps": 116, "total_steps": 4671, "loss": 0.1636, "learning_rate": 2.478632478632479e-06, "epoch": 0.07450224791265253, "percentage": 2.48, "elapsed_time": "0:17:42", "remaining_time": "11:35:12"} +{"current_steps": 117, "total_steps": 4671, "loss": 0.1046, "learning_rate": 2.5e-06, "epoch": 0.07514450867052024, "percentage": 2.5, "elapsed_time": "0:17:49", "remaining_time": "11:34:06"} +{"current_steps": 118, "total_steps": 4671, "loss": 0.104, "learning_rate": 2.5213675213675216e-06, "epoch": 0.07578676942838793, "percentage": 2.53, "elapsed_time": "0:17:59", "remaining_time": "11:34:04"} +{"current_steps": 119, "total_steps": 4671, "loss": 0.1394, "learning_rate": 2.542735042735043e-06, "epoch": 0.07642903018625562, "percentage": 2.55, "elapsed_time": "0:18:08", "remaining_time": "11:34:09"} +{"current_steps": 120, "total_steps": 4671, "loss": 0.1527, "learning_rate": 2.564102564102564e-06, "epoch": 0.07707129094412331, "percentage": 2.57, "elapsed_time": "0:18:18", "remaining_time": "11:34:11"} +{"current_steps": 121, "total_steps": 4671, "loss": 0.1603, "learning_rate": 2.5854700854700858e-06, "epoch": 0.07771355170199101, "percentage": 2.59, "elapsed_time": "0:18:26", "remaining_time": "11:33:34"} +{"current_steps": 122, "total_steps": 4671, "loss": 0.1641, "learning_rate": 2.606837606837607e-06, "epoch": 0.0783558124598587, "percentage": 2.61, "elapsed_time": "0:18:37", "remaining_time": "11:34:35"} +{"current_steps": 123, "total_steps": 4671, "loss": 0.0791, "learning_rate": 2.6282051282051286e-06, "epoch": 0.0789980732177264, "percentage": 2.63, "elapsed_time": "0:18:47", "remaining_time": "11:35:03"} +{"current_steps": 124, "total_steps": 4671, "loss": 0.1173, "learning_rate": 2.64957264957265e-06, "epoch": 0.07964033397559409, "percentage": 2.65, "elapsed_time": "0:18:56", "remaining_time": "11:34:32"} +{"current_steps": 125, "total_steps": 4671, "loss": 0.2177, "learning_rate": 2.670940170940171e-06, "epoch": 0.08028259473346179, "percentage": 2.68, "elapsed_time": "0:19:05", "remaining_time": "11:34:13"} +{"current_steps": 126, "total_steps": 4671, "loss": 0.2223, "learning_rate": 2.6923076923076923e-06, "epoch": 0.08092485549132948, "percentage": 2.7, "elapsed_time": "0:19:12", "remaining_time": "11:32:54"} +{"current_steps": 127, "total_steps": 4671, "loss": 0.087, "learning_rate": 2.7136752136752137e-06, "epoch": 0.08156711624919717, "percentage": 2.72, "elapsed_time": "0:19:19", "remaining_time": "11:31:32"} +{"current_steps": 128, "total_steps": 4671, "loss": 0.0649, "learning_rate": 2.7350427350427355e-06, "epoch": 0.08220937700706486, "percentage": 2.74, "elapsed_time": "0:19:27", "remaining_time": "11:30:49"} +{"current_steps": 129, "total_steps": 4671, "loss": 0.1095, "learning_rate": 2.756410256410257e-06, "epoch": 0.08285163776493257, "percentage": 2.76, "elapsed_time": "0:19:35", "remaining_time": "11:30:03"} +{"current_steps": 130, "total_steps": 4671, "loss": 0.1835, "learning_rate": 2.7777777777777783e-06, "epoch": 0.08349389852280026, "percentage": 2.78, "elapsed_time": "0:19:45", "remaining_time": "11:30:04"} +{"current_steps": 131, "total_steps": 4671, "loss": 0.1006, "learning_rate": 2.7991452991452993e-06, "epoch": 0.08413615928066795, "percentage": 2.8, "elapsed_time": "0:19:53", "remaining_time": "11:29:36"} +{"current_steps": 132, "total_steps": 4671, "loss": 0.1088, "learning_rate": 2.8205128205128207e-06, "epoch": 0.08477842003853564, "percentage": 2.83, "elapsed_time": "0:20:02", "remaining_time": "11:29:11"} +{"current_steps": 133, "total_steps": 4671, "loss": 0.1519, "learning_rate": 2.841880341880342e-06, "epoch": 0.08542068079640334, "percentage": 2.85, "elapsed_time": "0:20:09", "remaining_time": "11:28:03"} +{"current_steps": 134, "total_steps": 4671, "loss": 0.0864, "learning_rate": 2.8632478632478635e-06, "epoch": 0.08606294155427104, "percentage": 2.87, "elapsed_time": "0:20:20", "remaining_time": "11:28:28"} +{"current_steps": 135, "total_steps": 4671, "loss": 0.0798, "learning_rate": 2.8846153846153845e-06, "epoch": 0.08670520231213873, "percentage": 2.89, "elapsed_time": "0:20:27", "remaining_time": "11:27:39"} +{"current_steps": 136, "total_steps": 4671, "loss": 0.1015, "learning_rate": 2.9059829059829063e-06, "epoch": 0.08734746307000642, "percentage": 2.91, "elapsed_time": "0:20:36", "remaining_time": "11:27:17"} +{"current_steps": 137, "total_steps": 4671, "loss": 0.1645, "learning_rate": 2.9273504273504277e-06, "epoch": 0.08798972382787412, "percentage": 2.93, "elapsed_time": "0:20:46", "remaining_time": "11:27:45"} +{"current_steps": 138, "total_steps": 4671, "loss": 0.2197, "learning_rate": 2.948717948717949e-06, "epoch": 0.08863198458574181, "percentage": 2.95, "elapsed_time": "0:20:55", "remaining_time": "11:27:18"} +{"current_steps": 139, "total_steps": 4671, "loss": 0.095, "learning_rate": 2.9700854700854705e-06, "epoch": 0.0892742453436095, "percentage": 2.98, "elapsed_time": "0:21:06", "remaining_time": "11:27:58"} +{"current_steps": 140, "total_steps": 4671, "loss": 0.2106, "learning_rate": 2.9914529914529914e-06, "epoch": 0.0899165061014772, "percentage": 3.0, "elapsed_time": "0:21:14", "remaining_time": "11:27:41"} +{"current_steps": 141, "total_steps": 4671, "loss": 0.1774, "learning_rate": 3.012820512820513e-06, "epoch": 0.0905587668593449, "percentage": 3.02, "elapsed_time": "0:21:24", "remaining_time": "11:28:03"} +{"current_steps": 142, "total_steps": 4671, "loss": 0.2013, "learning_rate": 3.0341880341880342e-06, "epoch": 0.09120102761721259, "percentage": 3.04, "elapsed_time": "0:21:35", "remaining_time": "11:28:49"} +{"current_steps": 143, "total_steps": 4671, "loss": 0.0836, "learning_rate": 3.055555555555556e-06, "epoch": 0.09184328837508028, "percentage": 3.06, "elapsed_time": "0:21:42", "remaining_time": "11:27:35"} +{"current_steps": 144, "total_steps": 4671, "loss": 0.2555, "learning_rate": 3.0769230769230774e-06, "epoch": 0.09248554913294797, "percentage": 3.08, "elapsed_time": "0:21:51", "remaining_time": "11:27:16"} +{"current_steps": 145, "total_steps": 4671, "loss": 0.1744, "learning_rate": 3.098290598290599e-06, "epoch": 0.09312780989081568, "percentage": 3.1, "elapsed_time": "0:22:00", "remaining_time": "11:26:56"} +{"current_steps": 146, "total_steps": 4671, "loss": 0.1328, "learning_rate": 3.11965811965812e-06, "epoch": 0.09377007064868337, "percentage": 3.13, "elapsed_time": "0:22:11", "remaining_time": "11:27:41"} +{"current_steps": 147, "total_steps": 4671, "loss": 0.2191, "learning_rate": 3.141025641025641e-06, "epoch": 0.09441233140655106, "percentage": 3.15, "elapsed_time": "0:22:23", "remaining_time": "11:29:00"} +{"current_steps": 148, "total_steps": 4671, "loss": 0.1137, "learning_rate": 3.1623931623931626e-06, "epoch": 0.09505459216441875, "percentage": 3.17, "elapsed_time": "0:22:31", "remaining_time": "11:28:15"} +{"current_steps": 149, "total_steps": 4671, "loss": 0.0872, "learning_rate": 3.183760683760684e-06, "epoch": 0.09569685292228645, "percentage": 3.19, "elapsed_time": "0:22:40", "remaining_time": "11:28:21"} +{"current_steps": 150, "total_steps": 4671, "loss": 0.1213, "learning_rate": 3.205128205128206e-06, "epoch": 0.09633911368015415, "percentage": 3.21, "elapsed_time": "0:22:50", "remaining_time": "11:28:32"} +{"current_steps": 151, "total_steps": 4671, "loss": 0.1616, "learning_rate": 3.2264957264957268e-06, "epoch": 0.09698137443802184, "percentage": 3.23, "elapsed_time": "0:22:58", "remaining_time": "11:27:56"} +{"current_steps": 152, "total_steps": 4671, "loss": 0.1164, "learning_rate": 3.247863247863248e-06, "epoch": 0.09762363519588953, "percentage": 3.25, "elapsed_time": "0:23:08", "remaining_time": "11:27:53"} +{"current_steps": 153, "total_steps": 4671, "loss": 0.1193, "learning_rate": 3.2692307692307696e-06, "epoch": 0.09826589595375723, "percentage": 3.28, "elapsed_time": "0:23:16", "remaining_time": "11:27:24"} +{"current_steps": 154, "total_steps": 4671, "loss": 0.1738, "learning_rate": 3.290598290598291e-06, "epoch": 0.09890815671162492, "percentage": 3.3, "elapsed_time": "0:23:25", "remaining_time": "11:27:03"} +{"current_steps": 155, "total_steps": 4671, "loss": 0.1252, "learning_rate": 3.311965811965812e-06, "epoch": 0.09955041746949261, "percentage": 3.32, "elapsed_time": "0:23:36", "remaining_time": "11:27:36"} +{"current_steps": 156, "total_steps": 4671, "loss": 0.3174, "learning_rate": 3.3333333333333333e-06, "epoch": 0.1001926782273603, "percentage": 3.34, "elapsed_time": "0:23:47", "remaining_time": "11:28:41"} +{"current_steps": 157, "total_steps": 4671, "loss": 0.1501, "learning_rate": 3.3547008547008547e-06, "epoch": 0.10083493898522801, "percentage": 3.36, "elapsed_time": "0:23:56", "remaining_time": "11:28:17"} +{"current_steps": 158, "total_steps": 4671, "loss": 0.0781, "learning_rate": 3.3760683760683765e-06, "epoch": 0.1014771997430957, "percentage": 3.38, "elapsed_time": "0:24:04", "remaining_time": "11:27:39"} +{"current_steps": 159, "total_steps": 4671, "loss": 0.099, "learning_rate": 3.397435897435898e-06, "epoch": 0.10211946050096339, "percentage": 3.4, "elapsed_time": "0:24:14", "remaining_time": "11:27:41"} +{"current_steps": 160, "total_steps": 4671, "loss": 0.1143, "learning_rate": 3.4188034188034193e-06, "epoch": 0.10276172125883108, "percentage": 3.43, "elapsed_time": "0:24:21", "remaining_time": "11:26:37"} +{"current_steps": 161, "total_steps": 4671, "loss": 0.241, "learning_rate": 3.4401709401709403e-06, "epoch": 0.10340398201669879, "percentage": 3.45, "elapsed_time": "0:24:30", "remaining_time": "11:26:19"} +{"current_steps": 162, "total_steps": 4671, "loss": 0.1249, "learning_rate": 3.4615384615384617e-06, "epoch": 0.10404624277456648, "percentage": 3.47, "elapsed_time": "0:24:39", "remaining_time": "11:26:11"} +{"current_steps": 163, "total_steps": 4671, "loss": 0.1345, "learning_rate": 3.482905982905983e-06, "epoch": 0.10468850353243417, "percentage": 3.49, "elapsed_time": "0:24:47", "remaining_time": "11:25:49"} +{"current_steps": 164, "total_steps": 4671, "loss": 0.1372, "learning_rate": 3.5042735042735045e-06, "epoch": 0.10533076429030186, "percentage": 3.51, "elapsed_time": "0:24:57", "remaining_time": "11:26:02"} +{"current_steps": 165, "total_steps": 4671, "loss": 0.057, "learning_rate": 3.5256410256410263e-06, "epoch": 0.10597302504816955, "percentage": 3.53, "elapsed_time": "0:25:05", "remaining_time": "11:25:13"} +{"current_steps": 166, "total_steps": 4671, "loss": 0.1423, "learning_rate": 3.5470085470085473e-06, "epoch": 0.10661528580603725, "percentage": 3.55, "elapsed_time": "0:25:14", "remaining_time": "11:24:56"} +{"current_steps": 167, "total_steps": 4671, "loss": 0.1849, "learning_rate": 3.5683760683760687e-06, "epoch": 0.10725754656390495, "percentage": 3.58, "elapsed_time": "0:25:24", "remaining_time": "11:25:27"} +{"current_steps": 168, "total_steps": 4671, "loss": 0.1179, "learning_rate": 3.58974358974359e-06, "epoch": 0.10789980732177264, "percentage": 3.6, "elapsed_time": "0:25:32", "remaining_time": "11:24:41"} +{"current_steps": 169, "total_steps": 4671, "loss": 0.0979, "learning_rate": 3.6111111111111115e-06, "epoch": 0.10854206807964033, "percentage": 3.62, "elapsed_time": "0:25:41", "remaining_time": "11:24:17"} +{"current_steps": 170, "total_steps": 4671, "loss": 0.0769, "learning_rate": 3.632478632478633e-06, "epoch": 0.10918432883750803, "percentage": 3.64, "elapsed_time": "0:25:49", "remaining_time": "11:23:34"} +{"current_steps": 171, "total_steps": 4671, "loss": 0.1714, "learning_rate": 3.653846153846154e-06, "epoch": 0.10982658959537572, "percentage": 3.66, "elapsed_time": "0:25:58", "remaining_time": "11:23:40"} +{"current_steps": 172, "total_steps": 4671, "loss": 0.1209, "learning_rate": 3.6752136752136756e-06, "epoch": 0.11046885035324341, "percentage": 3.68, "elapsed_time": "0:26:08", "remaining_time": "11:23:55"} +{"current_steps": 173, "total_steps": 4671, "loss": 0.1277, "learning_rate": 3.696581196581197e-06, "epoch": 0.1111111111111111, "percentage": 3.7, "elapsed_time": "0:26:16", "remaining_time": "11:23:02"} +{"current_steps": 174, "total_steps": 4671, "loss": 0.0687, "learning_rate": 3.7179487179487184e-06, "epoch": 0.11175337186897881, "percentage": 3.73, "elapsed_time": "0:26:24", "remaining_time": "11:22:33"} +{"current_steps": 175, "total_steps": 4671, "loss": 0.1874, "learning_rate": 3.73931623931624e-06, "epoch": 0.1123956326268465, "percentage": 3.75, "elapsed_time": "0:26:34", "remaining_time": "11:22:55"} +{"current_steps": 176, "total_steps": 4671, "loss": 0.1246, "learning_rate": 3.760683760683761e-06, "epoch": 0.11303789338471419, "percentage": 3.77, "elapsed_time": "0:26:43", "remaining_time": "11:22:38"} +{"current_steps": 177, "total_steps": 4671, "loss": 0.2223, "learning_rate": 3.782051282051282e-06, "epoch": 0.11368015414258188, "percentage": 3.79, "elapsed_time": "0:26:52", "remaining_time": "11:22:32"} +{"current_steps": 178, "total_steps": 4671, "loss": 0.1599, "learning_rate": 3.8034188034188036e-06, "epoch": 0.11432241490044959, "percentage": 3.81, "elapsed_time": "0:27:02", "remaining_time": "11:22:23"} +{"current_steps": 179, "total_steps": 4671, "loss": 0.1287, "learning_rate": 3.8247863247863246e-06, "epoch": 0.11496467565831728, "percentage": 3.83, "elapsed_time": "0:27:11", "remaining_time": "11:22:24"} +{"current_steps": 180, "total_steps": 4671, "loss": 0.1248, "learning_rate": 3.846153846153847e-06, "epoch": 0.11560693641618497, "percentage": 3.85, "elapsed_time": "0:27:21", "remaining_time": "11:22:34"} +{"current_steps": 181, "total_steps": 4671, "loss": 0.1588, "learning_rate": 3.867521367521368e-06, "epoch": 0.11624919717405266, "percentage": 3.87, "elapsed_time": "0:27:30", "remaining_time": "11:22:32"} +{"current_steps": 182, "total_steps": 4671, "loss": 0.0971, "learning_rate": 3.88888888888889e-06, "epoch": 0.11689145793192036, "percentage": 3.9, "elapsed_time": "0:27:38", "remaining_time": "11:21:46"} +{"current_steps": 183, "total_steps": 4671, "loss": 0.1635, "learning_rate": 3.910256410256411e-06, "epoch": 0.11753371868978806, "percentage": 3.92, "elapsed_time": "0:27:47", "remaining_time": "11:21:29"} +{"current_steps": 184, "total_steps": 4671, "loss": 0.1104, "learning_rate": 3.9316239316239315e-06, "epoch": 0.11817597944765575, "percentage": 3.94, "elapsed_time": "0:27:57", "remaining_time": "11:21:47"} +{"current_steps": 185, "total_steps": 4671, "loss": 0.1624, "learning_rate": 3.952991452991453e-06, "epoch": 0.11881824020552344, "percentage": 3.96, "elapsed_time": "0:28:07", "remaining_time": "11:22:00"} +{"current_steps": 186, "total_steps": 4671, "loss": 0.0708, "learning_rate": 3.974358974358974e-06, "epoch": 0.11946050096339114, "percentage": 3.98, "elapsed_time": "0:28:16", "remaining_time": "11:21:36"} +{"current_steps": 187, "total_steps": 4671, "loss": 0.1799, "learning_rate": 3.9957264957264966e-06, "epoch": 0.12010276172125883, "percentage": 4.0, "elapsed_time": "0:28:26", "remaining_time": "11:22:03"} +{"current_steps": 188, "total_steps": 4671, "loss": 0.1947, "learning_rate": 4.017094017094018e-06, "epoch": 0.12074502247912652, "percentage": 4.02, "elapsed_time": "0:28:37", "remaining_time": "11:22:28"} +{"current_steps": 189, "total_steps": 4671, "loss": 0.123, "learning_rate": 4.0384615384615385e-06, "epoch": 0.12138728323699421, "percentage": 4.05, "elapsed_time": "0:28:45", "remaining_time": "11:22:01"} +{"current_steps": 190, "total_steps": 4671, "loss": 0.1506, "learning_rate": 4.05982905982906e-06, "epoch": 0.12202954399486192, "percentage": 4.07, "elapsed_time": "0:28:54", "remaining_time": "11:21:53"} +{"current_steps": 191, "total_steps": 4671, "loss": 0.0978, "learning_rate": 4.081196581196581e-06, "epoch": 0.12267180475272961, "percentage": 4.09, "elapsed_time": "0:29:03", "remaining_time": "11:21:34"} +{"current_steps": 192, "total_steps": 4671, "loss": 0.2052, "learning_rate": 4.102564102564103e-06, "epoch": 0.1233140655105973, "percentage": 4.11, "elapsed_time": "0:29:12", "remaining_time": "11:21:22"} +{"current_steps": 193, "total_steps": 4671, "loss": 0.0777, "learning_rate": 4.123931623931624e-06, "epoch": 0.12395632626846499, "percentage": 4.13, "elapsed_time": "0:29:20", "remaining_time": "11:20:42"} +{"current_steps": 194, "total_steps": 4671, "loss": 0.1987, "learning_rate": 4.145299145299146e-06, "epoch": 0.1245985870263327, "percentage": 4.15, "elapsed_time": "0:29:29", "remaining_time": "11:20:23"} +{"current_steps": 195, "total_steps": 4671, "loss": 0.0832, "learning_rate": 4.166666666666667e-06, "epoch": 0.1252408477842004, "percentage": 4.17, "elapsed_time": "0:29:35", "remaining_time": "11:19:25"} +{"current_steps": 196, "total_steps": 4671, "loss": 0.1017, "learning_rate": 4.188034188034188e-06, "epoch": 0.12588310854206808, "percentage": 4.2, "elapsed_time": "0:29:44", "remaining_time": "11:19:02"} +{"current_steps": 197, "total_steps": 4671, "loss": 0.2465, "learning_rate": 4.20940170940171e-06, "epoch": 0.12652536929993577, "percentage": 4.22, "elapsed_time": "0:29:55", "remaining_time": "11:19:28"} +{"current_steps": 198, "total_steps": 4671, "loss": 0.0684, "learning_rate": 4.230769230769231e-06, "epoch": 0.12716763005780346, "percentage": 4.24, "elapsed_time": "0:30:05", "remaining_time": "11:19:40"} +{"current_steps": 199, "total_steps": 4671, "loss": 0.1039, "learning_rate": 4.2521367521367524e-06, "epoch": 0.12780989081567115, "percentage": 4.26, "elapsed_time": "0:30:13", "remaining_time": "11:19:17"} +{"current_steps": 200, "total_steps": 4671, "loss": 0.1108, "learning_rate": 4.273504273504274e-06, "epoch": 0.12845215157353887, "percentage": 4.28, "elapsed_time": "0:30:23", "remaining_time": "11:19:23"} +{"current_steps": 201, "total_steps": 4671, "loss": 0.1821, "learning_rate": 4.294871794871795e-06, "epoch": 0.12909441233140656, "percentage": 4.3, "elapsed_time": "0:30:33", "remaining_time": "11:19:23"} +{"current_steps": 202, "total_steps": 4671, "loss": 0.1173, "learning_rate": 4.316239316239317e-06, "epoch": 0.12973667308927425, "percentage": 4.32, "elapsed_time": "0:30:43", "remaining_time": "11:19:42"} +{"current_steps": 203, "total_steps": 4671, "loss": 0.1736, "learning_rate": 4.337606837606838e-06, "epoch": 0.13037893384714194, "percentage": 4.35, "elapsed_time": "0:30:52", "remaining_time": "11:19:25"} +{"current_steps": 204, "total_steps": 4671, "loss": 0.1589, "learning_rate": 4.358974358974359e-06, "epoch": 0.13102119460500963, "percentage": 4.37, "elapsed_time": "0:31:02", "remaining_time": "11:19:47"} +{"current_steps": 205, "total_steps": 4671, "loss": 0.1277, "learning_rate": 4.380341880341881e-06, "epoch": 0.13166345536287732, "percentage": 4.39, "elapsed_time": "0:31:12", "remaining_time": "11:19:42"} +{"current_steps": 206, "total_steps": 4671, "loss": 0.1555, "learning_rate": 4.401709401709402e-06, "epoch": 0.13230571612074501, "percentage": 4.41, "elapsed_time": "0:31:20", "remaining_time": "11:19:11"} +{"current_steps": 207, "total_steps": 4671, "loss": 0.0884, "learning_rate": 4.423076923076924e-06, "epoch": 0.1329479768786127, "percentage": 4.43, "elapsed_time": "0:31:27", "remaining_time": "11:18:29"} +{"current_steps": 208, "total_steps": 4671, "loss": 0.0989, "learning_rate": 4.444444444444444e-06, "epoch": 0.13359023763648042, "percentage": 4.45, "elapsed_time": "0:31:36", "remaining_time": "11:18:20"} +{"current_steps": 209, "total_steps": 4671, "loss": 0.2359, "learning_rate": 4.465811965811966e-06, "epoch": 0.13423249839434812, "percentage": 4.47, "elapsed_time": "0:31:45", "remaining_time": "11:18:08"} +{"current_steps": 210, "total_steps": 4671, "loss": 0.2322, "learning_rate": 4.487179487179488e-06, "epoch": 0.1348747591522158, "percentage": 4.5, "elapsed_time": "0:31:54", "remaining_time": "11:17:52"} +{"current_steps": 211, "total_steps": 4671, "loss": 0.1543, "learning_rate": 4.508547008547009e-06, "epoch": 0.1355170199100835, "percentage": 4.52, "elapsed_time": "0:32:03", "remaining_time": "11:17:44"} +{"current_steps": 212, "total_steps": 4671, "loss": 0.1551, "learning_rate": 4.5299145299145306e-06, "epoch": 0.1361592806679512, "percentage": 4.54, "elapsed_time": "0:32:14", "remaining_time": "11:18:17"} +{"current_steps": 213, "total_steps": 4671, "loss": 0.1157, "learning_rate": 4.551282051282052e-06, "epoch": 0.13680154142581888, "percentage": 4.56, "elapsed_time": "0:32:23", "remaining_time": "11:17:46"} +{"current_steps": 214, "total_steps": 4671, "loss": 0.1786, "learning_rate": 4.5726495726495725e-06, "epoch": 0.13744380218368657, "percentage": 4.58, "elapsed_time": "0:32:31", "remaining_time": "11:17:26"} +{"current_steps": 215, "total_steps": 4671, "loss": 0.1421, "learning_rate": 4.594017094017094e-06, "epoch": 0.13808606294155426, "percentage": 4.6, "elapsed_time": "0:32:40", "remaining_time": "11:17:02"} +{"current_steps": 216, "total_steps": 4671, "loss": 0.1598, "learning_rate": 4.615384615384616e-06, "epoch": 0.13872832369942195, "percentage": 4.62, "elapsed_time": "0:32:49", "remaining_time": "11:17:01"} +{"current_steps": 217, "total_steps": 4671, "loss": 0.1646, "learning_rate": 4.6367521367521375e-06, "epoch": 0.13937058445728967, "percentage": 4.65, "elapsed_time": "0:32:58", "remaining_time": "11:16:47"} +{"current_steps": 218, "total_steps": 4671, "loss": 0.0801, "learning_rate": 4.658119658119659e-06, "epoch": 0.14001284521515736, "percentage": 4.67, "elapsed_time": "0:33:07", "remaining_time": "11:16:36"} +{"current_steps": 219, "total_steps": 4671, "loss": 0.1488, "learning_rate": 4.6794871794871795e-06, "epoch": 0.14065510597302505, "percentage": 4.69, "elapsed_time": "0:33:16", "remaining_time": "11:16:20"} +{"current_steps": 220, "total_steps": 4671, "loss": 0.1053, "learning_rate": 4.700854700854701e-06, "epoch": 0.14129736673089274, "percentage": 4.71, "elapsed_time": "0:33:23", "remaining_time": "11:15:42"} +{"current_steps": 221, "total_steps": 4671, "loss": 0.0975, "learning_rate": 4.722222222222222e-06, "epoch": 0.14193962748876043, "percentage": 4.73, "elapsed_time": "0:33:33", "remaining_time": "11:15:35"} +{"current_steps": 222, "total_steps": 4671, "loss": 0.2244, "learning_rate": 4.743589743589744e-06, "epoch": 0.14258188824662812, "percentage": 4.75, "elapsed_time": "0:33:41", "remaining_time": "11:15:20"} +{"current_steps": 223, "total_steps": 4671, "loss": 0.3648, "learning_rate": 4.764957264957265e-06, "epoch": 0.14322414900449582, "percentage": 4.77, "elapsed_time": "0:33:53", "remaining_time": "11:15:53"} +{"current_steps": 224, "total_steps": 4671, "loss": 0.1477, "learning_rate": 4.786324786324787e-06, "epoch": 0.1438664097623635, "percentage": 4.8, "elapsed_time": "0:34:02", "remaining_time": "11:15:45"} +{"current_steps": 225, "total_steps": 4671, "loss": 0.2427, "learning_rate": 4.807692307692308e-06, "epoch": 0.14450867052023122, "percentage": 4.82, "elapsed_time": "0:34:12", "remaining_time": "11:15:47"} +{"current_steps": 226, "total_steps": 4671, "loss": 0.1627, "learning_rate": 4.829059829059829e-06, "epoch": 0.14515093127809892, "percentage": 4.84, "elapsed_time": "0:34:21", "remaining_time": "11:15:46"} +{"current_steps": 227, "total_steps": 4671, "loss": 0.1373, "learning_rate": 4.850427350427351e-06, "epoch": 0.1457931920359666, "percentage": 4.86, "elapsed_time": "0:34:31", "remaining_time": "11:15:45"} +{"current_steps": 228, "total_steps": 4671, "loss": 0.1213, "learning_rate": 4.871794871794872e-06, "epoch": 0.1464354527938343, "percentage": 4.88, "elapsed_time": "0:34:38", "remaining_time": "11:15:08"} +{"current_steps": 229, "total_steps": 4671, "loss": 0.131, "learning_rate": 4.8931623931623934e-06, "epoch": 0.147077713551702, "percentage": 4.9, "elapsed_time": "0:34:50", "remaining_time": "11:15:52"} +{"current_steps": 230, "total_steps": 4671, "loss": 0.1268, "learning_rate": 4.914529914529915e-06, "epoch": 0.14771997430956968, "percentage": 4.92, "elapsed_time": "0:34:59", "remaining_time": "11:15:36"} +{"current_steps": 231, "total_steps": 4671, "loss": 0.1026, "learning_rate": 4.935897435897436e-06, "epoch": 0.14836223506743737, "percentage": 4.95, "elapsed_time": "0:35:08", "remaining_time": "11:15:24"} +{"current_steps": 232, "total_steps": 4671, "loss": 0.1773, "learning_rate": 4.957264957264958e-06, "epoch": 0.14900449582530506, "percentage": 4.97, "elapsed_time": "0:35:17", "remaining_time": "11:15:06"} +{"current_steps": 233, "total_steps": 4671, "loss": 0.135, "learning_rate": 4.978632478632479e-06, "epoch": 0.14964675658317278, "percentage": 4.99, "elapsed_time": "0:35:26", "remaining_time": "11:15:02"} +{"current_steps": 234, "total_steps": 4671, "loss": 0.0634, "learning_rate": 5e-06, "epoch": 0.15028901734104047, "percentage": 5.01, "elapsed_time": "0:35:34", "remaining_time": "11:14:29"} +{"current_steps": 235, "total_steps": 4671, "loss": 0.1114, "learning_rate": 5.021367521367522e-06, "epoch": 0.15093127809890816, "percentage": 5.03, "elapsed_time": "0:35:42", "remaining_time": "11:14:12"} +{"current_steps": 236, "total_steps": 4671, "loss": 0.1743, "learning_rate": 5.042735042735043e-06, "epoch": 0.15157353885677585, "percentage": 5.05, "elapsed_time": "0:35:52", "remaining_time": "11:14:09"} +{"current_steps": 237, "total_steps": 4671, "loss": 0.1467, "learning_rate": 5.064102564102565e-06, "epoch": 0.15221579961464354, "percentage": 5.07, "elapsed_time": "0:36:02", "remaining_time": "11:14:13"} +{"current_steps": 238, "total_steps": 4671, "loss": 0.1646, "learning_rate": 5.085470085470086e-06, "epoch": 0.15285806037251123, "percentage": 5.1, "elapsed_time": "0:36:11", "remaining_time": "11:14:09"} +{"current_steps": 239, "total_steps": 4671, "loss": 0.0661, "learning_rate": 5.1068376068376065e-06, "epoch": 0.15350032113037893, "percentage": 5.12, "elapsed_time": "0:36:19", "remaining_time": "11:13:36"} +{"current_steps": 240, "total_steps": 4671, "loss": 0.1808, "learning_rate": 5.128205128205128e-06, "epoch": 0.15414258188824662, "percentage": 5.14, "elapsed_time": "0:36:29", "remaining_time": "11:13:40"} +{"current_steps": 241, "total_steps": 4671, "loss": 0.0873, "learning_rate": 5.149572649572649e-06, "epoch": 0.15478484264611433, "percentage": 5.16, "elapsed_time": "0:36:37", "remaining_time": "11:13:10"} +{"current_steps": 242, "total_steps": 4671, "loss": 0.1203, "learning_rate": 5.1709401709401716e-06, "epoch": 0.15542710340398203, "percentage": 5.18, "elapsed_time": "0:36:46", "remaining_time": "11:13:08"} +{"current_steps": 243, "total_steps": 4671, "loss": 0.1703, "learning_rate": 5.192307692307693e-06, "epoch": 0.15606936416184972, "percentage": 5.2, "elapsed_time": "0:36:56", "remaining_time": "11:13:16"} +{"current_steps": 244, "total_steps": 4671, "loss": 0.1539, "learning_rate": 5.213675213675214e-06, "epoch": 0.1567116249197174, "percentage": 5.22, "elapsed_time": "0:37:08", "remaining_time": "11:13:49"} +{"current_steps": 245, "total_steps": 4671, "loss": 0.0591, "learning_rate": 5.235042735042736e-06, "epoch": 0.1573538856775851, "percentage": 5.25, "elapsed_time": "0:37:15", "remaining_time": "11:13:00"} +{"current_steps": 246, "total_steps": 4671, "loss": 0.0505, "learning_rate": 5.256410256410257e-06, "epoch": 0.1579961464354528, "percentage": 5.27, "elapsed_time": "0:37:23", "remaining_time": "11:12:37"} +{"current_steps": 247, "total_steps": 4671, "loss": 0.1904, "learning_rate": 5.2777777777777785e-06, "epoch": 0.15863840719332048, "percentage": 5.29, "elapsed_time": "0:37:34", "remaining_time": "11:12:58"} +{"current_steps": 248, "total_steps": 4671, "loss": 0.1919, "learning_rate": 5.2991452991453e-06, "epoch": 0.15928066795118817, "percentage": 5.31, "elapsed_time": "0:37:43", "remaining_time": "11:12:56"} +{"current_steps": 249, "total_steps": 4671, "loss": 0.1717, "learning_rate": 5.320512820512821e-06, "epoch": 0.1599229287090559, "percentage": 5.33, "elapsed_time": "0:37:53", "remaining_time": "11:12:48"} +{"current_steps": 250, "total_steps": 4671, "loss": 0.1041, "learning_rate": 5.341880341880342e-06, "epoch": 0.16056518946692358, "percentage": 5.35, "elapsed_time": "0:38:03", "remaining_time": "11:13:07"} +{"current_steps": 251, "total_steps": 4671, "loss": 0.1551, "learning_rate": 5.363247863247863e-06, "epoch": 0.16120745022479127, "percentage": 5.37, "elapsed_time": "0:38:13", "remaining_time": "11:13:10"} +{"current_steps": 252, "total_steps": 4671, "loss": 0.2064, "learning_rate": 5.384615384615385e-06, "epoch": 0.16184971098265896, "percentage": 5.39, "elapsed_time": "0:38:23", "remaining_time": "11:13:14"} +{"current_steps": 253, "total_steps": 4671, "loss": 0.1358, "learning_rate": 5.405982905982906e-06, "epoch": 0.16249197174052665, "percentage": 5.42, "elapsed_time": "0:38:32", "remaining_time": "11:12:56"} +{"current_steps": 254, "total_steps": 4671, "loss": 0.1595, "learning_rate": 5.4273504273504275e-06, "epoch": 0.16313423249839434, "percentage": 5.44, "elapsed_time": "0:38:41", "remaining_time": "11:12:58"} +{"current_steps": 255, "total_steps": 4671, "loss": 0.1779, "learning_rate": 5.448717948717949e-06, "epoch": 0.16377649325626203, "percentage": 5.46, "elapsed_time": "0:38:50", "remaining_time": "11:12:37"} +{"current_steps": 256, "total_steps": 4671, "loss": 0.3479, "learning_rate": 5.470085470085471e-06, "epoch": 0.16441875401412973, "percentage": 5.48, "elapsed_time": "0:39:01", "remaining_time": "11:12:58"} +{"current_steps": 257, "total_steps": 4671, "loss": 0.1043, "learning_rate": 5.4914529914529925e-06, "epoch": 0.16506101477199744, "percentage": 5.5, "elapsed_time": "0:39:10", "remaining_time": "11:12:42"} +{"current_steps": 258, "total_steps": 4671, "loss": 0.1212, "learning_rate": 5.512820512820514e-06, "epoch": 0.16570327552986513, "percentage": 5.52, "elapsed_time": "0:39:20", "remaining_time": "11:12:51"} +{"current_steps": 259, "total_steps": 4671, "loss": 0.2147, "learning_rate": 5.534188034188035e-06, "epoch": 0.16634553628773283, "percentage": 5.54, "elapsed_time": "0:39:30", "remaining_time": "11:12:56"} +{"current_steps": 260, "total_steps": 4671, "loss": 0.1662, "learning_rate": 5.555555555555557e-06, "epoch": 0.16698779704560052, "percentage": 5.57, "elapsed_time": "0:39:40", "remaining_time": "11:12:59"} +{"current_steps": 261, "total_steps": 4671, "loss": 0.1871, "learning_rate": 5.576923076923077e-06, "epoch": 0.1676300578034682, "percentage": 5.59, "elapsed_time": "0:39:50", "remaining_time": "11:13:03"} +{"current_steps": 262, "total_steps": 4671, "loss": 0.1386, "learning_rate": 5.598290598290599e-06, "epoch": 0.1682723185613359, "percentage": 5.61, "elapsed_time": "0:39:59", "remaining_time": "11:13:04"} +{"current_steps": 263, "total_steps": 4671, "loss": 0.1574, "learning_rate": 5.61965811965812e-06, "epoch": 0.1689145793192036, "percentage": 5.63, "elapsed_time": "0:40:08", "remaining_time": "11:12:52"} +{"current_steps": 264, "total_steps": 4671, "loss": 0.142, "learning_rate": 5.641025641025641e-06, "epoch": 0.16955684007707128, "percentage": 5.65, "elapsed_time": "0:40:18", "remaining_time": "11:12:53"} +{"current_steps": 265, "total_steps": 4671, "loss": 0.135, "learning_rate": 5.662393162393163e-06, "epoch": 0.170199100834939, "percentage": 5.67, "elapsed_time": "0:40:26", "remaining_time": "11:12:31"} +{"current_steps": 266, "total_steps": 4671, "loss": 0.1312, "learning_rate": 5.683760683760684e-06, "epoch": 0.1708413615928067, "percentage": 5.69, "elapsed_time": "0:40:36", "remaining_time": "11:12:30"} +{"current_steps": 267, "total_steps": 4671, "loss": 0.171, "learning_rate": 5.705128205128206e-06, "epoch": 0.17148362235067438, "percentage": 5.72, "elapsed_time": "0:40:46", "remaining_time": "11:12:32"} +{"current_steps": 268, "total_steps": 4671, "loss": 0.0853, "learning_rate": 5.726495726495727e-06, "epoch": 0.17212588310854207, "percentage": 5.74, "elapsed_time": "0:40:53", "remaining_time": "11:11:49"} +{"current_steps": 269, "total_steps": 4671, "loss": 0.1893, "learning_rate": 5.7478632478632475e-06, "epoch": 0.17276814386640976, "percentage": 5.76, "elapsed_time": "0:41:04", "remaining_time": "11:12:12"} +{"current_steps": 270, "total_steps": 4671, "loss": 0.1588, "learning_rate": 5.769230769230769e-06, "epoch": 0.17341040462427745, "percentage": 5.78, "elapsed_time": "0:41:12", "remaining_time": "11:11:45"} +{"current_steps": 271, "total_steps": 4671, "loss": 0.1829, "learning_rate": 5.790598290598292e-06, "epoch": 0.17405266538214514, "percentage": 5.8, "elapsed_time": "0:41:21", "remaining_time": "11:11:30"} +{"current_steps": 272, "total_steps": 4671, "loss": 0.1346, "learning_rate": 5.8119658119658126e-06, "epoch": 0.17469492614001284, "percentage": 5.82, "elapsed_time": "0:41:30", "remaining_time": "11:11:17"} +{"current_steps": 273, "total_steps": 4671, "loss": 0.0604, "learning_rate": 5.833333333333334e-06, "epoch": 0.17533718689788053, "percentage": 5.84, "elapsed_time": "0:41:38", "remaining_time": "11:10:44"} +{"current_steps": 274, "total_steps": 4671, "loss": 0.1813, "learning_rate": 5.854700854700855e-06, "epoch": 0.17597944765574824, "percentage": 5.87, "elapsed_time": "0:41:47", "remaining_time": "11:10:37"} +{"current_steps": 275, "total_steps": 4671, "loss": 0.1683, "learning_rate": 5.876068376068377e-06, "epoch": 0.17662170841361594, "percentage": 5.89, "elapsed_time": "0:41:56", "remaining_time": "11:10:28"} +{"current_steps": 276, "total_steps": 4671, "loss": 0.1757, "learning_rate": 5.897435897435898e-06, "epoch": 0.17726396917148363, "percentage": 5.91, "elapsed_time": "0:42:05", "remaining_time": "11:10:21"} +{"current_steps": 277, "total_steps": 4671, "loss": 0.1439, "learning_rate": 5.9188034188034195e-06, "epoch": 0.17790622992935132, "percentage": 5.93, "elapsed_time": "0:42:15", "remaining_time": "11:10:27"} +{"current_steps": 278, "total_steps": 4671, "loss": 0.201, "learning_rate": 5.940170940170941e-06, "epoch": 0.178548490687219, "percentage": 5.95, "elapsed_time": "0:42:22", "remaining_time": "11:09:41"} +{"current_steps": 279, "total_steps": 4671, "loss": 0.2471, "learning_rate": 5.961538461538462e-06, "epoch": 0.1791907514450867, "percentage": 5.97, "elapsed_time": "0:42:33", "remaining_time": "11:09:55"} +{"current_steps": 280, "total_steps": 4671, "loss": 0.2248, "learning_rate": 5.982905982905983e-06, "epoch": 0.1798330122029544, "percentage": 5.99, "elapsed_time": "0:42:42", "remaining_time": "11:09:45"} +{"current_steps": 281, "total_steps": 4671, "loss": 0.0802, "learning_rate": 6.004273504273504e-06, "epoch": 0.18047527296082208, "percentage": 6.02, "elapsed_time": "0:42:51", "remaining_time": "11:09:32"} +{"current_steps": 282, "total_steps": 4671, "loss": 0.2369, "learning_rate": 6.025641025641026e-06, "epoch": 0.1811175337186898, "percentage": 6.04, "elapsed_time": "0:43:01", "remaining_time": "11:09:30"} +{"current_steps": 283, "total_steps": 4671, "loss": 0.2053, "learning_rate": 6.047008547008547e-06, "epoch": 0.1817597944765575, "percentage": 6.06, "elapsed_time": "0:43:09", "remaining_time": "11:09:11"} +{"current_steps": 284, "total_steps": 4671, "loss": 0.1729, "learning_rate": 6.0683760683760684e-06, "epoch": 0.18240205523442518, "percentage": 6.08, "elapsed_time": "0:43:18", "remaining_time": "11:09:05"} +{"current_steps": 285, "total_steps": 4671, "loss": 0.2157, "learning_rate": 6.08974358974359e-06, "epoch": 0.18304431599229287, "percentage": 6.1, "elapsed_time": "0:43:30", "remaining_time": "11:09:39"} +{"current_steps": 286, "total_steps": 4671, "loss": 0.1512, "learning_rate": 6.111111111111112e-06, "epoch": 0.18368657675016056, "percentage": 6.12, "elapsed_time": "0:43:39", "remaining_time": "11:09:16"} +{"current_steps": 287, "total_steps": 4671, "loss": 0.1085, "learning_rate": 6.1324786324786335e-06, "epoch": 0.18432883750802825, "percentage": 6.14, "elapsed_time": "0:43:46", "remaining_time": "11:08:35"} +{"current_steps": 288, "total_steps": 4671, "loss": 0.1752, "learning_rate": 6.153846153846155e-06, "epoch": 0.18497109826589594, "percentage": 6.17, "elapsed_time": "0:43:54", "remaining_time": "11:08:20"} +{"current_steps": 289, "total_steps": 4671, "loss": 0.1137, "learning_rate": 6.175213675213676e-06, "epoch": 0.18561335902376364, "percentage": 6.19, "elapsed_time": "0:44:03", "remaining_time": "11:08:08"} +{"current_steps": 290, "total_steps": 4671, "loss": 0.0765, "learning_rate": 6.196581196581198e-06, "epoch": 0.18625561978163135, "percentage": 6.21, "elapsed_time": "0:44:13", "remaining_time": "11:07:59"} +{"current_steps": 291, "total_steps": 4671, "loss": 0.1652, "learning_rate": 6.217948717948718e-06, "epoch": 0.18689788053949905, "percentage": 6.23, "elapsed_time": "0:44:21", "remaining_time": "11:07:47"} +{"current_steps": 292, "total_steps": 4671, "loss": 0.0958, "learning_rate": 6.23931623931624e-06, "epoch": 0.18754014129736674, "percentage": 6.25, "elapsed_time": "0:44:30", "remaining_time": "11:07:29"} +{"current_steps": 293, "total_steps": 4671, "loss": 0.1542, "learning_rate": 6.260683760683761e-06, "epoch": 0.18818240205523443, "percentage": 6.27, "elapsed_time": "0:44:38", "remaining_time": "11:07:01"} +{"current_steps": 294, "total_steps": 4671, "loss": 0.1234, "learning_rate": 6.282051282051282e-06, "epoch": 0.18882466281310212, "percentage": 6.29, "elapsed_time": "0:44:47", "remaining_time": "11:06:46"} +{"current_steps": 295, "total_steps": 4671, "loss": 0.1687, "learning_rate": 6.303418803418804e-06, "epoch": 0.1894669235709698, "percentage": 6.32, "elapsed_time": "0:44:57", "remaining_time": "11:06:51"} +{"current_steps": 296, "total_steps": 4671, "loss": 0.1589, "learning_rate": 6.324786324786325e-06, "epoch": 0.1901091843288375, "percentage": 6.34, "elapsed_time": "0:45:05", "remaining_time": "11:06:28"} +{"current_steps": 297, "total_steps": 4671, "loss": 0.2237, "learning_rate": 6.3461538461538466e-06, "epoch": 0.1907514450867052, "percentage": 6.36, "elapsed_time": "0:45:15", "remaining_time": "11:06:25"} +{"current_steps": 298, "total_steps": 4671, "loss": 0.1319, "learning_rate": 6.367521367521368e-06, "epoch": 0.1913937058445729, "percentage": 6.38, "elapsed_time": "0:45:24", "remaining_time": "11:06:16"} +{"current_steps": 299, "total_steps": 4671, "loss": 0.1173, "learning_rate": 6.3888888888888885e-06, "epoch": 0.1920359666024406, "percentage": 6.4, "elapsed_time": "0:45:32", "remaining_time": "11:05:51"} +{"current_steps": 300, "total_steps": 4671, "loss": 0.1002, "learning_rate": 6.410256410256412e-06, "epoch": 0.1926782273603083, "percentage": 6.42, "elapsed_time": "0:45:42", "remaining_time": "11:05:55"} +{"current_steps": 301, "total_steps": 4671, "loss": 0.2904, "learning_rate": 6.431623931623933e-06, "epoch": 0.19332048811817598, "percentage": 6.44, "elapsed_time": "0:45:54", "remaining_time": "11:06:24"} +{"current_steps": 302, "total_steps": 4671, "loss": 0.1756, "learning_rate": 6.4529914529914535e-06, "epoch": 0.19396274887604367, "percentage": 6.47, "elapsed_time": "0:46:03", "remaining_time": "11:06:17"} +{"current_steps": 303, "total_steps": 4671, "loss": 0.0778, "learning_rate": 6.474358974358975e-06, "epoch": 0.19460500963391136, "percentage": 6.49, "elapsed_time": "0:46:11", "remaining_time": "11:05:51"} +{"current_steps": 304, "total_steps": 4671, "loss": 0.0988, "learning_rate": 6.495726495726496e-06, "epoch": 0.19524727039177905, "percentage": 6.51, "elapsed_time": "0:46:20", "remaining_time": "11:05:48"} +{"current_steps": 305, "total_steps": 4671, "loss": 0.0785, "learning_rate": 6.517094017094018e-06, "epoch": 0.19588953114964675, "percentage": 6.53, "elapsed_time": "0:46:28", "remaining_time": "11:05:15"} +{"current_steps": 306, "total_steps": 4671, "loss": 0.1976, "learning_rate": 6.538461538461539e-06, "epoch": 0.19653179190751446, "percentage": 6.55, "elapsed_time": "0:46:37", "remaining_time": "11:05:10"} +{"current_steps": 307, "total_steps": 4671, "loss": 0.1312, "learning_rate": 6.5598290598290605e-06, "epoch": 0.19717405266538215, "percentage": 6.57, "elapsed_time": "0:46:49", "remaining_time": "11:05:36"} +{"current_steps": 308, "total_steps": 4671, "loss": 0.205, "learning_rate": 6.581196581196582e-06, "epoch": 0.19781631342324985, "percentage": 6.59, "elapsed_time": "0:46:57", "remaining_time": "11:05:17"} +{"current_steps": 309, "total_steps": 4671, "loss": 0.1337, "learning_rate": 6.602564102564103e-06, "epoch": 0.19845857418111754, "percentage": 6.62, "elapsed_time": "0:47:05", "remaining_time": "11:04:52"} +{"current_steps": 310, "total_steps": 4671, "loss": 0.1659, "learning_rate": 6.623931623931624e-06, "epoch": 0.19910083493898523, "percentage": 6.64, "elapsed_time": "0:47:14", "remaining_time": "11:04:37"} +{"current_steps": 311, "total_steps": 4671, "loss": 0.0681, "learning_rate": 6.645299145299145e-06, "epoch": 0.19974309569685292, "percentage": 6.66, "elapsed_time": "0:47:21", "remaining_time": "11:04:00"} +{"current_steps": 312, "total_steps": 4671, "loss": 0.1109, "learning_rate": 6.666666666666667e-06, "epoch": 0.2003853564547206, "percentage": 6.68, "elapsed_time": "0:47:28", "remaining_time": "11:03:22"} +{"current_steps": 313, "total_steps": 4671, "loss": 0.0926, "learning_rate": 6.688034188034188e-06, "epoch": 0.2010276172125883, "percentage": 6.7, "elapsed_time": "0:47:38", "remaining_time": "11:03:15"} +{"current_steps": 314, "total_steps": 4671, "loss": 0.0744, "learning_rate": 6.7094017094017094e-06, "epoch": 0.20166987797045602, "percentage": 6.72, "elapsed_time": "0:47:45", "remaining_time": "11:02:39"} +{"current_steps": 315, "total_steps": 4671, "loss": 0.1329, "learning_rate": 6.730769230769232e-06, "epoch": 0.2023121387283237, "percentage": 6.74, "elapsed_time": "0:47:55", "remaining_time": "11:02:50"} +{"current_steps": 316, "total_steps": 4671, "loss": 0.1308, "learning_rate": 6.752136752136753e-06, "epoch": 0.2029543994861914, "percentage": 6.77, "elapsed_time": "0:48:05", "remaining_time": "11:02:45"} +{"current_steps": 317, "total_steps": 4671, "loss": 0.0506, "learning_rate": 6.7735042735042745e-06, "epoch": 0.2035966602440591, "percentage": 6.79, "elapsed_time": "0:48:13", "remaining_time": "11:02:20"} +{"current_steps": 318, "total_steps": 4671, "loss": 0.1105, "learning_rate": 6.794871794871796e-06, "epoch": 0.20423892100192678, "percentage": 6.81, "elapsed_time": "0:48:20", "remaining_time": "11:01:49"} +{"current_steps": 319, "total_steps": 4671, "loss": 0.2233, "learning_rate": 6.816239316239317e-06, "epoch": 0.20488118175979447, "percentage": 6.83, "elapsed_time": "0:48:31", "remaining_time": "11:02:02"} +{"current_steps": 320, "total_steps": 4671, "loss": 0.1861, "learning_rate": 6.837606837606839e-06, "epoch": 0.20552344251766216, "percentage": 6.85, "elapsed_time": "0:48:41", "remaining_time": "11:02:06"} +{"current_steps": 321, "total_steps": 4671, "loss": 0.1341, "learning_rate": 6.858974358974359e-06, "epoch": 0.20616570327552985, "percentage": 6.87, "elapsed_time": "0:48:51", "remaining_time": "11:02:09"} +{"current_steps": 322, "total_steps": 4671, "loss": 0.1527, "learning_rate": 6.880341880341881e-06, "epoch": 0.20680796403339757, "percentage": 6.89, "elapsed_time": "0:49:01", "remaining_time": "11:02:07"} +{"current_steps": 323, "total_steps": 4671, "loss": 0.2062, "learning_rate": 6.901709401709402e-06, "epoch": 0.20745022479126526, "percentage": 6.92, "elapsed_time": "0:49:11", "remaining_time": "11:02:06"} +{"current_steps": 324, "total_steps": 4671, "loss": 0.2026, "learning_rate": 6.923076923076923e-06, "epoch": 0.20809248554913296, "percentage": 6.94, "elapsed_time": "0:49:18", "remaining_time": "11:01:39"} +{"current_steps": 325, "total_steps": 4671, "loss": 0.1514, "learning_rate": 6.944444444444445e-06, "epoch": 0.20873474630700065, "percentage": 6.96, "elapsed_time": "0:49:29", "remaining_time": "11:01:48"} +{"current_steps": 326, "total_steps": 4671, "loss": 0.2127, "learning_rate": 6.965811965811966e-06, "epoch": 0.20937700706486834, "percentage": 6.98, "elapsed_time": "0:49:39", "remaining_time": "11:01:50"} +{"current_steps": 327, "total_steps": 4671, "loss": 0.1062, "learning_rate": 6.9871794871794876e-06, "epoch": 0.21001926782273603, "percentage": 7.0, "elapsed_time": "0:49:49", "remaining_time": "11:01:47"} +{"current_steps": 328, "total_steps": 4671, "loss": 0.0691, "learning_rate": 7.008547008547009e-06, "epoch": 0.21066152858060372, "percentage": 7.02, "elapsed_time": "0:49:56", "remaining_time": "11:01:18"} +{"current_steps": 329, "total_steps": 4671, "loss": 0.1455, "learning_rate": 7.02991452991453e-06, "epoch": 0.2113037893384714, "percentage": 7.04, "elapsed_time": "0:50:06", "remaining_time": "11:01:12"} +{"current_steps": 330, "total_steps": 4671, "loss": 0.2832, "learning_rate": 7.051282051282053e-06, "epoch": 0.2119460500963391, "percentage": 7.06, "elapsed_time": "0:50:14", "remaining_time": "11:00:57"} +{"current_steps": 331, "total_steps": 4671, "loss": 0.1581, "learning_rate": 7.072649572649574e-06, "epoch": 0.21258831085420682, "percentage": 7.09, "elapsed_time": "0:50:24", "remaining_time": "11:00:56"} +{"current_steps": 332, "total_steps": 4671, "loss": 0.1426, "learning_rate": 7.0940170940170945e-06, "epoch": 0.2132305716120745, "percentage": 7.11, "elapsed_time": "0:50:31", "remaining_time": "11:00:18"} +{"current_steps": 333, "total_steps": 4671, "loss": 0.2867, "learning_rate": 7.115384615384616e-06, "epoch": 0.2138728323699422, "percentage": 7.13, "elapsed_time": "0:50:40", "remaining_time": "11:00:09"} +{"current_steps": 334, "total_steps": 4671, "loss": 0.1552, "learning_rate": 7.136752136752137e-06, "epoch": 0.2145150931278099, "percentage": 7.15, "elapsed_time": "0:50:50", "remaining_time": "11:00:16"} +{"current_steps": 335, "total_steps": 4671, "loss": 0.192, "learning_rate": 7.158119658119659e-06, "epoch": 0.21515735388567758, "percentage": 7.17, "elapsed_time": "0:51:01", "remaining_time": "11:00:26"} +{"current_steps": 336, "total_steps": 4671, "loss": 0.1306, "learning_rate": 7.17948717948718e-06, "epoch": 0.21579961464354527, "percentage": 7.19, "elapsed_time": "0:51:09", "remaining_time": "11:00:06"} +{"current_steps": 337, "total_steps": 4671, "loss": 0.0901, "learning_rate": 7.2008547008547015e-06, "epoch": 0.21644187540141296, "percentage": 7.21, "elapsed_time": "0:51:18", "remaining_time": "10:59:54"} +{"current_steps": 338, "total_steps": 4671, "loss": 0.1424, "learning_rate": 7.222222222222223e-06, "epoch": 0.21708413615928066, "percentage": 7.24, "elapsed_time": "0:51:27", "remaining_time": "10:59:41"} +{"current_steps": 339, "total_steps": 4671, "loss": 0.0989, "learning_rate": 7.243589743589744e-06, "epoch": 0.21772639691714837, "percentage": 7.26, "elapsed_time": "0:51:36", "remaining_time": "10:59:26"} +{"current_steps": 340, "total_steps": 4671, "loss": 0.2347, "learning_rate": 7.264957264957266e-06, "epoch": 0.21836865767501606, "percentage": 7.28, "elapsed_time": "0:51:45", "remaining_time": "10:59:19"} +{"current_steps": 341, "total_steps": 4671, "loss": 0.2052, "learning_rate": 7.286324786324786e-06, "epoch": 0.21901091843288376, "percentage": 7.3, "elapsed_time": "0:51:55", "remaining_time": "10:59:24"} +{"current_steps": 342, "total_steps": 4671, "loss": 0.1248, "learning_rate": 7.307692307692308e-06, "epoch": 0.21965317919075145, "percentage": 7.32, "elapsed_time": "0:52:04", "remaining_time": "10:59:13"} +{"current_steps": 343, "total_steps": 4671, "loss": 0.1474, "learning_rate": 7.329059829059829e-06, "epoch": 0.22029543994861914, "percentage": 7.34, "elapsed_time": "0:52:15", "remaining_time": "10:59:17"} +{"current_steps": 344, "total_steps": 4671, "loss": 0.1404, "learning_rate": 7.350427350427351e-06, "epoch": 0.22093770070648683, "percentage": 7.36, "elapsed_time": "0:52:23", "remaining_time": "10:59:00"} +{"current_steps": 345, "total_steps": 4671, "loss": 0.0889, "learning_rate": 7.371794871794873e-06, "epoch": 0.22157996146435452, "percentage": 7.39, "elapsed_time": "0:52:33", "remaining_time": "10:59:05"} +{"current_steps": 346, "total_steps": 4671, "loss": 0.203, "learning_rate": 7.393162393162394e-06, "epoch": 0.2222222222222222, "percentage": 7.41, "elapsed_time": "0:52:42", "remaining_time": "10:58:55"} +{"current_steps": 347, "total_steps": 4671, "loss": 0.2417, "learning_rate": 7.4145299145299155e-06, "epoch": 0.22286448298008993, "percentage": 7.43, "elapsed_time": "0:52:52", "remaining_time": "10:58:55"} +{"current_steps": 348, "total_steps": 4671, "loss": 0.1254, "learning_rate": 7.435897435897437e-06, "epoch": 0.22350674373795762, "percentage": 7.45, "elapsed_time": "0:53:02", "remaining_time": "10:58:58"} +{"current_steps": 349, "total_steps": 4671, "loss": 0.0988, "learning_rate": 7.457264957264958e-06, "epoch": 0.2241490044958253, "percentage": 7.47, "elapsed_time": "0:53:11", "remaining_time": "10:58:39"} +{"current_steps": 350, "total_steps": 4671, "loss": 0.1123, "learning_rate": 7.47863247863248e-06, "epoch": 0.224791265253693, "percentage": 7.49, "elapsed_time": "0:53:19", "remaining_time": "10:58:25"} +{"current_steps": 351, "total_steps": 4671, "loss": 0.1591, "learning_rate": 7.500000000000001e-06, "epoch": 0.2254335260115607, "percentage": 7.51, "elapsed_time": "0:53:28", "remaining_time": "10:58:10"} +{"current_steps": 352, "total_steps": 4671, "loss": 0.1442, "learning_rate": 7.521367521367522e-06, "epoch": 0.22607578676942838, "percentage": 7.54, "elapsed_time": "0:53:36", "remaining_time": "10:57:42"} +{"current_steps": 353, "total_steps": 4671, "loss": 0.2297, "learning_rate": 7.542735042735043e-06, "epoch": 0.22671804752729607, "percentage": 7.56, "elapsed_time": "0:53:45", "remaining_time": "10:57:36"} +{"current_steps": 354, "total_steps": 4671, "loss": 0.2574, "learning_rate": 7.564102564102564e-06, "epoch": 0.22736030828516376, "percentage": 7.58, "elapsed_time": "0:53:55", "remaining_time": "10:57:34"} +{"current_steps": 355, "total_steps": 4671, "loss": 0.0699, "learning_rate": 7.585470085470086e-06, "epoch": 0.22800256904303148, "percentage": 7.6, "elapsed_time": "0:54:03", "remaining_time": "10:57:16"} +{"current_steps": 356, "total_steps": 4671, "loss": 0.2293, "learning_rate": 7.606837606837607e-06, "epoch": 0.22864482980089917, "percentage": 7.62, "elapsed_time": "0:54:12", "remaining_time": "10:57:05"} +{"current_steps": 357, "total_steps": 4671, "loss": 0.1148, "learning_rate": 7.6282051282051286e-06, "epoch": 0.22928709055876687, "percentage": 7.64, "elapsed_time": "0:54:21", "remaining_time": "10:56:48"} +{"current_steps": 358, "total_steps": 4671, "loss": 0.1745, "learning_rate": 7.649572649572649e-06, "epoch": 0.22992935131663456, "percentage": 7.66, "elapsed_time": "0:54:29", "remaining_time": "10:56:29"} +{"current_steps": 359, "total_steps": 4671, "loss": 0.1167, "learning_rate": 7.670940170940172e-06, "epoch": 0.23057161207450225, "percentage": 7.69, "elapsed_time": "0:54:37", "remaining_time": "10:56:04"} +{"current_steps": 360, "total_steps": 4671, "loss": 0.2989, "learning_rate": 7.692307692307694e-06, "epoch": 0.23121387283236994, "percentage": 7.71, "elapsed_time": "0:54:46", "remaining_time": "10:55:50"} +{"current_steps": 361, "total_steps": 4671, "loss": 0.1445, "learning_rate": 7.713675213675215e-06, "epoch": 0.23185613359023763, "percentage": 7.73, "elapsed_time": "0:54:57", "remaining_time": "10:56:04"} +{"current_steps": 362, "total_steps": 4671, "loss": 0.0816, "learning_rate": 7.735042735042736e-06, "epoch": 0.23249839434810532, "percentage": 7.75, "elapsed_time": "0:55:06", "remaining_time": "10:55:58"} +{"current_steps": 363, "total_steps": 4671, "loss": 0.1191, "learning_rate": 7.756410256410258e-06, "epoch": 0.23314065510597304, "percentage": 7.77, "elapsed_time": "0:55:16", "remaining_time": "10:56:05"} +{"current_steps": 364, "total_steps": 4671, "loss": 0.2016, "learning_rate": 7.77777777777778e-06, "epoch": 0.23378291586384073, "percentage": 7.79, "elapsed_time": "0:55:24", "remaining_time": "10:55:33"} +{"current_steps": 365, "total_steps": 4671, "loss": 0.1679, "learning_rate": 7.7991452991453e-06, "epoch": 0.23442517662170842, "percentage": 7.81, "elapsed_time": "0:55:32", "remaining_time": "10:55:15"} +{"current_steps": 366, "total_steps": 4671, "loss": 0.1498, "learning_rate": 7.820512820512822e-06, "epoch": 0.2350674373795761, "percentage": 7.84, "elapsed_time": "0:55:41", "remaining_time": "10:55:02"} +{"current_steps": 367, "total_steps": 4671, "loss": 0.241, "learning_rate": 7.841880341880342e-06, "epoch": 0.2357096981374438, "percentage": 7.86, "elapsed_time": "0:55:50", "remaining_time": "10:54:48"} +{"current_steps": 368, "total_steps": 4671, "loss": 0.1087, "learning_rate": 7.863247863247863e-06, "epoch": 0.2363519588953115, "percentage": 7.88, "elapsed_time": "0:55:57", "remaining_time": "10:54:14"} +{"current_steps": 369, "total_steps": 4671, "loss": 0.2467, "learning_rate": 7.884615384615384e-06, "epoch": 0.23699421965317918, "percentage": 7.9, "elapsed_time": "0:56:07", "remaining_time": "10:54:19"} +{"current_steps": 370, "total_steps": 4671, "loss": 0.1898, "learning_rate": 7.905982905982906e-06, "epoch": 0.23763648041104687, "percentage": 7.92, "elapsed_time": "0:56:15", "remaining_time": "10:53:56"} +{"current_steps": 371, "total_steps": 4671, "loss": 0.154, "learning_rate": 7.927350427350427e-06, "epoch": 0.2382787411689146, "percentage": 7.94, "elapsed_time": "0:56:24", "remaining_time": "10:53:43"} +{"current_steps": 372, "total_steps": 4671, "loss": 0.0937, "learning_rate": 7.948717948717949e-06, "epoch": 0.23892100192678228, "percentage": 7.96, "elapsed_time": "0:56:31", "remaining_time": "10:53:18"} +{"current_steps": 373, "total_steps": 4671, "loss": 0.2295, "learning_rate": 7.970085470085472e-06, "epoch": 0.23956326268464997, "percentage": 7.99, "elapsed_time": "0:56:42", "remaining_time": "10:53:21"} +{"current_steps": 374, "total_steps": 4671, "loss": 0.2115, "learning_rate": 7.991452991452993e-06, "epoch": 0.24020552344251767, "percentage": 8.01, "elapsed_time": "0:56:51", "remaining_time": "10:53:17"} +{"current_steps": 375, "total_steps": 4671, "loss": 0.1014, "learning_rate": 8.012820512820515e-06, "epoch": 0.24084778420038536, "percentage": 8.03, "elapsed_time": "0:56:59", "remaining_time": "10:52:54"} +{"current_steps": 376, "total_steps": 4671, "loss": 0.1232, "learning_rate": 8.034188034188036e-06, "epoch": 0.24149004495825305, "percentage": 8.05, "elapsed_time": "0:57:07", "remaining_time": "10:52:31"} +{"current_steps": 377, "total_steps": 4671, "loss": 0.0986, "learning_rate": 8.055555555555557e-06, "epoch": 0.24213230571612074, "percentage": 8.07, "elapsed_time": "0:57:15", "remaining_time": "10:52:12"} +{"current_steps": 378, "total_steps": 4671, "loss": 0.0865, "learning_rate": 8.076923076923077e-06, "epoch": 0.24277456647398843, "percentage": 8.09, "elapsed_time": "0:57:23", "remaining_time": "10:51:46"} +{"current_steps": 379, "total_steps": 4671, "loss": 0.0863, "learning_rate": 8.098290598290598e-06, "epoch": 0.24341682723185612, "percentage": 8.11, "elapsed_time": "0:57:31", "remaining_time": "10:51:22"} +{"current_steps": 380, "total_steps": 4671, "loss": 0.2531, "learning_rate": 8.11965811965812e-06, "epoch": 0.24405908798972384, "percentage": 8.14, "elapsed_time": "0:57:41", "remaining_time": "10:51:25"} +{"current_steps": 381, "total_steps": 4671, "loss": 0.0693, "learning_rate": 8.141025641025641e-06, "epoch": 0.24470134874759153, "percentage": 8.16, "elapsed_time": "0:57:48", "remaining_time": "10:50:52"} +{"current_steps": 382, "total_steps": 4671, "loss": 0.0766, "learning_rate": 8.162393162393163e-06, "epoch": 0.24534360950545922, "percentage": 8.18, "elapsed_time": "0:57:56", "remaining_time": "10:50:31"} +{"current_steps": 383, "total_steps": 4671, "loss": 0.1995, "learning_rate": 8.183760683760684e-06, "epoch": 0.2459858702633269, "percentage": 8.2, "elapsed_time": "0:58:07", "remaining_time": "10:50:49"} +{"current_steps": 384, "total_steps": 4671, "loss": 0.2668, "learning_rate": 8.205128205128205e-06, "epoch": 0.2466281310211946, "percentage": 8.22, "elapsed_time": "0:58:17", "remaining_time": "10:50:51"} +{"current_steps": 385, "total_steps": 4671, "loss": 0.1309, "learning_rate": 8.226495726495727e-06, "epoch": 0.2472703917790623, "percentage": 8.24, "elapsed_time": "0:58:28", "remaining_time": "10:50:54"} +{"current_steps": 386, "total_steps": 4671, "loss": 0.1805, "learning_rate": 8.247863247863248e-06, "epoch": 0.24791265253692998, "percentage": 8.26, "elapsed_time": "0:58:37", "remaining_time": "10:50:48"} +{"current_steps": 387, "total_steps": 4671, "loss": 0.1901, "learning_rate": 8.26923076923077e-06, "epoch": 0.24855491329479767, "percentage": 8.29, "elapsed_time": "0:58:46", "remaining_time": "10:50:38"} +{"current_steps": 388, "total_steps": 4671, "loss": 0.1579, "learning_rate": 8.290598290598293e-06, "epoch": 0.2491971740526654, "percentage": 8.31, "elapsed_time": "0:58:55", "remaining_time": "10:50:25"} +{"current_steps": 389, "total_steps": 4671, "loss": 0.1258, "learning_rate": 8.311965811965812e-06, "epoch": 0.24983943481053308, "percentage": 8.33, "elapsed_time": "0:59:04", "remaining_time": "10:50:16"} +{"current_steps": 390, "total_steps": 4671, "loss": 0.126, "learning_rate": 8.333333333333334e-06, "epoch": 0.2504816955684008, "percentage": 8.35, "elapsed_time": "0:59:13", "remaining_time": "10:50:09"} +{"current_steps": 391, "total_steps": 4671, "loss": 0.1703, "learning_rate": 8.354700854700855e-06, "epoch": 0.25112395632626844, "percentage": 8.37, "elapsed_time": "0:59:24", "remaining_time": "10:50:13"} +{"current_steps": 392, "total_steps": 4671, "loss": 0.0974, "learning_rate": 8.376068376068377e-06, "epoch": 0.25176621708413616, "percentage": 8.39, "elapsed_time": "0:59:33", "remaining_time": "10:50:12"} +{"current_steps": 393, "total_steps": 4671, "loss": 0.0823, "learning_rate": 8.397435897435898e-06, "epoch": 0.2524084778420039, "percentage": 8.41, "elapsed_time": "0:59:40", "remaining_time": "10:49:40"} +{"current_steps": 394, "total_steps": 4671, "loss": 0.2007, "learning_rate": 8.41880341880342e-06, "epoch": 0.25305073859987154, "percentage": 8.44, "elapsed_time": "0:59:50", "remaining_time": "10:49:37"} +{"current_steps": 395, "total_steps": 4671, "loss": 0.2053, "learning_rate": 8.44017094017094e-06, "epoch": 0.25369299935773926, "percentage": 8.46, "elapsed_time": "0:59:57", "remaining_time": "10:49:07"} +{"current_steps": 396, "total_steps": 4671, "loss": 0.1839, "learning_rate": 8.461538461538462e-06, "epoch": 0.2543352601156069, "percentage": 8.48, "elapsed_time": "1:00:06", "remaining_time": "10:48:58"} +{"current_steps": 397, "total_steps": 4671, "loss": 0.1421, "learning_rate": 8.482905982905983e-06, "epoch": 0.25497752087347464, "percentage": 8.5, "elapsed_time": "1:00:17", "remaining_time": "10:49:04"} +{"current_steps": 398, "total_steps": 4671, "loss": 0.127, "learning_rate": 8.504273504273505e-06, "epoch": 0.2556197816313423, "percentage": 8.52, "elapsed_time": "1:00:25", "remaining_time": "10:48:44"} +{"current_steps": 399, "total_steps": 4671, "loss": 0.0642, "learning_rate": 8.525641025641026e-06, "epoch": 0.25626204238921, "percentage": 8.54, "elapsed_time": "1:00:33", "remaining_time": "10:48:24"} +{"current_steps": 400, "total_steps": 4671, "loss": 0.143, "learning_rate": 8.547008547008548e-06, "epoch": 0.25690430314707774, "percentage": 8.56, "elapsed_time": "1:00:42", "remaining_time": "10:48:08"} +{"current_steps": 401, "total_steps": 4671, "loss": 0.1223, "learning_rate": 8.568376068376069e-06, "epoch": 0.2575465639049454, "percentage": 8.58, "elapsed_time": "1:00:50", "remaining_time": "10:47:56"} +{"current_steps": 402, "total_steps": 4671, "loss": 0.0599, "learning_rate": 8.58974358974359e-06, "epoch": 0.2581888246628131, "percentage": 8.61, "elapsed_time": "1:00:58", "remaining_time": "10:47:26"} +{"current_steps": 403, "total_steps": 4671, "loss": 0.2149, "learning_rate": 8.611111111111112e-06, "epoch": 0.2588310854206808, "percentage": 8.63, "elapsed_time": "1:01:08", "remaining_time": "10:47:31"} +{"current_steps": 404, "total_steps": 4671, "loss": 0.076, "learning_rate": 8.632478632478633e-06, "epoch": 0.2594733461785485, "percentage": 8.65, "elapsed_time": "1:01:16", "remaining_time": "10:47:16"} +{"current_steps": 405, "total_steps": 4671, "loss": 0.0734, "learning_rate": 8.653846153846155e-06, "epoch": 0.26011560693641617, "percentage": 8.67, "elapsed_time": "1:01:24", "remaining_time": "10:46:52"} +{"current_steps": 406, "total_steps": 4671, "loss": 0.1068, "learning_rate": 8.675213675213676e-06, "epoch": 0.2607578676942839, "percentage": 8.69, "elapsed_time": "1:01:33", "remaining_time": "10:46:37"} +{"current_steps": 407, "total_steps": 4671, "loss": 0.1121, "learning_rate": 8.696581196581197e-06, "epoch": 0.26140012845215155, "percentage": 8.71, "elapsed_time": "1:01:42", "remaining_time": "10:46:27"} +{"current_steps": 408, "total_steps": 4671, "loss": 0.2213, "learning_rate": 8.717948717948719e-06, "epoch": 0.26204238921001927, "percentage": 8.73, "elapsed_time": "1:01:50", "remaining_time": "10:46:12"} +{"current_steps": 409, "total_steps": 4671, "loss": 0.1954, "learning_rate": 8.73931623931624e-06, "epoch": 0.262684649967887, "percentage": 8.76, "elapsed_time": "1:01:59", "remaining_time": "10:45:57"} +{"current_steps": 410, "total_steps": 4671, "loss": 0.1972, "learning_rate": 8.760683760683762e-06, "epoch": 0.26332691072575465, "percentage": 8.78, "elapsed_time": "1:02:08", "remaining_time": "10:45:53"} +{"current_steps": 411, "total_steps": 4671, "loss": 0.1226, "learning_rate": 8.782051282051283e-06, "epoch": 0.26396917148362237, "percentage": 8.8, "elapsed_time": "1:02:17", "remaining_time": "10:45:35"} +{"current_steps": 412, "total_steps": 4671, "loss": 0.0793, "learning_rate": 8.803418803418804e-06, "epoch": 0.26461143224149003, "percentage": 8.82, "elapsed_time": "1:02:25", "remaining_time": "10:45:16"} +{"current_steps": 413, "total_steps": 4671, "loss": 0.1536, "learning_rate": 8.824786324786326e-06, "epoch": 0.26525369299935775, "percentage": 8.84, "elapsed_time": "1:02:34", "remaining_time": "10:45:13"} +{"current_steps": 414, "total_steps": 4671, "loss": 0.0919, "learning_rate": 8.846153846153847e-06, "epoch": 0.2658959537572254, "percentage": 8.86, "elapsed_time": "1:02:43", "remaining_time": "10:44:53"} +{"current_steps": 415, "total_steps": 4671, "loss": 0.1875, "learning_rate": 8.867521367521369e-06, "epoch": 0.26653821451509313, "percentage": 8.88, "elapsed_time": "1:02:52", "remaining_time": "10:44:49"} +{"current_steps": 416, "total_steps": 4671, "loss": 0.1459, "learning_rate": 8.888888888888888e-06, "epoch": 0.26718047527296085, "percentage": 8.91, "elapsed_time": "1:03:01", "remaining_time": "10:44:39"} +{"current_steps": 417, "total_steps": 4671, "loss": 0.1762, "learning_rate": 8.910256410256411e-06, "epoch": 0.2678227360308285, "percentage": 8.93, "elapsed_time": "1:03:10", "remaining_time": "10:44:30"} +{"current_steps": 418, "total_steps": 4671, "loss": 0.1412, "learning_rate": 8.931623931623933e-06, "epoch": 0.26846499678869623, "percentage": 8.95, "elapsed_time": "1:03:19", "remaining_time": "10:44:14"} +{"current_steps": 419, "total_steps": 4671, "loss": 0.0898, "learning_rate": 8.952991452991454e-06, "epoch": 0.2691072575465639, "percentage": 8.97, "elapsed_time": "1:03:25", "remaining_time": "10:43:42"} +{"current_steps": 420, "total_steps": 4671, "loss": 0.1079, "learning_rate": 8.974358974358976e-06, "epoch": 0.2697495183044316, "percentage": 8.99, "elapsed_time": "1:03:35", "remaining_time": "10:43:37"} +{"current_steps": 421, "total_steps": 4671, "loss": 0.2514, "learning_rate": 8.995726495726497e-06, "epoch": 0.2703917790622993, "percentage": 9.01, "elapsed_time": "1:03:45", "remaining_time": "10:43:43"} +{"current_steps": 422, "total_steps": 4671, "loss": 0.1504, "learning_rate": 9.017094017094018e-06, "epoch": 0.271034039820167, "percentage": 9.03, "elapsed_time": "1:03:54", "remaining_time": "10:43:32"} +{"current_steps": 423, "total_steps": 4671, "loss": 0.1421, "learning_rate": 9.03846153846154e-06, "epoch": 0.27167630057803466, "percentage": 9.06, "elapsed_time": "1:04:03", "remaining_time": "10:43:17"} +{"current_steps": 424, "total_steps": 4671, "loss": 0.1812, "learning_rate": 9.059829059829061e-06, "epoch": 0.2723185613359024, "percentage": 9.08, "elapsed_time": "1:04:13", "remaining_time": "10:43:14"} +{"current_steps": 425, "total_steps": 4671, "loss": 0.1626, "learning_rate": 9.081196581196583e-06, "epoch": 0.2729608220937701, "percentage": 9.1, "elapsed_time": "1:04:21", "remaining_time": "10:42:59"} +{"current_steps": 426, "total_steps": 4671, "loss": 0.131, "learning_rate": 9.102564102564104e-06, "epoch": 0.27360308285163776, "percentage": 9.12, "elapsed_time": "1:04:31", "remaining_time": "10:42:56"} +{"current_steps": 427, "total_steps": 4671, "loss": 0.0908, "learning_rate": 9.123931623931624e-06, "epoch": 0.2742453436095055, "percentage": 9.14, "elapsed_time": "1:04:39", "remaining_time": "10:42:37"} +{"current_steps": 428, "total_steps": 4671, "loss": 0.1905, "learning_rate": 9.145299145299145e-06, "epoch": 0.27488760436737314, "percentage": 9.16, "elapsed_time": "1:04:50", "remaining_time": "10:42:50"} +{"current_steps": 429, "total_steps": 4671, "loss": 0.2658, "learning_rate": 9.166666666666666e-06, "epoch": 0.27552986512524086, "percentage": 9.18, "elapsed_time": "1:04:59", "remaining_time": "10:42:35"} +{"current_steps": 430, "total_steps": 4671, "loss": 0.1844, "learning_rate": 9.188034188034188e-06, "epoch": 0.2761721258831085, "percentage": 9.21, "elapsed_time": "1:05:08", "remaining_time": "10:42:26"} +{"current_steps": 431, "total_steps": 4671, "loss": 0.1339, "learning_rate": 9.20940170940171e-06, "epoch": 0.27681438664097624, "percentage": 9.23, "elapsed_time": "1:05:16", "remaining_time": "10:42:09"} +{"current_steps": 432, "total_steps": 4671, "loss": 0.1428, "learning_rate": 9.230769230769232e-06, "epoch": 0.2774566473988439, "percentage": 9.25, "elapsed_time": "1:05:26", "remaining_time": "10:42:12"} +{"current_steps": 433, "total_steps": 4671, "loss": 0.043, "learning_rate": 9.252136752136754e-06, "epoch": 0.2780989081567116, "percentage": 9.27, "elapsed_time": "1:05:34", "remaining_time": "10:41:44"} +{"current_steps": 434, "total_steps": 4671, "loss": 0.2641, "learning_rate": 9.273504273504275e-06, "epoch": 0.27874116891457934, "percentage": 9.29, "elapsed_time": "1:05:44", "remaining_time": "10:41:47"} +{"current_steps": 435, "total_steps": 4671, "loss": 0.0514, "learning_rate": 9.294871794871796e-06, "epoch": 0.279383429672447, "percentage": 9.31, "elapsed_time": "1:05:52", "remaining_time": "10:41:27"} +{"current_steps": 436, "total_steps": 4671, "loss": 0.0685, "learning_rate": 9.316239316239318e-06, "epoch": 0.2800256904303147, "percentage": 9.33, "elapsed_time": "1:06:00", "remaining_time": "10:41:07"} +{"current_steps": 437, "total_steps": 4671, "loss": 0.1264, "learning_rate": 9.33760683760684e-06, "epoch": 0.2806679511881824, "percentage": 9.36, "elapsed_time": "1:06:08", "remaining_time": "10:40:51"} +{"current_steps": 438, "total_steps": 4671, "loss": 0.0915, "learning_rate": 9.358974358974359e-06, "epoch": 0.2813102119460501, "percentage": 9.38, "elapsed_time": "1:06:15", "remaining_time": "10:40:25"} +{"current_steps": 439, "total_steps": 4671, "loss": 0.1432, "learning_rate": 9.38034188034188e-06, "epoch": 0.28195247270391777, "percentage": 9.4, "elapsed_time": "1:06:24", "remaining_time": "10:40:10"} +{"current_steps": 440, "total_steps": 4671, "loss": 0.092, "learning_rate": 9.401709401709402e-06, "epoch": 0.2825947334617855, "percentage": 9.42, "elapsed_time": "1:06:33", "remaining_time": "10:40:02"} +{"current_steps": 441, "total_steps": 4671, "loss": 0.2341, "learning_rate": 9.423076923076923e-06, "epoch": 0.2832369942196532, "percentage": 9.44, "elapsed_time": "1:06:43", "remaining_time": "10:39:58"} +{"current_steps": 442, "total_steps": 4671, "loss": 0.0877, "learning_rate": 9.444444444444445e-06, "epoch": 0.28387925497752087, "percentage": 9.46, "elapsed_time": "1:06:53", "remaining_time": "10:39:58"} +{"current_steps": 443, "total_steps": 4671, "loss": 0.1248, "learning_rate": 9.465811965811966e-06, "epoch": 0.2845215157353886, "percentage": 9.48, "elapsed_time": "1:07:01", "remaining_time": "10:39:40"} +{"current_steps": 444, "total_steps": 4671, "loss": 0.1206, "learning_rate": 9.487179487179487e-06, "epoch": 0.28516377649325625, "percentage": 9.51, "elapsed_time": "1:07:10", "remaining_time": "10:39:34"} +{"current_steps": 445, "total_steps": 4671, "loss": 0.066, "learning_rate": 9.508547008547009e-06, "epoch": 0.28580603725112397, "percentage": 9.53, "elapsed_time": "1:07:17", "remaining_time": "10:39:04"} +{"current_steps": 446, "total_steps": 4671, "loss": 0.2148, "learning_rate": 9.52991452991453e-06, "epoch": 0.28644829800899163, "percentage": 9.55, "elapsed_time": "1:07:28", "remaining_time": "10:39:15"} +{"current_steps": 447, "total_steps": 4671, "loss": 0.1851, "learning_rate": 9.551282051282053e-06, "epoch": 0.28709055876685935, "percentage": 9.57, "elapsed_time": "1:07:37", "remaining_time": "10:39:06"} +{"current_steps": 448, "total_steps": 4671, "loss": 0.1489, "learning_rate": 9.572649572649575e-06, "epoch": 0.287732819524727, "percentage": 9.59, "elapsed_time": "1:07:46", "remaining_time": "10:38:56"} +{"current_steps": 449, "total_steps": 4671, "loss": 0.1734, "learning_rate": 9.594017094017094e-06, "epoch": 0.28837508028259473, "percentage": 9.61, "elapsed_time": "1:07:55", "remaining_time": "10:38:40"} +{"current_steps": 450, "total_steps": 4671, "loss": 0.126, "learning_rate": 9.615384615384616e-06, "epoch": 0.28901734104046245, "percentage": 9.63, "elapsed_time": "1:08:04", "remaining_time": "10:38:36"} +{"current_steps": 451, "total_steps": 4671, "loss": 0.152, "learning_rate": 9.636752136752137e-06, "epoch": 0.2896596017983301, "percentage": 9.66, "elapsed_time": "1:08:13", "remaining_time": "10:38:21"} +{"current_steps": 452, "total_steps": 4671, "loss": 0.2028, "learning_rate": 9.658119658119659e-06, "epoch": 0.29030186255619783, "percentage": 9.68, "elapsed_time": "1:08:23", "remaining_time": "10:38:22"} +{"current_steps": 453, "total_steps": 4671, "loss": 0.2632, "learning_rate": 9.67948717948718e-06, "epoch": 0.2909441233140655, "percentage": 9.7, "elapsed_time": "1:08:34", "remaining_time": "10:38:35"} +{"current_steps": 454, "total_steps": 4671, "loss": 0.2079, "learning_rate": 9.700854700854701e-06, "epoch": 0.2915863840719332, "percentage": 9.72, "elapsed_time": "1:08:45", "remaining_time": "10:38:35"} +{"current_steps": 455, "total_steps": 4671, "loss": 0.0589, "learning_rate": 9.722222222222223e-06, "epoch": 0.2922286448298009, "percentage": 9.74, "elapsed_time": "1:08:52", "remaining_time": "10:38:13"} +{"current_steps": 456, "total_steps": 4671, "loss": 0.1866, "learning_rate": 9.743589743589744e-06, "epoch": 0.2928709055876686, "percentage": 9.76, "elapsed_time": "1:09:00", "remaining_time": "10:37:56"} +{"current_steps": 457, "total_steps": 4671, "loss": 0.0927, "learning_rate": 9.764957264957265e-06, "epoch": 0.2935131663455363, "percentage": 9.78, "elapsed_time": "1:09:09", "remaining_time": "10:37:42"} +{"current_steps": 458, "total_steps": 4671, "loss": 0.0902, "learning_rate": 9.786324786324787e-06, "epoch": 0.294155427103404, "percentage": 9.81, "elapsed_time": "1:09:18", "remaining_time": "10:37:35"} +{"current_steps": 459, "total_steps": 4671, "loss": 0.1254, "learning_rate": 9.807692307692308e-06, "epoch": 0.2947976878612717, "percentage": 9.83, "elapsed_time": "1:09:27", "remaining_time": "10:37:25"} +{"current_steps": 460, "total_steps": 4671, "loss": 0.0994, "learning_rate": 9.82905982905983e-06, "epoch": 0.29543994861913936, "percentage": 9.85, "elapsed_time": "1:09:37", "remaining_time": "10:37:20"} +{"current_steps": 461, "total_steps": 4671, "loss": 0.1972, "learning_rate": 9.850427350427351e-06, "epoch": 0.2960822093770071, "percentage": 9.87, "elapsed_time": "1:09:46", "remaining_time": "10:37:09"} +{"current_steps": 462, "total_steps": 4671, "loss": 0.1233, "learning_rate": 9.871794871794872e-06, "epoch": 0.29672447013487474, "percentage": 9.89, "elapsed_time": "1:09:55", "remaining_time": "10:37:05"} +{"current_steps": 463, "total_steps": 4671, "loss": 0.1769, "learning_rate": 9.893162393162394e-06, "epoch": 0.29736673089274246, "percentage": 9.91, "elapsed_time": "1:10:07", "remaining_time": "10:37:17"} +{"current_steps": 464, "total_steps": 4671, "loss": 0.1629, "learning_rate": 9.914529914529915e-06, "epoch": 0.2980089916506101, "percentage": 9.93, "elapsed_time": "1:10:15", "remaining_time": "10:36:57"} +{"current_steps": 465, "total_steps": 4671, "loss": 0.207, "learning_rate": 9.935897435897437e-06, "epoch": 0.29865125240847784, "percentage": 9.96, "elapsed_time": "1:10:23", "remaining_time": "10:36:44"} +{"current_steps": 466, "total_steps": 4671, "loss": 0.1591, "learning_rate": 9.957264957264958e-06, "epoch": 0.29929351316634556, "percentage": 9.98, "elapsed_time": "1:10:34", "remaining_time": "10:36:46"} +{"current_steps": 467, "total_steps": 4671, "loss": 0.1194, "learning_rate": 9.97863247863248e-06, "epoch": 0.2999357739242132, "percentage": 10.0, "elapsed_time": "1:10:42", "remaining_time": "10:36:33"} +{"current_steps": 468, "total_steps": 4671, "loss": 0.1853, "learning_rate": 1e-05, "epoch": 0.30057803468208094, "percentage": 10.02, "elapsed_time": "1:10:51", "remaining_time": "10:36:17"} +{"current_steps": 469, "total_steps": 4671, "loss": 0.1952, "learning_rate": 9.99999860324269e-06, "epoch": 0.3012202954399486, "percentage": 10.04, "elapsed_time": "1:11:02", "remaining_time": "10:36:33"} +{"current_steps": 470, "total_steps": 4671, "loss": 0.1872, "learning_rate": 9.99999441297153e-06, "epoch": 0.3018625561978163, "percentage": 10.06, "elapsed_time": "1:11:12", "remaining_time": "10:36:24"} +{"current_steps": 471, "total_steps": 4671, "loss": 0.1733, "learning_rate": 9.999987429188867e-06, "epoch": 0.302504816955684, "percentage": 10.08, "elapsed_time": "1:11:21", "remaining_time": "10:36:15"} +{"current_steps": 472, "total_steps": 4671, "loss": 0.2078, "learning_rate": 9.999977651898602e-06, "epoch": 0.3031470777135517, "percentage": 10.1, "elapsed_time": "1:11:30", "remaining_time": "10:36:12"} +{"current_steps": 473, "total_steps": 4671, "loss": 0.1717, "learning_rate": 9.999965081106198e-06, "epoch": 0.3037893384714194, "percentage": 10.13, "elapsed_time": "1:11:40", "remaining_time": "10:36:04"} +{"current_steps": 474, "total_steps": 4671, "loss": 0.1934, "learning_rate": 9.999949716818677e-06, "epoch": 0.3044315992292871, "percentage": 10.15, "elapsed_time": "1:11:50", "remaining_time": "10:36:10"} +{"current_steps": 475, "total_steps": 4671, "loss": 0.1328, "learning_rate": 9.999931559044624e-06, "epoch": 0.3050738599871548, "percentage": 10.17, "elapsed_time": "1:12:01", "remaining_time": "10:36:13"} +{"current_steps": 476, "total_steps": 4671, "loss": 0.0993, "learning_rate": 9.999910607794183e-06, "epoch": 0.30571612074502247, "percentage": 10.19, "elapsed_time": "1:12:10", "remaining_time": "10:36:06"} +{"current_steps": 477, "total_steps": 4671, "loss": 0.221, "learning_rate": 9.99988686307906e-06, "epoch": 0.3063583815028902, "percentage": 10.21, "elapsed_time": "1:12:21", "remaining_time": "10:36:12"} +{"current_steps": 478, "total_steps": 4671, "loss": 0.0828, "learning_rate": 9.99986032491252e-06, "epoch": 0.30700064226075785, "percentage": 10.23, "elapsed_time": "1:12:30", "remaining_time": "10:35:58"} +{"current_steps": 479, "total_steps": 4671, "loss": 0.1801, "learning_rate": 9.999830993309394e-06, "epoch": 0.30764290301862557, "percentage": 10.25, "elapsed_time": "1:12:38", "remaining_time": "10:35:48"} +{"current_steps": 480, "total_steps": 4671, "loss": 0.1201, "learning_rate": 9.999798868286064e-06, "epoch": 0.30828516377649323, "percentage": 10.28, "elapsed_time": "1:12:47", "remaining_time": "10:35:34"} +{"current_steps": 481, "total_steps": 4671, "loss": 0.0773, "learning_rate": 9.999763949860483e-06, "epoch": 0.30892742453436095, "percentage": 10.3, "elapsed_time": "1:12:54", "remaining_time": "10:35:08"} +{"current_steps": 482, "total_steps": 4671, "loss": 0.1361, "learning_rate": 9.999726238052158e-06, "epoch": 0.30956968529222867, "percentage": 10.32, "elapsed_time": "1:13:04", "remaining_time": "10:35:05"} +{"current_steps": 483, "total_steps": 4671, "loss": 0.1687, "learning_rate": 9.999685732882158e-06, "epoch": 0.31021194605009633, "percentage": 10.34, "elapsed_time": "1:13:13", "remaining_time": "10:34:55"} +{"current_steps": 484, "total_steps": 4671, "loss": 0.1116, "learning_rate": 9.999642434373115e-06, "epoch": 0.31085420680796405, "percentage": 10.36, "elapsed_time": "1:13:21", "remaining_time": "10:34:39"} +{"current_steps": 485, "total_steps": 4671, "loss": 0.1323, "learning_rate": 9.999596342549218e-06, "epoch": 0.3114964675658317, "percentage": 10.38, "elapsed_time": "1:13:31", "remaining_time": "10:34:31"} +{"current_steps": 486, "total_steps": 4671, "loss": 0.1274, "learning_rate": 9.999547457436221e-06, "epoch": 0.31213872832369943, "percentage": 10.4, "elapsed_time": "1:13:41", "remaining_time": "10:34:32"} +{"current_steps": 487, "total_steps": 4671, "loss": 0.1171, "learning_rate": 9.999495779061436e-06, "epoch": 0.3127809890815671, "percentage": 10.43, "elapsed_time": "1:13:50", "remaining_time": "10:34:21"} +{"current_steps": 488, "total_steps": 4671, "loss": 0.0891, "learning_rate": 9.999441307453734e-06, "epoch": 0.3134232498394348, "percentage": 10.45, "elapsed_time": "1:13:57", "remaining_time": "10:33:54"} +{"current_steps": 489, "total_steps": 4671, "loss": 0.1619, "learning_rate": 9.99938404264355e-06, "epoch": 0.3140655105973025, "percentage": 10.47, "elapsed_time": "1:14:08", "remaining_time": "10:34:02"} +{"current_steps": 490, "total_steps": 4671, "loss": 0.133, "learning_rate": 9.999323984662876e-06, "epoch": 0.3147077713551702, "percentage": 10.49, "elapsed_time": "1:14:18", "remaining_time": "10:34:03"} +{"current_steps": 491, "total_steps": 4671, "loss": 0.101, "learning_rate": 9.999261133545269e-06, "epoch": 0.3153500321130379, "percentage": 10.51, "elapsed_time": "1:14:27", "remaining_time": "10:33:55"} +{"current_steps": 492, "total_steps": 4671, "loss": 0.1172, "learning_rate": 9.999195489325842e-06, "epoch": 0.3159922928709056, "percentage": 10.53, "elapsed_time": "1:14:37", "remaining_time": "10:33:48"} +{"current_steps": 493, "total_steps": 4671, "loss": 0.1806, "learning_rate": 9.999127052041273e-06, "epoch": 0.3166345536287733, "percentage": 10.55, "elapsed_time": "1:14:48", "remaining_time": "10:34:02"} +{"current_steps": 494, "total_steps": 4671, "loss": 0.0646, "learning_rate": 9.999055821729797e-06, "epoch": 0.31727681438664096, "percentage": 10.58, "elapsed_time": "1:14:57", "remaining_time": "10:33:48"} +{"current_steps": 495, "total_steps": 4671, "loss": 0.1621, "learning_rate": 9.99898179843121e-06, "epoch": 0.3179190751445087, "percentage": 10.6, "elapsed_time": "1:15:06", "remaining_time": "10:33:42"} +{"current_steps": 496, "total_steps": 4671, "loss": 0.1481, "learning_rate": 9.99890498218687e-06, "epoch": 0.31856133590237634, "percentage": 10.62, "elapsed_time": "1:15:16", "remaining_time": "10:33:40"} +{"current_steps": 497, "total_steps": 4671, "loss": 0.1925, "learning_rate": 9.998825373039693e-06, "epoch": 0.31920359666024406, "percentage": 10.64, "elapsed_time": "1:15:27", "remaining_time": "10:33:43"} +{"current_steps": 498, "total_steps": 4671, "loss": 0.1963, "learning_rate": 9.998742971034159e-06, "epoch": 0.3198458574181118, "percentage": 10.66, "elapsed_time": "1:15:36", "remaining_time": "10:33:35"} +{"current_steps": 499, "total_steps": 4671, "loss": 0.1405, "learning_rate": 9.998657776216304e-06, "epoch": 0.32048811817597944, "percentage": 10.68, "elapsed_time": "1:15:45", "remaining_time": "10:33:23"} +{"current_steps": 500, "total_steps": 4671, "loss": 0.116, "learning_rate": 9.998569788633727e-06, "epoch": 0.32113037893384716, "percentage": 10.7, "elapsed_time": "1:15:53", "remaining_time": "10:33:09"} +{"current_steps": 501, "total_steps": 4671, "loss": 0.2072, "learning_rate": 9.998479008335589e-06, "epoch": 0.3217726396917148, "percentage": 10.73, "elapsed_time": "1:16:04", "remaining_time": "10:33:11"} +{"current_steps": 502, "total_steps": 4671, "loss": 0.2542, "learning_rate": 9.998385435372607e-06, "epoch": 0.32241490044958254, "percentage": 10.75, "elapsed_time": "1:16:15", "remaining_time": "10:33:14"} +{"current_steps": 503, "total_steps": 4671, "loss": 0.1492, "learning_rate": 9.998289069797062e-06, "epoch": 0.3230571612074502, "percentage": 10.77, "elapsed_time": "1:16:23", "remaining_time": "10:32:59"} +{"current_steps": 504, "total_steps": 4671, "loss": 0.1391, "learning_rate": 9.998189911662793e-06, "epoch": 0.3236994219653179, "percentage": 10.79, "elapsed_time": "1:16:31", "remaining_time": "10:32:43"} +{"current_steps": 505, "total_steps": 4671, "loss": 0.3024, "learning_rate": 9.998087961025199e-06, "epoch": 0.3243416827231856, "percentage": 10.81, "elapsed_time": "1:16:43", "remaining_time": "10:32:53"} +{"current_steps": 506, "total_steps": 4671, "loss": 0.1833, "learning_rate": 9.997983217941242e-06, "epoch": 0.3249839434810533, "percentage": 10.83, "elapsed_time": "1:16:52", "remaining_time": "10:32:44"} +{"current_steps": 507, "total_steps": 4671, "loss": 0.2888, "learning_rate": 9.99787568246944e-06, "epoch": 0.325626204238921, "percentage": 10.85, "elapsed_time": "1:17:02", "remaining_time": "10:32:40"} +{"current_steps": 508, "total_steps": 4671, "loss": 0.151, "learning_rate": 9.997765354669877e-06, "epoch": 0.3262684649967887, "percentage": 10.88, "elapsed_time": "1:17:12", "remaining_time": "10:32:46"} +{"current_steps": 509, "total_steps": 4671, "loss": 0.1005, "learning_rate": 9.997652234604189e-06, "epoch": 0.3269107257546564, "percentage": 10.9, "elapsed_time": "1:17:20", "remaining_time": "10:32:26"} +{"current_steps": 510, "total_steps": 4671, "loss": 0.1621, "learning_rate": 9.99753632233558e-06, "epoch": 0.32755298651252407, "percentage": 10.92, "elapsed_time": "1:17:30", "remaining_time": "10:32:19"} +{"current_steps": 511, "total_steps": 4671, "loss": 0.1515, "learning_rate": 9.997417617928807e-06, "epoch": 0.3281952472703918, "percentage": 10.94, "elapsed_time": "1:17:40", "remaining_time": "10:32:19"} +{"current_steps": 512, "total_steps": 4671, "loss": 0.2665, "learning_rate": 9.997296121450195e-06, "epoch": 0.32883750802825945, "percentage": 10.96, "elapsed_time": "1:17:49", "remaining_time": "10:32:12"} +{"current_steps": 513, "total_steps": 4671, "loss": 0.1726, "learning_rate": 9.99717183296762e-06, "epoch": 0.32947976878612717, "percentage": 10.98, "elapsed_time": "1:17:58", "remaining_time": "10:32:02"} +{"current_steps": 514, "total_steps": 4671, "loss": 0.0524, "learning_rate": 9.997044752550526e-06, "epoch": 0.3301220295439949, "percentage": 11.0, "elapsed_time": "1:18:06", "remaining_time": "10:31:39"} +{"current_steps": 515, "total_steps": 4671, "loss": 0.1274, "learning_rate": 9.996914880269913e-06, "epoch": 0.33076429030186255, "percentage": 11.03, "elapsed_time": "1:18:14", "remaining_time": "10:31:22"} +{"current_steps": 516, "total_steps": 4671, "loss": 0.0897, "learning_rate": 9.996782216198337e-06, "epoch": 0.33140655105973027, "percentage": 11.05, "elapsed_time": "1:18:23", "remaining_time": "10:31:15"} +{"current_steps": 517, "total_steps": 4671, "loss": 0.0846, "learning_rate": 9.996646760409923e-06, "epoch": 0.33204881181759793, "percentage": 11.07, "elapsed_time": "1:18:31", "remaining_time": "10:30:55"} +{"current_steps": 518, "total_steps": 4671, "loss": 0.1782, "learning_rate": 9.996508512980346e-06, "epoch": 0.33269107257546565, "percentage": 11.09, "elapsed_time": "1:18:41", "remaining_time": "10:30:55"} +{"current_steps": 519, "total_steps": 4671, "loss": 0.151, "learning_rate": 9.996367473986848e-06, "epoch": 0.3333333333333333, "percentage": 11.11, "elapsed_time": "1:18:52", "remaining_time": "10:30:56"} +{"current_steps": 520, "total_steps": 4671, "loss": 0.069, "learning_rate": 9.996223643508227e-06, "epoch": 0.33397559409120103, "percentage": 11.13, "elapsed_time": "1:19:00", "remaining_time": "10:30:41"} +{"current_steps": 521, "total_steps": 4671, "loss": 0.1416, "learning_rate": 9.996077021624844e-06, "epoch": 0.3346178548490687, "percentage": 11.15, "elapsed_time": "1:19:08", "remaining_time": "10:30:27"} +{"current_steps": 522, "total_steps": 4671, "loss": 0.0903, "learning_rate": 9.995927608418612e-06, "epoch": 0.3352601156069364, "percentage": 11.18, "elapsed_time": "1:19:17", "remaining_time": "10:30:16"} +{"current_steps": 523, "total_steps": 4671, "loss": 0.1925, "learning_rate": 9.995775403973011e-06, "epoch": 0.33590237636480413, "percentage": 11.2, "elapsed_time": "1:19:27", "remaining_time": "10:30:11"} +{"current_steps": 524, "total_steps": 4671, "loss": 0.3281, "learning_rate": 9.99562040837308e-06, "epoch": 0.3365446371226718, "percentage": 11.22, "elapsed_time": "1:19:38", "remaining_time": "10:30:18"} +{"current_steps": 525, "total_steps": 4671, "loss": 0.073, "learning_rate": 9.995462621705414e-06, "epoch": 0.3371868978805395, "percentage": 11.24, "elapsed_time": "1:19:46", "remaining_time": "10:29:56"} +{"current_steps": 526, "total_steps": 4671, "loss": 0.1892, "learning_rate": 9.995302044058167e-06, "epoch": 0.3378291586384072, "percentage": 11.26, "elapsed_time": "1:19:54", "remaining_time": "10:29:40"} +{"current_steps": 527, "total_steps": 4671, "loss": 0.2016, "learning_rate": 9.995138675521058e-06, "epoch": 0.3384714193962749, "percentage": 11.28, "elapsed_time": "1:20:01", "remaining_time": "10:29:15"} +{"current_steps": 528, "total_steps": 4671, "loss": 0.1231, "learning_rate": 9.99497251618536e-06, "epoch": 0.33911368015414256, "percentage": 11.3, "elapsed_time": "1:20:10", "remaining_time": "10:29:08"} +{"current_steps": 529, "total_steps": 4671, "loss": 0.103, "learning_rate": 9.994803566143904e-06, "epoch": 0.3397559409120103, "percentage": 11.33, "elapsed_time": "1:20:18", "remaining_time": "10:28:48"} +{"current_steps": 530, "total_steps": 4671, "loss": 0.1974, "learning_rate": 9.994631825491086e-06, "epoch": 0.340398201669878, "percentage": 11.35, "elapsed_time": "1:20:29", "remaining_time": "10:28:54"} +{"current_steps": 531, "total_steps": 4671, "loss": 0.1228, "learning_rate": 9.994457294322858e-06, "epoch": 0.34104046242774566, "percentage": 11.37, "elapsed_time": "1:20:40", "remaining_time": "10:28:56"} +{"current_steps": 532, "total_steps": 4671, "loss": 0.1668, "learning_rate": 9.994279972736729e-06, "epoch": 0.3416827231856134, "percentage": 11.39, "elapsed_time": "1:20:50", "remaining_time": "10:28:56"} +{"current_steps": 533, "total_steps": 4671, "loss": 0.0912, "learning_rate": 9.99409986083177e-06, "epoch": 0.34232498394348104, "percentage": 11.41, "elapsed_time": "1:20:58", "remaining_time": "10:28:39"} +{"current_steps": 534, "total_steps": 4671, "loss": 0.0585, "learning_rate": 9.993916958708612e-06, "epoch": 0.34296724470134876, "percentage": 11.43, "elapsed_time": "1:21:06", "remaining_time": "10:28:22"} +{"current_steps": 535, "total_steps": 4671, "loss": 0.2233, "learning_rate": 9.99373126646944e-06, "epoch": 0.3436095054592164, "percentage": 11.45, "elapsed_time": "1:21:15", "remaining_time": "10:28:13"} +{"current_steps": 536, "total_steps": 4671, "loss": 0.1869, "learning_rate": 9.993542784218002e-06, "epoch": 0.34425176621708414, "percentage": 11.48, "elapsed_time": "1:21:27", "remaining_time": "10:28:25"} +{"current_steps": 537, "total_steps": 4671, "loss": 0.1879, "learning_rate": 9.993351512059603e-06, "epoch": 0.3448940269749518, "percentage": 11.5, "elapsed_time": "1:21:37", "remaining_time": "10:28:18"} +{"current_steps": 538, "total_steps": 4671, "loss": 0.2229, "learning_rate": 9.99315745010111e-06, "epoch": 0.3455362877328195, "percentage": 11.52, "elapsed_time": "1:21:44", "remaining_time": "10:27:59"} +{"current_steps": 539, "total_steps": 4671, "loss": 0.1278, "learning_rate": 9.992960598450942e-06, "epoch": 0.34617854849068724, "percentage": 11.54, "elapsed_time": "1:21:52", "remaining_time": "10:27:38"} +{"current_steps": 540, "total_steps": 4671, "loss": 0.1574, "learning_rate": 9.992760957219083e-06, "epoch": 0.3468208092485549, "percentage": 11.56, "elapsed_time": "1:22:00", "remaining_time": "10:27:24"} +{"current_steps": 541, "total_steps": 4671, "loss": 0.1062, "learning_rate": 9.992558526517072e-06, "epoch": 0.3474630700064226, "percentage": 11.58, "elapsed_time": "1:22:09", "remaining_time": "10:27:10"} +{"current_steps": 542, "total_steps": 4671, "loss": 0.191, "learning_rate": 9.992353306458009e-06, "epoch": 0.3481053307642903, "percentage": 11.6, "elapsed_time": "1:22:19", "remaining_time": "10:27:07"} +{"current_steps": 543, "total_steps": 4671, "loss": 0.1661, "learning_rate": 9.992145297156551e-06, "epoch": 0.348747591522158, "percentage": 11.62, "elapsed_time": "1:22:26", "remaining_time": "10:26:46"} +{"current_steps": 544, "total_steps": 4671, "loss": 0.1372, "learning_rate": 9.991934498728913e-06, "epoch": 0.34938985228002567, "percentage": 11.65, "elapsed_time": "1:22:36", "remaining_time": "10:26:39"} +{"current_steps": 545, "total_steps": 4671, "loss": 0.1956, "learning_rate": 9.991720911292867e-06, "epoch": 0.3500321130378934, "percentage": 11.67, "elapsed_time": "1:22:45", "remaining_time": "10:26:33"} +{"current_steps": 546, "total_steps": 4671, "loss": 0.1525, "learning_rate": 9.991504534967746e-06, "epoch": 0.35067437379576105, "percentage": 11.69, "elapsed_time": "1:22:55", "remaining_time": "10:26:26"} +{"current_steps": 547, "total_steps": 4671, "loss": 0.1331, "learning_rate": 9.991285369874442e-06, "epoch": 0.35131663455362877, "percentage": 11.71, "elapsed_time": "1:23:04", "remaining_time": "10:26:21"} +{"current_steps": 548, "total_steps": 4671, "loss": 0.3072, "learning_rate": 9.991063416135402e-06, "epoch": 0.3519588953114965, "percentage": 11.73, "elapsed_time": "1:23:13", "remaining_time": "10:26:08"} +{"current_steps": 549, "total_steps": 4671, "loss": 0.1759, "learning_rate": 9.99083867387463e-06, "epoch": 0.35260115606936415, "percentage": 11.75, "elapsed_time": "1:23:23", "remaining_time": "10:26:07"} +{"current_steps": 550, "total_steps": 4671, "loss": 0.1602, "learning_rate": 9.990611143217693e-06, "epoch": 0.35324341682723187, "percentage": 11.77, "elapsed_time": "1:23:33", "remaining_time": "10:26:01"} +{"current_steps": 551, "total_steps": 4671, "loss": 0.0514, "learning_rate": 9.990380824291712e-06, "epoch": 0.35388567758509953, "percentage": 11.8, "elapsed_time": "1:23:40", "remaining_time": "10:25:41"} +{"current_steps": 552, "total_steps": 4671, "loss": 0.1961, "learning_rate": 9.990147717225366e-06, "epoch": 0.35452793834296725, "percentage": 11.82, "elapsed_time": "1:23:49", "remaining_time": "10:25:33"} +{"current_steps": 553, "total_steps": 4671, "loss": 0.1628, "learning_rate": 9.989911822148895e-06, "epoch": 0.3551701991008349, "percentage": 11.84, "elapsed_time": "1:23:59", "remaining_time": "10:25:29"} +{"current_steps": 554, "total_steps": 4671, "loss": 0.2439, "learning_rate": 9.989673139194091e-06, "epoch": 0.35581245985870263, "percentage": 11.86, "elapsed_time": "1:24:09", "remaining_time": "10:25:22"} +{"current_steps": 555, "total_steps": 4671, "loss": 0.2588, "learning_rate": 9.989431668494312e-06, "epoch": 0.35645472061657035, "percentage": 11.88, "elapsed_time": "1:24:20", "remaining_time": "10:25:26"} +{"current_steps": 556, "total_steps": 4671, "loss": 0.2075, "learning_rate": 9.989187410184462e-06, "epoch": 0.357096981374438, "percentage": 11.9, "elapsed_time": "1:24:28", "remaining_time": "10:25:15"} +{"current_steps": 557, "total_steps": 4671, "loss": 0.1598, "learning_rate": 9.988940364401012e-06, "epoch": 0.35773924213230573, "percentage": 11.92, "elapsed_time": "1:24:37", "remaining_time": "10:25:05"} +{"current_steps": 558, "total_steps": 4671, "loss": 0.1119, "learning_rate": 9.988690531281988e-06, "epoch": 0.3583815028901734, "percentage": 11.95, "elapsed_time": "1:24:47", "remaining_time": "10:24:56"} +{"current_steps": 559, "total_steps": 4671, "loss": 0.0938, "learning_rate": 9.98843791096697e-06, "epoch": 0.3590237636480411, "percentage": 11.97, "elapsed_time": "1:24:57", "remaining_time": "10:24:58"} +{"current_steps": 560, "total_steps": 4671, "loss": 0.1037, "learning_rate": 9.9881825035971e-06, "epoch": 0.3596660244059088, "percentage": 11.99, "elapsed_time": "1:25:06", "remaining_time": "10:24:50"} +{"current_steps": 561, "total_steps": 4671, "loss": 0.2461, "learning_rate": 9.987924309315076e-06, "epoch": 0.3603082851637765, "percentage": 12.01, "elapsed_time": "1:25:15", "remaining_time": "10:24:37"} +{"current_steps": 562, "total_steps": 4671, "loss": 0.2204, "learning_rate": 9.987663328265147e-06, "epoch": 0.36095054592164416, "percentage": 12.03, "elapsed_time": "1:25:26", "remaining_time": "10:24:44"} +{"current_steps": 563, "total_steps": 4671, "loss": 0.1079, "learning_rate": 9.98739956059313e-06, "epoch": 0.3615928066795119, "percentage": 12.05, "elapsed_time": "1:25:35", "remaining_time": "10:24:34"} +{"current_steps": 564, "total_steps": 4671, "loss": 0.1897, "learning_rate": 9.987133006446387e-06, "epoch": 0.3622350674373796, "percentage": 12.07, "elapsed_time": "1:25:43", "remaining_time": "10:24:16"} +{"current_steps": 565, "total_steps": 4671, "loss": 0.2768, "learning_rate": 9.986863665973845e-06, "epoch": 0.36287732819524726, "percentage": 12.1, "elapsed_time": "1:25:54", "remaining_time": "10:24:21"} +{"current_steps": 566, "total_steps": 4671, "loss": 0.1242, "learning_rate": 9.986591539325987e-06, "epoch": 0.363519588953115, "percentage": 12.12, "elapsed_time": "1:26:05", "remaining_time": "10:24:23"} +{"current_steps": 567, "total_steps": 4671, "loss": 0.0874, "learning_rate": 9.986316626654851e-06, "epoch": 0.36416184971098264, "percentage": 12.14, "elapsed_time": "1:26:13", "remaining_time": "10:24:07"} +{"current_steps": 568, "total_steps": 4671, "loss": 0.1188, "learning_rate": 9.986038928114027e-06, "epoch": 0.36480411046885036, "percentage": 12.16, "elapsed_time": "1:26:22", "remaining_time": "10:23:56"} +{"current_steps": 569, "total_steps": 4671, "loss": 0.0935, "learning_rate": 9.985758443858671e-06, "epoch": 0.365446371226718, "percentage": 12.18, "elapsed_time": "1:26:31", "remaining_time": "10:23:43"} +{"current_steps": 570, "total_steps": 4671, "loss": 0.0798, "learning_rate": 9.985475174045487e-06, "epoch": 0.36608863198458574, "percentage": 12.2, "elapsed_time": "1:26:39", "remaining_time": "10:23:29"} +{"current_steps": 571, "total_steps": 4671, "loss": 0.1081, "learning_rate": 9.98518911883274e-06, "epoch": 0.36673089274245346, "percentage": 12.22, "elapsed_time": "1:26:49", "remaining_time": "10:23:23"} +{"current_steps": 572, "total_steps": 4671, "loss": 0.14, "learning_rate": 9.98490027838025e-06, "epoch": 0.3673731535003211, "percentage": 12.25, "elapsed_time": "1:26:58", "remaining_time": "10:23:14"} +{"current_steps": 573, "total_steps": 4671, "loss": 0.0874, "learning_rate": 9.984608652849393e-06, "epoch": 0.36801541425818884, "percentage": 12.27, "elapsed_time": "1:27:06", "remaining_time": "10:23:00"} +{"current_steps": 574, "total_steps": 4671, "loss": 0.0791, "learning_rate": 9.984314242403101e-06, "epoch": 0.3686576750160565, "percentage": 12.29, "elapsed_time": "1:27:14", "remaining_time": "10:22:43"} +{"current_steps": 575, "total_steps": 4671, "loss": 0.1882, "learning_rate": 9.984017047205862e-06, "epoch": 0.3692999357739242, "percentage": 12.31, "elapsed_time": "1:27:23", "remaining_time": "10:22:33"} +{"current_steps": 576, "total_steps": 4671, "loss": 0.0754, "learning_rate": 9.983717067423721e-06, "epoch": 0.3699421965317919, "percentage": 12.33, "elapsed_time": "1:27:32", "remaining_time": "10:22:23"} +{"current_steps": 577, "total_steps": 4671, "loss": 0.1127, "learning_rate": 9.983414303224275e-06, "epoch": 0.3705844572896596, "percentage": 12.35, "elapsed_time": "1:27:42", "remaining_time": "10:22:18"} +{"current_steps": 578, "total_steps": 4671, "loss": 0.0545, "learning_rate": 9.983108754776681e-06, "epoch": 0.37122671804752727, "percentage": 12.37, "elapsed_time": "1:27:49", "remaining_time": "10:21:55"} +{"current_steps": 579, "total_steps": 4671, "loss": 0.1835, "learning_rate": 9.982800422251649e-06, "epoch": 0.371868978805395, "percentage": 12.4, "elapsed_time": "1:27:57", "remaining_time": "10:21:40"} +{"current_steps": 580, "total_steps": 4671, "loss": 0.2105, "learning_rate": 9.982489305821447e-06, "epoch": 0.3725112395632627, "percentage": 12.42, "elapsed_time": "1:28:07", "remaining_time": "10:21:33"} +{"current_steps": 581, "total_steps": 4671, "loss": 0.1904, "learning_rate": 9.982175405659893e-06, "epoch": 0.37315350032113037, "percentage": 12.44, "elapsed_time": "1:28:14", "remaining_time": "10:21:13"} +{"current_steps": 582, "total_steps": 4671, "loss": 0.2212, "learning_rate": 9.981858721942368e-06, "epoch": 0.3737957610789981, "percentage": 12.46, "elapsed_time": "1:28:24", "remaining_time": "10:21:07"} +{"current_steps": 583, "total_steps": 4671, "loss": 0.0904, "learning_rate": 9.981539254845803e-06, "epoch": 0.37443802183686575, "percentage": 12.48, "elapsed_time": "1:28:32", "remaining_time": "10:20:51"} +{"current_steps": 584, "total_steps": 4671, "loss": 0.0985, "learning_rate": 9.981217004548682e-06, "epoch": 0.37508028259473347, "percentage": 12.5, "elapsed_time": "1:28:42", "remaining_time": "10:20:48"} +{"current_steps": 585, "total_steps": 4671, "loss": 0.1916, "learning_rate": 9.980891971231052e-06, "epoch": 0.37572254335260113, "percentage": 12.52, "elapsed_time": "1:28:50", "remaining_time": "10:20:31"} +{"current_steps": 586, "total_steps": 4671, "loss": 0.1493, "learning_rate": 9.980564155074508e-06, "epoch": 0.37636480411046885, "percentage": 12.55, "elapsed_time": "1:28:59", "remaining_time": "10:20:21"} +{"current_steps": 587, "total_steps": 4671, "loss": 0.0725, "learning_rate": 9.9802335562622e-06, "epoch": 0.37700706486833657, "percentage": 12.57, "elapsed_time": "1:29:07", "remaining_time": "10:20:04"} +{"current_steps": 588, "total_steps": 4671, "loss": 0.0957, "learning_rate": 9.979900174978839e-06, "epoch": 0.37764932562620424, "percentage": 12.59, "elapsed_time": "1:29:17", "remaining_time": "10:19:59"} +{"current_steps": 589, "total_steps": 4671, "loss": 0.2421, "learning_rate": 9.97956401141068e-06, "epoch": 0.37829158638407195, "percentage": 12.61, "elapsed_time": "1:29:25", "remaining_time": "10:19:48"} +{"current_steps": 590, "total_steps": 4671, "loss": 0.1354, "learning_rate": 9.979225065745543e-06, "epoch": 0.3789338471419396, "percentage": 12.63, "elapsed_time": "1:29:35", "remaining_time": "10:19:43"} +{"current_steps": 591, "total_steps": 4671, "loss": 0.0828, "learning_rate": 9.978883338172797e-06, "epoch": 0.37957610789980734, "percentage": 12.65, "elapsed_time": "1:29:43", "remaining_time": "10:19:27"} +{"current_steps": 592, "total_steps": 4671, "loss": 0.1228, "learning_rate": 9.978538828883366e-06, "epoch": 0.380218368657675, "percentage": 12.67, "elapsed_time": "1:29:53", "remaining_time": "10:19:19"} +{"current_steps": 593, "total_steps": 4671, "loss": 0.1316, "learning_rate": 9.978191538069729e-06, "epoch": 0.3808606294155427, "percentage": 12.7, "elapsed_time": "1:30:03", "remaining_time": "10:19:15"} +{"current_steps": 594, "total_steps": 4671, "loss": 0.0793, "learning_rate": 9.977841465925918e-06, "epoch": 0.3815028901734104, "percentage": 12.72, "elapsed_time": "1:30:10", "remaining_time": "10:18:53"} +{"current_steps": 595, "total_steps": 4671, "loss": 0.138, "learning_rate": 9.977488612647517e-06, "epoch": 0.3821451509312781, "percentage": 12.74, "elapsed_time": "1:30:17", "remaining_time": "10:18:32"} +{"current_steps": 596, "total_steps": 4671, "loss": 0.207, "learning_rate": 9.977132978431671e-06, "epoch": 0.3827874116891458, "percentage": 12.76, "elapsed_time": "1:30:27", "remaining_time": "10:18:28"} +{"current_steps": 597, "total_steps": 4671, "loss": 0.1186, "learning_rate": 9.97677456347707e-06, "epoch": 0.3834296724470135, "percentage": 12.78, "elapsed_time": "1:30:35", "remaining_time": "10:18:14"} +{"current_steps": 598, "total_steps": 4671, "loss": 0.1331, "learning_rate": 9.97641336798396e-06, "epoch": 0.3840719332048812, "percentage": 12.8, "elapsed_time": "1:30:43", "remaining_time": "10:17:56"} +{"current_steps": 599, "total_steps": 4671, "loss": 0.2275, "learning_rate": 9.976049392154148e-06, "epoch": 0.38471419396274886, "percentage": 12.82, "elapsed_time": "1:30:53", "remaining_time": "10:17:50"} +{"current_steps": 600, "total_steps": 4671, "loss": 0.1262, "learning_rate": 9.975682636190984e-06, "epoch": 0.3853564547206166, "percentage": 12.85, "elapsed_time": "1:31:01", "remaining_time": "10:17:37"} +{"current_steps": 601, "total_steps": 4671, "loss": 0.1552, "learning_rate": 9.975313100299377e-06, "epoch": 0.38599871547848424, "percentage": 12.87, "elapsed_time": "1:31:10", "remaining_time": "10:17:26"} +{"current_steps": 602, "total_steps": 4671, "loss": 0.2313, "learning_rate": 9.974940784685787e-06, "epoch": 0.38664097623635196, "percentage": 12.89, "elapsed_time": "1:31:18", "remaining_time": "10:17:09"} +{"current_steps": 603, "total_steps": 4671, "loss": 0.1457, "learning_rate": 9.974565689558228e-06, "epoch": 0.3872832369942196, "percentage": 12.91, "elapsed_time": "1:31:27", "remaining_time": "10:17:03"} +{"current_steps": 604, "total_steps": 4671, "loss": 0.1411, "learning_rate": 9.974187815126266e-06, "epoch": 0.38792549775208734, "percentage": 12.93, "elapsed_time": "1:31:36", "remaining_time": "10:16:49"} +{"current_steps": 605, "total_steps": 4671, "loss": 0.2007, "learning_rate": 9.973807161601023e-06, "epoch": 0.38856775850995506, "percentage": 12.95, "elapsed_time": "1:31:46", "remaining_time": "10:16:46"} +{"current_steps": 606, "total_steps": 4671, "loss": 0.0802, "learning_rate": 9.973423729195168e-06, "epoch": 0.3892100192678227, "percentage": 12.97, "elapsed_time": "1:31:54", "remaining_time": "10:16:30"} +{"current_steps": 607, "total_steps": 4671, "loss": 0.0847, "learning_rate": 9.97303751812293e-06, "epoch": 0.38985228002569045, "percentage": 13.0, "elapsed_time": "1:32:02", "remaining_time": "10:16:15"} +{"current_steps": 608, "total_steps": 4671, "loss": 0.1603, "learning_rate": 9.972648528600082e-06, "epoch": 0.3904945407835581, "percentage": 13.02, "elapsed_time": "1:32:11", "remaining_time": "10:16:02"} +{"current_steps": 609, "total_steps": 4671, "loss": 0.1529, "learning_rate": 9.972256760843956e-06, "epoch": 0.3911368015414258, "percentage": 13.04, "elapsed_time": "1:32:19", "remaining_time": "10:15:48"} +{"current_steps": 610, "total_steps": 4671, "loss": 0.075, "learning_rate": 9.971862215073432e-06, "epoch": 0.3917790622992935, "percentage": 13.06, "elapsed_time": "1:32:28", "remaining_time": "10:15:39"} +{"current_steps": 611, "total_steps": 4671, "loss": 0.1854, "learning_rate": 9.971464891508946e-06, "epoch": 0.3924213230571612, "percentage": 13.08, "elapsed_time": "1:32:38", "remaining_time": "10:15:37"} +{"current_steps": 612, "total_steps": 4671, "loss": 0.1449, "learning_rate": 9.971064790372484e-06, "epoch": 0.3930635838150289, "percentage": 13.1, "elapsed_time": "1:32:47", "remaining_time": "10:15:24"} +{"current_steps": 613, "total_steps": 4671, "loss": 0.0882, "learning_rate": 9.970661911887581e-06, "epoch": 0.3937058445728966, "percentage": 13.12, "elapsed_time": "1:32:56", "remaining_time": "10:15:16"} +{"current_steps": 614, "total_steps": 4671, "loss": 0.1421, "learning_rate": 9.970256256279328e-06, "epoch": 0.3943481053307643, "percentage": 13.14, "elapsed_time": "1:33:04", "remaining_time": "10:15:02"} +{"current_steps": 615, "total_steps": 4671, "loss": 0.1678, "learning_rate": 9.969847823774365e-06, "epoch": 0.394990366088632, "percentage": 13.17, "elapsed_time": "1:33:13", "remaining_time": "10:14:50"} +{"current_steps": 616, "total_steps": 4671, "loss": 0.2126, "learning_rate": 9.969436614600888e-06, "epoch": 0.3956326268464997, "percentage": 13.19, "elapsed_time": "1:33:22", "remaining_time": "10:14:42"} +{"current_steps": 617, "total_steps": 4671, "loss": 0.114, "learning_rate": 9.969022628988636e-06, "epoch": 0.39627488760436735, "percentage": 13.21, "elapsed_time": "1:33:33", "remaining_time": "10:14:40"} +{"current_steps": 618, "total_steps": 4671, "loss": 0.1378, "learning_rate": 9.968605867168906e-06, "epoch": 0.3969171483622351, "percentage": 13.23, "elapsed_time": "1:33:41", "remaining_time": "10:14:25"} +{"current_steps": 619, "total_steps": 4671, "loss": 0.2123, "learning_rate": 9.968186329374546e-06, "epoch": 0.39755940912010274, "percentage": 13.25, "elapsed_time": "1:33:50", "remaining_time": "10:14:17"} +{"current_steps": 620, "total_steps": 4671, "loss": 0.143, "learning_rate": 9.96776401583995e-06, "epoch": 0.39820166987797045, "percentage": 13.27, "elapsed_time": "1:33:59", "remaining_time": "10:14:10"} +{"current_steps": 621, "total_steps": 4671, "loss": 0.1464, "learning_rate": 9.967338926801066e-06, "epoch": 0.3988439306358382, "percentage": 13.29, "elapsed_time": "1:34:10", "remaining_time": "10:14:09"} +{"current_steps": 622, "total_steps": 4671, "loss": 0.1188, "learning_rate": 9.966911062495395e-06, "epoch": 0.39948619139370584, "percentage": 13.32, "elapsed_time": "1:34:18", "remaining_time": "10:13:55"} +{"current_steps": 623, "total_steps": 4671, "loss": 0.2533, "learning_rate": 9.966480423161984e-06, "epoch": 0.40012845215157355, "percentage": 13.34, "elapsed_time": "1:34:28", "remaining_time": "10:13:54"} +{"current_steps": 624, "total_steps": 4671, "loss": 0.1839, "learning_rate": 9.966047009041432e-06, "epoch": 0.4007707129094412, "percentage": 13.36, "elapsed_time": "1:34:37", "remaining_time": "10:13:38"} +{"current_steps": 625, "total_steps": 4671, "loss": 0.2017, "learning_rate": 9.965610820375891e-06, "epoch": 0.40141297366730894, "percentage": 13.38, "elapsed_time": "1:34:45", "remaining_time": "10:13:26"} +{"current_steps": 626, "total_steps": 4671, "loss": 0.119, "learning_rate": 9.965171857409058e-06, "epoch": 0.4020552344251766, "percentage": 13.4, "elapsed_time": "1:34:53", "remaining_time": "10:13:08"} +{"current_steps": 627, "total_steps": 4671, "loss": 0.1836, "learning_rate": 9.964730120386186e-06, "epoch": 0.4026974951830443, "percentage": 13.42, "elapsed_time": "1:35:02", "remaining_time": "10:12:57"} +{"current_steps": 628, "total_steps": 4671, "loss": 0.1774, "learning_rate": 9.964285609554072e-06, "epoch": 0.40333975594091204, "percentage": 13.44, "elapsed_time": "1:35:09", "remaining_time": "10:12:34"} +{"current_steps": 629, "total_steps": 4671, "loss": 0.1336, "learning_rate": 9.963838325161068e-06, "epoch": 0.4039820166987797, "percentage": 13.47, "elapsed_time": "1:35:16", "remaining_time": "10:12:15"} +{"current_steps": 630, "total_steps": 4671, "loss": 0.0718, "learning_rate": 9.963388267457071e-06, "epoch": 0.4046242774566474, "percentage": 13.49, "elapsed_time": "1:35:24", "remaining_time": "10:12:01"} +{"current_steps": 631, "total_steps": 4671, "loss": 0.082, "learning_rate": 9.962935436693528e-06, "epoch": 0.4052665382145151, "percentage": 13.51, "elapsed_time": "1:35:32", "remaining_time": "10:11:40"} +{"current_steps": 632, "total_steps": 4671, "loss": 0.1688, "learning_rate": 9.962479833123442e-06, "epoch": 0.4059087989723828, "percentage": 13.53, "elapsed_time": "1:35:41", "remaining_time": "10:11:31"} +{"current_steps": 633, "total_steps": 4671, "loss": 0.087, "learning_rate": 9.962021457001358e-06, "epoch": 0.40655105973025046, "percentage": 13.55, "elapsed_time": "1:35:49", "remaining_time": "10:11:14"} +{"current_steps": 634, "total_steps": 4671, "loss": 0.156, "learning_rate": 9.96156030858337e-06, "epoch": 0.4071933204881182, "percentage": 13.57, "elapsed_time": "1:35:59", "remaining_time": "10:11:11"} +{"current_steps": 635, "total_steps": 4671, "loss": 0.1669, "learning_rate": 9.961096388127125e-06, "epoch": 0.40783558124598585, "percentage": 13.59, "elapsed_time": "1:36:08", "remaining_time": "10:11:02"} +{"current_steps": 636, "total_steps": 4671, "loss": 0.1298, "learning_rate": 9.960629695891815e-06, "epoch": 0.40847784200385356, "percentage": 13.62, "elapsed_time": "1:36:15", "remaining_time": "10:10:44"} +{"current_steps": 637, "total_steps": 4671, "loss": 0.1464, "learning_rate": 9.960160232138184e-06, "epoch": 0.4091201027617213, "percentage": 13.64, "elapsed_time": "1:36:23", "remaining_time": "10:10:22"} +{"current_steps": 638, "total_steps": 4671, "loss": 0.1324, "learning_rate": 9.95968799712852e-06, "epoch": 0.40976236351958895, "percentage": 13.66, "elapsed_time": "1:36:32", "remaining_time": "10:10:17"} +{"current_steps": 639, "total_steps": 4671, "loss": 0.1194, "learning_rate": 9.959212991126668e-06, "epoch": 0.41040462427745666, "percentage": 13.68, "elapsed_time": "1:36:41", "remaining_time": "10:10:07"} +{"current_steps": 640, "total_steps": 4671, "loss": 0.1718, "learning_rate": 9.958735214398009e-06, "epoch": 0.4110468850353243, "percentage": 13.7, "elapsed_time": "1:36:50", "remaining_time": "10:09:56"} +{"current_steps": 641, "total_steps": 4671, "loss": 0.1438, "learning_rate": 9.958254667209482e-06, "epoch": 0.41168914579319205, "percentage": 13.72, "elapsed_time": "1:36:59", "remaining_time": "10:09:45"} +{"current_steps": 642, "total_steps": 4671, "loss": 0.2479, "learning_rate": 9.957771349829566e-06, "epoch": 0.4123314065510597, "percentage": 13.74, "elapsed_time": "1:37:08", "remaining_time": "10:09:40"} +{"current_steps": 643, "total_steps": 4671, "loss": 0.1796, "learning_rate": 9.957285262528298e-06, "epoch": 0.41297366730892743, "percentage": 13.77, "elapsed_time": "1:37:19", "remaining_time": "10:09:39"} +{"current_steps": 644, "total_steps": 4671, "loss": 0.1119, "learning_rate": 9.956796405577251e-06, "epoch": 0.41361592806679515, "percentage": 13.79, "elapsed_time": "1:37:28", "remaining_time": "10:09:31"} +{"current_steps": 645, "total_steps": 4671, "loss": 0.1764, "learning_rate": 9.956304779249555e-06, "epoch": 0.4142581888246628, "percentage": 13.81, "elapsed_time": "1:37:38", "remaining_time": "10:09:29"} +{"current_steps": 646, "total_steps": 4671, "loss": 0.1927, "learning_rate": 9.95581038381988e-06, "epoch": 0.41490044958253053, "percentage": 13.83, "elapsed_time": "1:37:49", "remaining_time": "10:09:32"} +{"current_steps": 647, "total_steps": 4671, "loss": 0.1163, "learning_rate": 9.955313219564447e-06, "epoch": 0.4155427103403982, "percentage": 13.85, "elapsed_time": "1:37:59", "remaining_time": "10:09:27"} +{"current_steps": 648, "total_steps": 4671, "loss": 0.2239, "learning_rate": 9.954813286761021e-06, "epoch": 0.4161849710982659, "percentage": 13.87, "elapsed_time": "1:38:09", "remaining_time": "10:09:21"} +{"current_steps": 649, "total_steps": 4671, "loss": 0.2102, "learning_rate": 9.95431058568892e-06, "epoch": 0.4168272318561336, "percentage": 13.89, "elapsed_time": "1:38:19", "remaining_time": "10:09:20"} +{"current_steps": 650, "total_steps": 4671, "loss": 0.1687, "learning_rate": 9.953805116629003e-06, "epoch": 0.4174694926140013, "percentage": 13.92, "elapsed_time": "1:38:27", "remaining_time": "10:09:05"} +{"current_steps": 651, "total_steps": 4671, "loss": 0.2695, "learning_rate": 9.953296879863676e-06, "epoch": 0.41811175337186895, "percentage": 13.94, "elapsed_time": "1:38:36", "remaining_time": "10:08:52"} +{"current_steps": 652, "total_steps": 4671, "loss": 0.3097, "learning_rate": 9.952785875676894e-06, "epoch": 0.4187540141297367, "percentage": 13.96, "elapsed_time": "1:38:46", "remaining_time": "10:08:52"} +{"current_steps": 653, "total_steps": 4671, "loss": 0.2021, "learning_rate": 9.952272104354156e-06, "epoch": 0.4193962748876044, "percentage": 13.98, "elapsed_time": "1:38:56", "remaining_time": "10:08:48"} +{"current_steps": 654, "total_steps": 4671, "loss": 0.076, "learning_rate": 9.951755566182506e-06, "epoch": 0.42003853564547206, "percentage": 14.0, "elapsed_time": "1:39:04", "remaining_time": "10:08:30"} +{"current_steps": 655, "total_steps": 4671, "loss": 0.1199, "learning_rate": 9.951236261450538e-06, "epoch": 0.4206807964033398, "percentage": 14.02, "elapsed_time": "1:39:13", "remaining_time": "10:08:24"} +{"current_steps": 656, "total_steps": 4671, "loss": 0.1573, "learning_rate": 9.950714190448387e-06, "epoch": 0.42132305716120744, "percentage": 14.04, "elapsed_time": "1:39:23", "remaining_time": "10:08:17"} +{"current_steps": 657, "total_steps": 4671, "loss": 0.2164, "learning_rate": 9.950189353467735e-06, "epoch": 0.42196531791907516, "percentage": 14.07, "elapsed_time": "1:39:32", "remaining_time": "10:08:09"} +{"current_steps": 658, "total_steps": 4671, "loss": 0.2681, "learning_rate": 9.949661750801813e-06, "epoch": 0.4226075786769428, "percentage": 14.09, "elapsed_time": "1:39:41", "remaining_time": "10:07:59"} +{"current_steps": 659, "total_steps": 4671, "loss": 0.139, "learning_rate": 9.94913138274539e-06, "epoch": 0.42324983943481054, "percentage": 14.11, "elapsed_time": "1:39:50", "remaining_time": "10:07:47"} +{"current_steps": 660, "total_steps": 4671, "loss": 0.1131, "learning_rate": 9.948598249594788e-06, "epoch": 0.4238921001926782, "percentage": 14.13, "elapsed_time": "1:39:59", "remaining_time": "10:07:37"} +{"current_steps": 661, "total_steps": 4671, "loss": 0.0997, "learning_rate": 9.94806235164787e-06, "epoch": 0.4245343609505459, "percentage": 14.15, "elapsed_time": "1:40:07", "remaining_time": "10:07:26"} +{"current_steps": 662, "total_steps": 4671, "loss": 0.1421, "learning_rate": 9.94752368920404e-06, "epoch": 0.42517662170841364, "percentage": 14.17, "elapsed_time": "1:40:15", "remaining_time": "10:07:08"} +{"current_steps": 663, "total_steps": 4671, "loss": 0.1824, "learning_rate": 9.946982262564254e-06, "epoch": 0.4258188824662813, "percentage": 14.19, "elapsed_time": "1:40:24", "remaining_time": "10:06:59"} +{"current_steps": 664, "total_steps": 4671, "loss": 0.1196, "learning_rate": 9.946438072031007e-06, "epoch": 0.426461143224149, "percentage": 14.22, "elapsed_time": "1:40:32", "remaining_time": "10:06:42"} +{"current_steps": 665, "total_steps": 4671, "loss": 0.1909, "learning_rate": 9.94589111790834e-06, "epoch": 0.4271034039820167, "percentage": 14.24, "elapsed_time": "1:40:41", "remaining_time": "10:06:32"} +{"current_steps": 666, "total_steps": 4671, "loss": 0.0938, "learning_rate": 9.945341400501838e-06, "epoch": 0.4277456647398844, "percentage": 14.26, "elapsed_time": "1:40:51", "remaining_time": "10:06:32"} +{"current_steps": 667, "total_steps": 4671, "loss": 0.1, "learning_rate": 9.944788920118628e-06, "epoch": 0.42838792549775206, "percentage": 14.28, "elapsed_time": "1:41:02", "remaining_time": "10:06:32"} +{"current_steps": 668, "total_steps": 4671, "loss": 0.1606, "learning_rate": 9.944233677067388e-06, "epoch": 0.4290301862556198, "percentage": 14.3, "elapsed_time": "1:41:10", "remaining_time": "10:06:18"} +{"current_steps": 669, "total_steps": 4671, "loss": 0.1436, "learning_rate": 9.943675671658327e-06, "epoch": 0.4296724470134875, "percentage": 14.32, "elapsed_time": "1:41:17", "remaining_time": "10:05:58"} +{"current_steps": 670, "total_steps": 4671, "loss": 0.1939, "learning_rate": 9.943114904203209e-06, "epoch": 0.43031470777135516, "percentage": 14.34, "elapsed_time": "1:41:26", "remaining_time": "10:05:46"} +{"current_steps": 671, "total_steps": 4671, "loss": 0.1437, "learning_rate": 9.942551375015333e-06, "epoch": 0.4309569685292229, "percentage": 14.37, "elapsed_time": "1:41:35", "remaining_time": "10:05:36"} +{"current_steps": 672, "total_steps": 4671, "loss": 0.0801, "learning_rate": 9.941985084409547e-06, "epoch": 0.43159922928709055, "percentage": 14.39, "elapsed_time": "1:41:42", "remaining_time": "10:05:17"} +{"current_steps": 673, "total_steps": 4671, "loss": 0.2346, "learning_rate": 9.941416032702238e-06, "epoch": 0.43224149004495827, "percentage": 14.41, "elapsed_time": "1:41:53", "remaining_time": "10:05:19"} +{"current_steps": 674, "total_steps": 4671, "loss": 0.1136, "learning_rate": 9.940844220211338e-06, "epoch": 0.43288375080282593, "percentage": 14.43, "elapsed_time": "1:42:01", "remaining_time": "10:04:59"} +{"current_steps": 675, "total_steps": 4671, "loss": 0.083, "learning_rate": 9.940269647256319e-06, "epoch": 0.43352601156069365, "percentage": 14.45, "elapsed_time": "1:42:08", "remaining_time": "10:04:43"} +{"current_steps": 676, "total_steps": 4671, "loss": 0.1691, "learning_rate": 9.939692314158195e-06, "epoch": 0.4341682723185613, "percentage": 14.47, "elapsed_time": "1:42:17", "remaining_time": "10:04:33"} +{"current_steps": 677, "total_steps": 4671, "loss": 0.0868, "learning_rate": 9.939112221239528e-06, "epoch": 0.43481053307642903, "percentage": 14.49, "elapsed_time": "1:42:28", "remaining_time": "10:04:36"} +{"current_steps": 678, "total_steps": 4671, "loss": 0.0961, "learning_rate": 9.938529368824416e-06, "epoch": 0.43545279383429675, "percentage": 14.52, "elapsed_time": "1:42:37", "remaining_time": "10:04:24"} +{"current_steps": 679, "total_steps": 4671, "loss": 0.1685, "learning_rate": 9.9379437572385e-06, "epoch": 0.4360950545921644, "percentage": 14.54, "elapsed_time": "1:42:45", "remaining_time": "10:04:10"} +{"current_steps": 680, "total_steps": 4671, "loss": 0.1351, "learning_rate": 9.93735538680896e-06, "epoch": 0.43673731535003213, "percentage": 14.56, "elapsed_time": "1:42:55", "remaining_time": "10:04:02"} +{"current_steps": 681, "total_steps": 4671, "loss": 0.2282, "learning_rate": 9.936764257864525e-06, "epoch": 0.4373795761078998, "percentage": 14.58, "elapsed_time": "1:43:04", "remaining_time": "10:03:55"} +{"current_steps": 682, "total_steps": 4671, "loss": 0.1838, "learning_rate": 9.936170370735458e-06, "epoch": 0.4380218368657675, "percentage": 14.6, "elapsed_time": "1:43:14", "remaining_time": "10:03:54"} +{"current_steps": 683, "total_steps": 4671, "loss": 0.1603, "learning_rate": 9.935573725753565e-06, "epoch": 0.4386640976236352, "percentage": 14.62, "elapsed_time": "1:43:23", "remaining_time": "10:03:44"} +{"current_steps": 684, "total_steps": 4671, "loss": 0.0937, "learning_rate": 9.934974323252195e-06, "epoch": 0.4393063583815029, "percentage": 14.64, "elapsed_time": "1:43:33", "remaining_time": "10:03:38"} +{"current_steps": 685, "total_steps": 4671, "loss": 0.2527, "learning_rate": 9.934372163566236e-06, "epoch": 0.4399486191393706, "percentage": 14.66, "elapsed_time": "1:43:44", "remaining_time": "10:03:38"} +{"current_steps": 686, "total_steps": 4671, "loss": 0.1677, "learning_rate": 9.933767247032114e-06, "epoch": 0.4405908798972383, "percentage": 14.69, "elapsed_time": "1:43:52", "remaining_time": "10:03:27"} +{"current_steps": 687, "total_steps": 4671, "loss": 0.1219, "learning_rate": 9.933159573987799e-06, "epoch": 0.441233140655106, "percentage": 14.71, "elapsed_time": "1:44:02", "remaining_time": "10:03:21"} +{"current_steps": 688, "total_steps": 4671, "loss": 0.1318, "learning_rate": 9.9325491447728e-06, "epoch": 0.44187540141297366, "percentage": 14.73, "elapsed_time": "1:44:12", "remaining_time": "10:03:18"} +{"current_steps": 689, "total_steps": 4671, "loss": 0.1533, "learning_rate": 9.931935959728167e-06, "epoch": 0.4425176621708414, "percentage": 14.75, "elapsed_time": "1:44:20", "remaining_time": "10:03:02"} +{"current_steps": 690, "total_steps": 4671, "loss": 0.1029, "learning_rate": 9.931320019196485e-06, "epoch": 0.44315992292870904, "percentage": 14.77, "elapsed_time": "1:44:30", "remaining_time": "10:02:59"} +{"current_steps": 691, "total_steps": 4671, "loss": 0.1804, "learning_rate": 9.930701323521884e-06, "epoch": 0.44380218368657676, "percentage": 14.79, "elapsed_time": "1:44:40", "remaining_time": "10:02:53"} +{"current_steps": 692, "total_steps": 4671, "loss": 0.1747, "learning_rate": 9.93007987305003e-06, "epoch": 0.4444444444444444, "percentage": 14.81, "elapsed_time": "1:44:48", "remaining_time": "10:02:39"} +{"current_steps": 693, "total_steps": 4671, "loss": 0.2845, "learning_rate": 9.929455668128129e-06, "epoch": 0.44508670520231214, "percentage": 14.84, "elapsed_time": "1:44:58", "remaining_time": "10:02:36"} +{"current_steps": 694, "total_steps": 4671, "loss": 0.1504, "learning_rate": 9.92882870910493e-06, "epoch": 0.44572896596017986, "percentage": 14.86, "elapsed_time": "1:45:06", "remaining_time": "10:02:20"} +{"current_steps": 695, "total_steps": 4671, "loss": 0.1509, "learning_rate": 9.92819899633071e-06, "epoch": 0.4463712267180475, "percentage": 14.88, "elapsed_time": "1:45:15", "remaining_time": "10:02:09"} +{"current_steps": 696, "total_steps": 4671, "loss": 0.1202, "learning_rate": 9.927566530157298e-06, "epoch": 0.44701348747591524, "percentage": 14.9, "elapsed_time": "1:45:23", "remaining_time": "10:01:53"} +{"current_steps": 697, "total_steps": 4671, "loss": 0.1375, "learning_rate": 9.92693131093805e-06, "epoch": 0.4476557482337829, "percentage": 14.92, "elapsed_time": "1:45:33", "remaining_time": "10:01:51"} +{"current_steps": 698, "total_steps": 4671, "loss": 0.1523, "learning_rate": 9.926293339027866e-06, "epoch": 0.4482980089916506, "percentage": 14.94, "elapsed_time": "1:45:40", "remaining_time": "10:01:30"} +{"current_steps": 699, "total_steps": 4671, "loss": 0.1372, "learning_rate": 9.925652614783185e-06, "epoch": 0.4489402697495183, "percentage": 14.96, "elapsed_time": "1:45:48", "remaining_time": "10:01:16"} +{"current_steps": 700, "total_steps": 4671, "loss": 0.1967, "learning_rate": 9.92500913856198e-06, "epoch": 0.449582530507386, "percentage": 14.99, "elapsed_time": "1:45:59", "remaining_time": "10:01:14"} +{"current_steps": 701, "total_steps": 4671, "loss": 0.0706, "learning_rate": 9.924362910723762e-06, "epoch": 0.45022479126525367, "percentage": 15.01, "elapsed_time": "1:46:08", "remaining_time": "10:01:07"} +{"current_steps": 702, "total_steps": 4671, "loss": 0.1636, "learning_rate": 9.923713931629582e-06, "epoch": 0.4508670520231214, "percentage": 15.03, "elapsed_time": "1:46:16", "remaining_time": "10:00:50"} +{"current_steps": 703, "total_steps": 4671, "loss": 0.1533, "learning_rate": 9.923062201642023e-06, "epoch": 0.4515093127809891, "percentage": 15.05, "elapsed_time": "1:46:26", "remaining_time": "10:00:46"} +{"current_steps": 704, "total_steps": 4671, "loss": 0.0643, "learning_rate": 9.922407721125216e-06, "epoch": 0.45215157353885677, "percentage": 15.07, "elapsed_time": "1:46:33", "remaining_time": "10:00:29"} +{"current_steps": 705, "total_steps": 4671, "loss": 0.1182, "learning_rate": 9.921750490444813e-06, "epoch": 0.4527938342967245, "percentage": 15.09, "elapsed_time": "1:46:42", "remaining_time": "10:00:17"} +{"current_steps": 706, "total_steps": 4671, "loss": 0.1286, "learning_rate": 9.921090509968015e-06, "epoch": 0.45343609505459215, "percentage": 15.11, "elapsed_time": "1:46:51", "remaining_time": "10:00:06"} +{"current_steps": 707, "total_steps": 4671, "loss": 0.1153, "learning_rate": 9.920427780063556e-06, "epoch": 0.45407835581245987, "percentage": 15.14, "elapsed_time": "1:47:00", "remaining_time": "9:59:59"} +{"current_steps": 708, "total_steps": 4671, "loss": 0.1041, "learning_rate": 9.9197623011017e-06, "epoch": 0.45472061657032753, "percentage": 15.16, "elapsed_time": "1:47:09", "remaining_time": "9:59:49"} +{"current_steps": 709, "total_steps": 4671, "loss": 0.0627, "learning_rate": 9.919094073454258e-06, "epoch": 0.45536287732819525, "percentage": 15.18, "elapsed_time": "1:47:17", "remaining_time": "9:59:31"} +{"current_steps": 710, "total_steps": 4671, "loss": 0.0616, "learning_rate": 9.918423097494567e-06, "epoch": 0.45600513808606297, "percentage": 15.2, "elapsed_time": "1:47:24", "remaining_time": "9:59:14"} +{"current_steps": 711, "total_steps": 4671, "loss": 0.0542, "learning_rate": 9.917749373597506e-06, "epoch": 0.45664739884393063, "percentage": 15.22, "elapsed_time": "1:47:31", "remaining_time": "9:58:54"} +{"current_steps": 712, "total_steps": 4671, "loss": 0.1117, "learning_rate": 9.917072902139481e-06, "epoch": 0.45728965960179835, "percentage": 15.24, "elapsed_time": "1:47:39", "remaining_time": "9:58:37"} +{"current_steps": 713, "total_steps": 4671, "loss": 0.1762, "learning_rate": 9.916393683498447e-06, "epoch": 0.457931920359666, "percentage": 15.26, "elapsed_time": "1:47:47", "remaining_time": "9:58:23"} +{"current_steps": 714, "total_steps": 4671, "loss": 0.2147, "learning_rate": 9.915711718053877e-06, "epoch": 0.45857418111753373, "percentage": 15.29, "elapsed_time": "1:47:57", "remaining_time": "9:58:18"} +{"current_steps": 715, "total_steps": 4671, "loss": 0.0812, "learning_rate": 9.915027006186794e-06, "epoch": 0.4592164418754014, "percentage": 15.31, "elapsed_time": "1:48:04", "remaining_time": "9:57:58"} +{"current_steps": 716, "total_steps": 4671, "loss": 0.1893, "learning_rate": 9.914339548279744e-06, "epoch": 0.4598587026332691, "percentage": 15.33, "elapsed_time": "1:48:13", "remaining_time": "9:57:47"} +{"current_steps": 717, "total_steps": 4671, "loss": 0.1586, "learning_rate": 9.913649344716814e-06, "epoch": 0.4605009633911368, "percentage": 15.35, "elapsed_time": "1:48:22", "remaining_time": "9:57:41"} +{"current_steps": 718, "total_steps": 4671, "loss": 0.1191, "learning_rate": 9.91295639588362e-06, "epoch": 0.4611432241490045, "percentage": 15.37, "elapsed_time": "1:48:33", "remaining_time": "9:57:40"} +{"current_steps": 719, "total_steps": 4671, "loss": 0.2071, "learning_rate": 9.912260702167319e-06, "epoch": 0.4617854849068722, "percentage": 15.39, "elapsed_time": "1:48:45", "remaining_time": "9:57:45"} +{"current_steps": 720, "total_steps": 4671, "loss": 0.056, "learning_rate": 9.911562263956593e-06, "epoch": 0.4624277456647399, "percentage": 15.41, "elapsed_time": "1:48:52", "remaining_time": "9:57:28"} +{"current_steps": 721, "total_steps": 4671, "loss": 0.2519, "learning_rate": 9.910861081641662e-06, "epoch": 0.4630700064226076, "percentage": 15.44, "elapsed_time": "1:49:02", "remaining_time": "9:57:21"} +{"current_steps": 722, "total_steps": 4671, "loss": 0.28, "learning_rate": 9.910157155614284e-06, "epoch": 0.46371226718047526, "percentage": 15.46, "elapsed_time": "1:49:10", "remaining_time": "9:57:07"} +{"current_steps": 723, "total_steps": 4671, "loss": 0.1777, "learning_rate": 9.909450486267736e-06, "epoch": 0.464354527938343, "percentage": 15.48, "elapsed_time": "1:49:21", "remaining_time": "9:57:09"} +{"current_steps": 724, "total_steps": 4671, "loss": 0.195, "learning_rate": 9.908741073996843e-06, "epoch": 0.46499678869621064, "percentage": 15.5, "elapsed_time": "1:49:32", "remaining_time": "9:57:08"} +{"current_steps": 725, "total_steps": 4671, "loss": 0.1316, "learning_rate": 9.908028919197951e-06, "epoch": 0.46563904945407836, "percentage": 15.52, "elapsed_time": "1:49:41", "remaining_time": "9:57:01"} +{"current_steps": 726, "total_steps": 4671, "loss": 0.1655, "learning_rate": 9.907314022268948e-06, "epoch": 0.4662813102119461, "percentage": 15.54, "elapsed_time": "1:49:50", "remaining_time": "9:56:51"} +{"current_steps": 727, "total_steps": 4671, "loss": 0.1258, "learning_rate": 9.906596383609243e-06, "epoch": 0.46692357096981374, "percentage": 15.56, "elapsed_time": "1:50:00", "remaining_time": "9:56:47"} +{"current_steps": 728, "total_steps": 4671, "loss": 0.1987, "learning_rate": 9.905876003619787e-06, "epoch": 0.46756583172768146, "percentage": 15.59, "elapsed_time": "1:50:10", "remaining_time": "9:56:44"} +{"current_steps": 729, "total_steps": 4671, "loss": 0.1797, "learning_rate": 9.90515288270306e-06, "epoch": 0.4682080924855491, "percentage": 15.61, "elapsed_time": "1:50:18", "remaining_time": "9:56:30"} +{"current_steps": 730, "total_steps": 4671, "loss": 0.1385, "learning_rate": 9.904427021263065e-06, "epoch": 0.46885035324341684, "percentage": 15.63, "elapsed_time": "1:50:28", "remaining_time": "9:56:25"} +{"current_steps": 731, "total_steps": 4671, "loss": 0.1595, "learning_rate": 9.90369841970535e-06, "epoch": 0.4694926140012845, "percentage": 15.65, "elapsed_time": "1:50:37", "remaining_time": "9:56:15"} +{"current_steps": 732, "total_steps": 4671, "loss": 0.2381, "learning_rate": 9.902967078436982e-06, "epoch": 0.4701348747591522, "percentage": 15.67, "elapsed_time": "1:50:46", "remaining_time": "9:56:05"} +{"current_steps": 733, "total_steps": 4671, "loss": 0.0703, "learning_rate": 9.902232997866568e-06, "epoch": 0.4707771355170199, "percentage": 15.69, "elapsed_time": "1:50:53", "remaining_time": "9:55:45"} +{"current_steps": 734, "total_steps": 4671, "loss": 0.1225, "learning_rate": 9.901496178404237e-06, "epoch": 0.4714193962748876, "percentage": 15.71, "elapsed_time": "1:51:02", "remaining_time": "9:55:34"} +{"current_steps": 735, "total_steps": 4671, "loss": 0.1125, "learning_rate": 9.900756620461654e-06, "epoch": 0.4720616570327553, "percentage": 15.74, "elapsed_time": "1:51:11", "remaining_time": "9:55:24"} +{"current_steps": 736, "total_steps": 4671, "loss": 0.234, "learning_rate": 9.90001432445201e-06, "epoch": 0.472703917790623, "percentage": 15.76, "elapsed_time": "1:51:21", "remaining_time": "9:55:23"} +{"current_steps": 737, "total_steps": 4671, "loss": 0.1128, "learning_rate": 9.89926929079003e-06, "epoch": 0.4733461785484907, "percentage": 15.78, "elapsed_time": "1:51:30", "remaining_time": "9:55:10"} +{"current_steps": 738, "total_steps": 4671, "loss": 0.1253, "learning_rate": 9.898521519891968e-06, "epoch": 0.47398843930635837, "percentage": 15.8, "elapsed_time": "1:51:40", "remaining_time": "9:55:07"} +{"current_steps": 739, "total_steps": 4671, "loss": 0.1447, "learning_rate": 9.897771012175602e-06, "epoch": 0.4746307000642261, "percentage": 15.82, "elapsed_time": "1:51:49", "remaining_time": "9:55:01"} +{"current_steps": 740, "total_steps": 4671, "loss": 0.2246, "learning_rate": 9.897017768060246e-06, "epoch": 0.47527296082209375, "percentage": 15.84, "elapsed_time": "1:52:00", "remaining_time": "9:55:00"} +{"current_steps": 741, "total_steps": 4671, "loss": 0.1302, "learning_rate": 9.896261787966738e-06, "epoch": 0.47591522157996147, "percentage": 15.86, "elapsed_time": "1:52:08", "remaining_time": "9:54:45"} +{"current_steps": 742, "total_steps": 4671, "loss": 0.2453, "learning_rate": 9.895503072317447e-06, "epoch": 0.4765574823378292, "percentage": 15.89, "elapsed_time": "1:52:16", "remaining_time": "9:54:32"} +{"current_steps": 743, "total_steps": 4671, "loss": 0.1058, "learning_rate": 9.89474162153627e-06, "epoch": 0.47719974309569685, "percentage": 15.91, "elapsed_time": "1:52:25", "remaining_time": "9:54:23"} +{"current_steps": 744, "total_steps": 4671, "loss": 0.1275, "learning_rate": 9.89397743604863e-06, "epoch": 0.47784200385356457, "percentage": 15.93, "elapsed_time": "1:52:34", "remaining_time": "9:54:12"} +{"current_steps": 745, "total_steps": 4671, "loss": 0.1503, "learning_rate": 9.893210516281482e-06, "epoch": 0.47848426461143223, "percentage": 15.95, "elapsed_time": "1:52:44", "remaining_time": "9:54:10"} +{"current_steps": 746, "total_steps": 4671, "loss": 0.3064, "learning_rate": 9.892440862663304e-06, "epoch": 0.47912652536929995, "percentage": 15.97, "elapsed_time": "1:52:55", "remaining_time": "9:54:09"} +{"current_steps": 747, "total_steps": 4671, "loss": 0.0668, "learning_rate": 9.891668475624106e-06, "epoch": 0.4797687861271676, "percentage": 15.99, "elapsed_time": "1:53:05", "remaining_time": "9:54:02"} +{"current_steps": 748, "total_steps": 4671, "loss": 0.1012, "learning_rate": 9.890893355595422e-06, "epoch": 0.48041104688503533, "percentage": 16.01, "elapsed_time": "1:53:13", "remaining_time": "9:53:47"} +{"current_steps": 749, "total_steps": 4671, "loss": 0.2173, "learning_rate": 9.890115503010314e-06, "epoch": 0.481053307642903, "percentage": 16.04, "elapsed_time": "1:53:23", "remaining_time": "9:53:44"} +{"current_steps": 750, "total_steps": 4671, "loss": 0.0819, "learning_rate": 9.889334918303368e-06, "epoch": 0.4816955684007707, "percentage": 16.06, "elapsed_time": "1:53:32", "remaining_time": "9:53:36"} +{"current_steps": 751, "total_steps": 4671, "loss": 0.1186, "learning_rate": 9.888551601910702e-06, "epoch": 0.48233782915863843, "percentage": 16.08, "elapsed_time": "1:53:41", "remaining_time": "9:53:25"} +{"current_steps": 752, "total_steps": 4671, "loss": 0.1104, "learning_rate": 9.887765554269958e-06, "epoch": 0.4829800899165061, "percentage": 16.1, "elapsed_time": "1:53:51", "remaining_time": "9:53:22"} +{"current_steps": 753, "total_steps": 4671, "loss": 0.115, "learning_rate": 9.8869767758203e-06, "epoch": 0.4836223506743738, "percentage": 16.12, "elapsed_time": "1:54:02", "remaining_time": "9:53:23"} +{"current_steps": 754, "total_steps": 4671, "loss": 0.0896, "learning_rate": 9.886185267002421e-06, "epoch": 0.4842646114322415, "percentage": 16.14, "elapsed_time": "1:54:11", "remaining_time": "9:53:12"} +{"current_steps": 755, "total_steps": 4671, "loss": 0.2024, "learning_rate": 9.885391028258543e-06, "epoch": 0.4849068721901092, "percentage": 16.16, "elapsed_time": "1:54:22", "remaining_time": "9:53:14"} +{"current_steps": 756, "total_steps": 4671, "loss": 0.1069, "learning_rate": 9.884594060032407e-06, "epoch": 0.48554913294797686, "percentage": 16.18, "elapsed_time": "1:54:30", "remaining_time": "9:52:59"} +{"current_steps": 757, "total_steps": 4671, "loss": 0.1028, "learning_rate": 9.883794362769279e-06, "epoch": 0.4861913937058446, "percentage": 16.21, "elapsed_time": "1:54:38", "remaining_time": "9:52:44"} +{"current_steps": 758, "total_steps": 4671, "loss": 0.1021, "learning_rate": 9.882991936915957e-06, "epoch": 0.48683365446371224, "percentage": 16.23, "elapsed_time": "1:54:48", "remaining_time": "9:52:41"} +{"current_steps": 759, "total_steps": 4671, "loss": 0.1331, "learning_rate": 9.882186782920756e-06, "epoch": 0.48747591522157996, "percentage": 16.25, "elapsed_time": "1:54:57", "remaining_time": "9:52:30"} +{"current_steps": 760, "total_steps": 4671, "loss": 0.1176, "learning_rate": 9.881378901233518e-06, "epoch": 0.4881181759794477, "percentage": 16.27, "elapsed_time": "1:55:06", "remaining_time": "9:52:19"} +{"current_steps": 761, "total_steps": 4671, "loss": 0.1637, "learning_rate": 9.880568292305607e-06, "epoch": 0.48876043673731534, "percentage": 16.29, "elapsed_time": "1:55:15", "remaining_time": "9:52:12"} +{"current_steps": 762, "total_steps": 4671, "loss": 0.1656, "learning_rate": 9.879754956589919e-06, "epoch": 0.48940269749518306, "percentage": 16.31, "elapsed_time": "1:55:22", "remaining_time": "9:51:53"} +{"current_steps": 763, "total_steps": 4671, "loss": 0.1101, "learning_rate": 9.878938894540859e-06, "epoch": 0.4900449582530507, "percentage": 16.33, "elapsed_time": "1:55:32", "remaining_time": "9:51:45"} +{"current_steps": 764, "total_steps": 4671, "loss": 0.1453, "learning_rate": 9.87812010661437e-06, "epoch": 0.49068721901091844, "percentage": 16.36, "elapsed_time": "1:55:41", "remaining_time": "9:51:35"} +{"current_steps": 765, "total_steps": 4671, "loss": 0.1008, "learning_rate": 9.877298593267906e-06, "epoch": 0.4913294797687861, "percentage": 16.38, "elapsed_time": "1:55:50", "remaining_time": "9:51:27"} +{"current_steps": 766, "total_steps": 4671, "loss": 0.1202, "learning_rate": 9.876474354960453e-06, "epoch": 0.4919717405266538, "percentage": 16.4, "elapsed_time": "1:56:01", "remaining_time": "9:51:30"} +{"current_steps": 767, "total_steps": 4671, "loss": 0.0891, "learning_rate": 9.875647392152512e-06, "epoch": 0.49261400128452154, "percentage": 16.42, "elapsed_time": "1:56:08", "remaining_time": "9:51:10"} +{"current_steps": 768, "total_steps": 4671, "loss": 0.1461, "learning_rate": 9.874817705306111e-06, "epoch": 0.4932562620423892, "percentage": 16.44, "elapsed_time": "1:56:18", "remaining_time": "9:51:06"} +{"current_steps": 769, "total_steps": 4671, "loss": 0.1905, "learning_rate": 9.8739852948848e-06, "epoch": 0.4938985228002569, "percentage": 16.46, "elapsed_time": "1:56:29", "remaining_time": "9:51:03"} +{"current_steps": 770, "total_steps": 4671, "loss": 0.2005, "learning_rate": 9.873150161353646e-06, "epoch": 0.4945407835581246, "percentage": 16.48, "elapsed_time": "1:56:39", "remaining_time": "9:51:00"} +{"current_steps": 771, "total_steps": 4671, "loss": 0.1864, "learning_rate": 9.872312305179244e-06, "epoch": 0.4951830443159923, "percentage": 16.51, "elapsed_time": "1:56:48", "remaining_time": "9:50:52"} +{"current_steps": 772, "total_steps": 4671, "loss": 0.1626, "learning_rate": 9.871471726829703e-06, "epoch": 0.49582530507385997, "percentage": 16.53, "elapsed_time": "1:56:59", "remaining_time": "9:50:51"} +{"current_steps": 773, "total_steps": 4671, "loss": 0.0695, "learning_rate": 9.870628426774659e-06, "epoch": 0.4964675658317277, "percentage": 16.55, "elapsed_time": "1:57:06", "remaining_time": "9:50:32"} +{"current_steps": 774, "total_steps": 4671, "loss": 0.1799, "learning_rate": 9.869782405485267e-06, "epoch": 0.49710982658959535, "percentage": 16.57, "elapsed_time": "1:57:15", "remaining_time": "9:50:21"} +{"current_steps": 775, "total_steps": 4671, "loss": 0.1072, "learning_rate": 9.868933663434197e-06, "epoch": 0.49775208734746307, "percentage": 16.59, "elapsed_time": "1:57:25", "remaining_time": "9:50:17"} +{"current_steps": 776, "total_steps": 4671, "loss": 0.125, "learning_rate": 9.868082201095651e-06, "epoch": 0.4983943481053308, "percentage": 16.61, "elapsed_time": "1:57:34", "remaining_time": "9:50:10"} +{"current_steps": 777, "total_steps": 4671, "loss": 0.2586, "learning_rate": 9.867228018945336e-06, "epoch": 0.49903660886319845, "percentage": 16.63, "elapsed_time": "1:57:46", "remaining_time": "9:50:15"} +{"current_steps": 778, "total_steps": 4671, "loss": 0.1719, "learning_rate": 9.866371117460491e-06, "epoch": 0.49967886962106617, "percentage": 16.66, "elapsed_time": "1:57:56", "remaining_time": "9:50:08"} +{"current_steps": 779, "total_steps": 4671, "loss": 0.1161, "learning_rate": 9.865511497119868e-06, "epoch": 0.5003211303789339, "percentage": 16.68, "elapsed_time": "1:58:05", "remaining_time": "9:49:58"} +{"current_steps": 780, "total_steps": 4671, "loss": 0.0739, "learning_rate": 9.86464915840374e-06, "epoch": 0.5009633911368016, "percentage": 16.7, "elapsed_time": "1:58:14", "remaining_time": "9:49:52"} +{"current_steps": 781, "total_steps": 4671, "loss": 0.1604, "learning_rate": 9.863784101793895e-06, "epoch": 0.5016056518946692, "percentage": 16.72, "elapsed_time": "1:58:24", "remaining_time": "9:49:44"} +{"current_steps": 782, "total_steps": 4671, "loss": 0.115, "learning_rate": 9.862916327773647e-06, "epoch": 0.5022479126525369, "percentage": 16.74, "elapsed_time": "1:58:33", "remaining_time": "9:49:37"} +{"current_steps": 783, "total_steps": 4671, "loss": 0.2156, "learning_rate": 9.862045836827821e-06, "epoch": 0.5028901734104047, "percentage": 16.76, "elapsed_time": "1:58:42", "remaining_time": "9:49:25"} +{"current_steps": 784, "total_steps": 4671, "loss": 0.0788, "learning_rate": 9.861172629442763e-06, "epoch": 0.5035324341682723, "percentage": 16.78, "elapsed_time": "1:58:50", "remaining_time": "9:49:12"} +{"current_steps": 785, "total_steps": 4671, "loss": 0.0884, "learning_rate": 9.86029670610634e-06, "epoch": 0.50417469492614, "percentage": 16.81, "elapsed_time": "1:58:59", "remaining_time": "9:49:00"} +{"current_steps": 786, "total_steps": 4671, "loss": 0.1244, "learning_rate": 9.859418067307928e-06, "epoch": 0.5048169556840078, "percentage": 16.83, "elapsed_time": "1:59:07", "remaining_time": "9:48:49"} +{"current_steps": 787, "total_steps": 4671, "loss": 0.1878, "learning_rate": 9.858536713538428e-06, "epoch": 0.5054592164418754, "percentage": 16.85, "elapsed_time": "1:59:18", "remaining_time": "9:48:48"} +{"current_steps": 788, "total_steps": 4671, "loss": 0.2439, "learning_rate": 9.857652645290254e-06, "epoch": 0.5061014771997431, "percentage": 16.87, "elapsed_time": "1:59:26", "remaining_time": "9:48:34"} +{"current_steps": 789, "total_steps": 4671, "loss": 0.157, "learning_rate": 9.856765863057338e-06, "epoch": 0.5067437379576107, "percentage": 16.89, "elapsed_time": "1:59:36", "remaining_time": "9:48:28"} +{"current_steps": 790, "total_steps": 4671, "loss": 0.149, "learning_rate": 9.855876367335127e-06, "epoch": 0.5073859987154785, "percentage": 16.91, "elapsed_time": "1:59:45", "remaining_time": "9:48:21"} +{"current_steps": 791, "total_steps": 4671, "loss": 0.229, "learning_rate": 9.854984158620586e-06, "epoch": 0.5080282594733462, "percentage": 16.93, "elapsed_time": "1:59:55", "remaining_time": "9:48:14"} +{"current_steps": 792, "total_steps": 4671, "loss": 0.0788, "learning_rate": 9.854089237412194e-06, "epoch": 0.5086705202312138, "percentage": 16.96, "elapsed_time": "2:00:02", "remaining_time": "9:47:57"} +{"current_steps": 793, "total_steps": 4671, "loss": 0.2056, "learning_rate": 9.853191604209946e-06, "epoch": 0.5093127809890816, "percentage": 16.98, "elapsed_time": "2:00:13", "remaining_time": "9:47:56"} +{"current_steps": 794, "total_steps": 4671, "loss": 0.189, "learning_rate": 9.852291259515355e-06, "epoch": 0.5099550417469493, "percentage": 17.0, "elapsed_time": "2:00:22", "remaining_time": "9:47:46"} +{"current_steps": 795, "total_steps": 4671, "loss": 0.1908, "learning_rate": 9.85138820383144e-06, "epoch": 0.5105973025048169, "percentage": 17.02, "elapsed_time": "2:00:31", "remaining_time": "9:47:37"} +{"current_steps": 796, "total_steps": 4671, "loss": 0.0995, "learning_rate": 9.850482437662745e-06, "epoch": 0.5112395632626846, "percentage": 17.04, "elapsed_time": "2:00:40", "remaining_time": "9:47:28"} +{"current_steps": 797, "total_steps": 4671, "loss": 0.1648, "learning_rate": 9.849573961515326e-06, "epoch": 0.5118818240205524, "percentage": 17.06, "elapsed_time": "2:00:49", "remaining_time": "9:47:19"} +{"current_steps": 798, "total_steps": 4671, "loss": 0.151, "learning_rate": 9.848662775896747e-06, "epoch": 0.51252408477842, "percentage": 17.08, "elapsed_time": "2:00:57", "remaining_time": "9:47:03"} +{"current_steps": 799, "total_steps": 4671, "loss": 0.0903, "learning_rate": 9.847748881316093e-06, "epoch": 0.5131663455362877, "percentage": 17.11, "elapsed_time": "2:01:06", "remaining_time": "9:46:51"} +{"current_steps": 800, "total_steps": 4671, "loss": 0.063, "learning_rate": 9.846832278283958e-06, "epoch": 0.5138086062941555, "percentage": 17.13, "elapsed_time": "2:01:14", "remaining_time": "9:46:40"} +{"current_steps": 801, "total_steps": 4671, "loss": 0.0782, "learning_rate": 9.84591296731245e-06, "epoch": 0.5144508670520231, "percentage": 17.15, "elapsed_time": "2:01:24", "remaining_time": "9:46:33"} +{"current_steps": 802, "total_steps": 4671, "loss": 0.3303, "learning_rate": 9.844990948915196e-06, "epoch": 0.5150931278098908, "percentage": 17.17, "elapsed_time": "2:01:35", "remaining_time": "9:46:37"} +{"current_steps": 803, "total_steps": 4671, "loss": 0.1755, "learning_rate": 9.844066223607323e-06, "epoch": 0.5157353885677585, "percentage": 17.19, "elapsed_time": "2:01:44", "remaining_time": "9:46:27"} +{"current_steps": 804, "total_steps": 4671, "loss": 0.2767, "learning_rate": 9.843138791905483e-06, "epoch": 0.5163776493256262, "percentage": 17.21, "elapsed_time": "2:01:52", "remaining_time": "9:46:12"} +{"current_steps": 805, "total_steps": 4671, "loss": 0.166, "learning_rate": 9.842208654327833e-06, "epoch": 0.5170199100834939, "percentage": 17.23, "elapsed_time": "2:02:01", "remaining_time": "9:46:00"} +{"current_steps": 806, "total_steps": 4671, "loss": 0.1374, "learning_rate": 9.841275811394043e-06, "epoch": 0.5176621708413616, "percentage": 17.26, "elapsed_time": "2:02:10", "remaining_time": "9:45:52"} +{"current_steps": 807, "total_steps": 4671, "loss": 0.1458, "learning_rate": 9.840340263625297e-06, "epoch": 0.5183044315992292, "percentage": 17.28, "elapsed_time": "2:02:20", "remaining_time": "9:45:45"} +{"current_steps": 808, "total_steps": 4671, "loss": 0.1361, "learning_rate": 9.839402011544286e-06, "epoch": 0.518946692357097, "percentage": 17.3, "elapsed_time": "2:02:29", "remaining_time": "9:45:39"} +{"current_steps": 809, "total_steps": 4671, "loss": 0.1043, "learning_rate": 9.838461055675215e-06, "epoch": 0.5195889531149647, "percentage": 17.32, "elapsed_time": "2:02:38", "remaining_time": "9:45:30"} +{"current_steps": 810, "total_steps": 4671, "loss": 0.2019, "learning_rate": 9.837517396543799e-06, "epoch": 0.5202312138728323, "percentage": 17.34, "elapsed_time": "2:02:49", "remaining_time": "9:45:26"} +{"current_steps": 811, "total_steps": 4671, "loss": 0.0991, "learning_rate": 9.836571034677264e-06, "epoch": 0.5208734746307001, "percentage": 17.36, "elapsed_time": "2:02:57", "remaining_time": "9:45:14"} +{"current_steps": 812, "total_steps": 4671, "loss": 0.203, "learning_rate": 9.835621970604343e-06, "epoch": 0.5215157353885678, "percentage": 17.38, "elapsed_time": "2:03:08", "remaining_time": "9:45:15"} +{"current_steps": 813, "total_steps": 4671, "loss": 0.1442, "learning_rate": 9.834670204855283e-06, "epoch": 0.5221579961464354, "percentage": 17.41, "elapsed_time": "2:03:17", "remaining_time": "9:45:05"} +{"current_steps": 814, "total_steps": 4671, "loss": 0.1875, "learning_rate": 9.833715737961837e-06, "epoch": 0.5228002569043031, "percentage": 17.43, "elapsed_time": "2:03:26", "remaining_time": "9:44:56"} +{"current_steps": 815, "total_steps": 4671, "loss": 0.2201, "learning_rate": 9.832758570457271e-06, "epoch": 0.5234425176621709, "percentage": 17.45, "elapsed_time": "2:03:37", "remaining_time": "9:44:55"} +{"current_steps": 816, "total_steps": 4671, "loss": 0.2674, "learning_rate": 9.831798702876352e-06, "epoch": 0.5240847784200385, "percentage": 17.47, "elapsed_time": "2:03:46", "remaining_time": "9:44:47"} +{"current_steps": 817, "total_steps": 4671, "loss": 0.1172, "learning_rate": 9.830836135755366e-06, "epoch": 0.5247270391779062, "percentage": 17.49, "elapsed_time": "2:03:54", "remaining_time": "9:44:31"} +{"current_steps": 818, "total_steps": 4671, "loss": 0.1094, "learning_rate": 9.829870869632098e-06, "epoch": 0.525369299935774, "percentage": 17.51, "elapsed_time": "2:04:04", "remaining_time": "9:44:26"} +{"current_steps": 819, "total_steps": 4671, "loss": 0.0997, "learning_rate": 9.82890290504585e-06, "epoch": 0.5260115606936416, "percentage": 17.53, "elapsed_time": "2:04:11", "remaining_time": "9:44:07"} +{"current_steps": 820, "total_steps": 4671, "loss": 0.1653, "learning_rate": 9.827932242537422e-06, "epoch": 0.5266538214515093, "percentage": 17.56, "elapsed_time": "2:04:21", "remaining_time": "9:44:00"} +{"current_steps": 821, "total_steps": 4671, "loss": 0.0798, "learning_rate": 9.826958882649129e-06, "epoch": 0.527296082209377, "percentage": 17.58, "elapsed_time": "2:04:28", "remaining_time": "9:43:44"} +{"current_steps": 822, "total_steps": 4671, "loss": 0.2919, "learning_rate": 9.825982825924787e-06, "epoch": 0.5279383429672447, "percentage": 17.6, "elapsed_time": "2:04:37", "remaining_time": "9:43:35"} +{"current_steps": 823, "total_steps": 4671, "loss": 0.2757, "learning_rate": 9.825004072909724e-06, "epoch": 0.5285806037251124, "percentage": 17.62, "elapsed_time": "2:04:48", "remaining_time": "9:43:32"} +{"current_steps": 824, "total_steps": 4671, "loss": 0.1526, "learning_rate": 9.824022624150772e-06, "epoch": 0.5292228644829801, "percentage": 17.64, "elapsed_time": "2:04:58", "remaining_time": "9:43:29"} +{"current_steps": 825, "total_steps": 4671, "loss": 0.1174, "learning_rate": 9.823038480196269e-06, "epoch": 0.5298651252408478, "percentage": 17.66, "elapsed_time": "2:05:09", "remaining_time": "9:43:27"} +{"current_steps": 826, "total_steps": 4671, "loss": 0.21, "learning_rate": 9.822051641596058e-06, "epoch": 0.5305073859987155, "percentage": 17.68, "elapsed_time": "2:05:18", "remaining_time": "9:43:16"} +{"current_steps": 827, "total_steps": 4671, "loss": 0.1317, "learning_rate": 9.82106210890149e-06, "epoch": 0.5311496467565832, "percentage": 17.7, "elapsed_time": "2:05:28", "remaining_time": "9:43:12"} +{"current_steps": 828, "total_steps": 4671, "loss": 0.0906, "learning_rate": 9.82006988266542e-06, "epoch": 0.5317919075144508, "percentage": 17.73, "elapsed_time": "2:05:39", "remaining_time": "9:43:13"} +{"current_steps": 829, "total_steps": 4671, "loss": 0.1532, "learning_rate": 9.819074963442208e-06, "epoch": 0.5324341682723186, "percentage": 17.75, "elapsed_time": "2:05:48", "remaining_time": "9:43:02"} +{"current_steps": 830, "total_steps": 4671, "loss": 0.0879, "learning_rate": 9.818077351787717e-06, "epoch": 0.5330764290301863, "percentage": 17.77, "elapsed_time": "2:05:56", "remaining_time": "9:42:47"} +{"current_steps": 831, "total_steps": 4671, "loss": 0.1921, "learning_rate": 9.817077048259314e-06, "epoch": 0.5337186897880539, "percentage": 17.79, "elapsed_time": "2:06:04", "remaining_time": "9:42:35"} +{"current_steps": 832, "total_steps": 4671, "loss": 0.1028, "learning_rate": 9.816074053415874e-06, "epoch": 0.5343609505459217, "percentage": 17.81, "elapsed_time": "2:06:12", "remaining_time": "9:42:19"} +{"current_steps": 833, "total_steps": 4671, "loss": 0.1551, "learning_rate": 9.815068367817775e-06, "epoch": 0.5350032113037894, "percentage": 17.83, "elapsed_time": "2:06:21", "remaining_time": "9:42:09"} +{"current_steps": 834, "total_steps": 4671, "loss": 0.1468, "learning_rate": 9.814059992026893e-06, "epoch": 0.535645472061657, "percentage": 17.85, "elapsed_time": "2:06:29", "remaining_time": "9:41:56"} +{"current_steps": 835, "total_steps": 4671, "loss": 0.2273, "learning_rate": 9.81304892660661e-06, "epoch": 0.5362877328195247, "percentage": 17.88, "elapsed_time": "2:06:37", "remaining_time": "9:41:41"} +{"current_steps": 836, "total_steps": 4671, "loss": 0.1031, "learning_rate": 9.812035172121814e-06, "epoch": 0.5369299935773925, "percentage": 17.9, "elapsed_time": "2:06:44", "remaining_time": "9:41:24"} +{"current_steps": 837, "total_steps": 4671, "loss": 0.1038, "learning_rate": 9.811018729138892e-06, "epoch": 0.5375722543352601, "percentage": 17.92, "elapsed_time": "2:06:52", "remaining_time": "9:41:09"} +{"current_steps": 838, "total_steps": 4671, "loss": 0.1411, "learning_rate": 9.809999598225733e-06, "epoch": 0.5382145150931278, "percentage": 17.94, "elapsed_time": "2:07:00", "remaining_time": "9:40:55"} +{"current_steps": 839, "total_steps": 4671, "loss": 0.0953, "learning_rate": 9.808977779951728e-06, "epoch": 0.5388567758509955, "percentage": 17.96, "elapsed_time": "2:07:11", "remaining_time": "9:40:55"} +{"current_steps": 840, "total_steps": 4671, "loss": 0.1182, "learning_rate": 9.807953274887771e-06, "epoch": 0.5394990366088632, "percentage": 17.98, "elapsed_time": "2:07:20", "remaining_time": "9:40:44"} +{"current_steps": 841, "total_steps": 4671, "loss": 0.0779, "learning_rate": 9.806926083606255e-06, "epoch": 0.5401412973667309, "percentage": 18.0, "elapsed_time": "2:07:27", "remaining_time": "9:40:27"} +{"current_steps": 842, "total_steps": 4671, "loss": 0.1521, "learning_rate": 9.805896206681075e-06, "epoch": 0.5407835581245986, "percentage": 18.03, "elapsed_time": "2:07:36", "remaining_time": "9:40:17"} +{"current_steps": 843, "total_steps": 4671, "loss": 0.1344, "learning_rate": 9.804863644687627e-06, "epoch": 0.5414258188824663, "percentage": 18.05, "elapsed_time": "2:07:44", "remaining_time": "9:40:04"} +{"current_steps": 844, "total_steps": 4671, "loss": 0.2666, "learning_rate": 9.803828398202805e-06, "epoch": 0.542068079640334, "percentage": 18.07, "elapsed_time": "2:07:54", "remaining_time": "9:40:00"} +{"current_steps": 845, "total_steps": 4671, "loss": 0.2046, "learning_rate": 9.802790467805006e-06, "epoch": 0.5427103403982017, "percentage": 18.09, "elapsed_time": "2:08:06", "remaining_time": "9:40:01"} +{"current_steps": 846, "total_steps": 4671, "loss": 0.2138, "learning_rate": 9.801749854074122e-06, "epoch": 0.5433526011560693, "percentage": 18.11, "elapsed_time": "2:08:16", "remaining_time": "9:40:00"} +{"current_steps": 847, "total_steps": 4671, "loss": 0.1902, "learning_rate": 9.800706557591551e-06, "epoch": 0.5439948619139371, "percentage": 18.13, "elapsed_time": "2:08:25", "remaining_time": "9:39:49"} +{"current_steps": 848, "total_steps": 4671, "loss": 0.1163, "learning_rate": 9.799660578940181e-06, "epoch": 0.5446371226718048, "percentage": 18.15, "elapsed_time": "2:08:35", "remaining_time": "9:39:44"} +{"current_steps": 849, "total_steps": 4671, "loss": 0.1437, "learning_rate": 9.798611918704408e-06, "epoch": 0.5452793834296724, "percentage": 18.18, "elapsed_time": "2:08:44", "remaining_time": "9:39:33"} +{"current_steps": 850, "total_steps": 4671, "loss": 0.2257, "learning_rate": 9.797560577470119e-06, "epoch": 0.5459216441875402, "percentage": 18.2, "elapsed_time": "2:08:54", "remaining_time": "9:39:30"} +{"current_steps": 851, "total_steps": 4671, "loss": 0.1544, "learning_rate": 9.7965065558247e-06, "epoch": 0.5465639049454079, "percentage": 18.22, "elapsed_time": "2:09:03", "remaining_time": "9:39:21"} +{"current_steps": 852, "total_steps": 4671, "loss": 0.077, "learning_rate": 9.79544985435704e-06, "epoch": 0.5472061657032755, "percentage": 18.24, "elapsed_time": "2:09:13", "remaining_time": "9:39:14"} +{"current_steps": 853, "total_steps": 4671, "loss": 0.1596, "learning_rate": 9.794390473657517e-06, "epoch": 0.5478484264611432, "percentage": 18.26, "elapsed_time": "2:09:21", "remaining_time": "9:38:59"} +{"current_steps": 854, "total_steps": 4671, "loss": 0.116, "learning_rate": 9.793328414318016e-06, "epoch": 0.548490687219011, "percentage": 18.28, "elapsed_time": "2:09:30", "remaining_time": "9:38:50"} +{"current_steps": 855, "total_steps": 4671, "loss": 0.2343, "learning_rate": 9.792263676931906e-06, "epoch": 0.5491329479768786, "percentage": 18.3, "elapsed_time": "2:09:42", "remaining_time": "9:38:53"} +{"current_steps": 856, "total_steps": 4671, "loss": 0.1414, "learning_rate": 9.79119626209406e-06, "epoch": 0.5497752087347463, "percentage": 18.33, "elapsed_time": "2:09:50", "remaining_time": "9:38:39"} +{"current_steps": 857, "total_steps": 4671, "loss": 0.1022, "learning_rate": 9.79012617040085e-06, "epoch": 0.550417469492614, "percentage": 18.35, "elapsed_time": "2:10:00", "remaining_time": "9:38:33"} +{"current_steps": 858, "total_steps": 4671, "loss": 0.0911, "learning_rate": 9.789053402450136e-06, "epoch": 0.5510597302504817, "percentage": 18.37, "elapsed_time": "2:10:08", "remaining_time": "9:38:21"} +{"current_steps": 859, "total_steps": 4671, "loss": 0.2115, "learning_rate": 9.787977958841277e-06, "epoch": 0.5517019910083494, "percentage": 18.39, "elapsed_time": "2:10:17", "remaining_time": "9:38:10"} +{"current_steps": 860, "total_steps": 4671, "loss": 0.1097, "learning_rate": 9.786899840175128e-06, "epoch": 0.552344251766217, "percentage": 18.41, "elapsed_time": "2:10:28", "remaining_time": "9:38:09"} +{"current_steps": 861, "total_steps": 4671, "loss": 0.2009, "learning_rate": 9.785819047054034e-06, "epoch": 0.5529865125240848, "percentage": 18.43, "elapsed_time": "2:10:38", "remaining_time": "9:38:05"} +{"current_steps": 862, "total_steps": 4671, "loss": 0.1447, "learning_rate": 9.78473558008184e-06, "epoch": 0.5536287732819525, "percentage": 18.45, "elapsed_time": "2:10:46", "remaining_time": "9:37:51"} +{"current_steps": 863, "total_steps": 4671, "loss": 0.1835, "learning_rate": 9.783649439863882e-06, "epoch": 0.5542710340398201, "percentage": 18.48, "elapsed_time": "2:10:56", "remaining_time": "9:37:45"} +{"current_steps": 864, "total_steps": 4671, "loss": 0.131, "learning_rate": 9.78256062700699e-06, "epoch": 0.5549132947976878, "percentage": 18.5, "elapsed_time": "2:11:04", "remaining_time": "9:37:32"} +{"current_steps": 865, "total_steps": 4671, "loss": 0.1465, "learning_rate": 9.781469142119484e-06, "epoch": 0.5555555555555556, "percentage": 18.52, "elapsed_time": "2:11:13", "remaining_time": "9:37:22"} +{"current_steps": 866, "total_steps": 4671, "loss": 0.1494, "learning_rate": 9.780374985811184e-06, "epoch": 0.5561978163134232, "percentage": 18.54, "elapsed_time": "2:11:21", "remaining_time": "9:37:07"} +{"current_steps": 867, "total_steps": 4671, "loss": 0.1194, "learning_rate": 9.779278158693392e-06, "epoch": 0.5568400770712909, "percentage": 18.56, "elapsed_time": "2:11:30", "remaining_time": "9:37:00"} +{"current_steps": 868, "total_steps": 4671, "loss": 0.1526, "learning_rate": 9.778178661378916e-06, "epoch": 0.5574823378291587, "percentage": 18.58, "elapsed_time": "2:11:40", "remaining_time": "9:36:53"} +{"current_steps": 869, "total_steps": 4671, "loss": 0.1559, "learning_rate": 9.777076494482045e-06, "epoch": 0.5581245985870263, "percentage": 18.6, "elapsed_time": "2:11:48", "remaining_time": "9:36:41"} +{"current_steps": 870, "total_steps": 4671, "loss": 0.0831, "learning_rate": 9.775971658618562e-06, "epoch": 0.558766859344894, "percentage": 18.63, "elapsed_time": "2:11:56", "remaining_time": "9:36:26"} +{"current_steps": 871, "total_steps": 4671, "loss": 0.2149, "learning_rate": 9.774864154405743e-06, "epoch": 0.5594091201027617, "percentage": 18.65, "elapsed_time": "2:12:07", "remaining_time": "9:36:24"} +{"current_steps": 872, "total_steps": 4671, "loss": 0.162, "learning_rate": 9.773753982462354e-06, "epoch": 0.5600513808606294, "percentage": 18.67, "elapsed_time": "2:12:16", "remaining_time": "9:36:15"} +{"current_steps": 873, "total_steps": 4671, "loss": 0.1662, "learning_rate": 9.772641143408652e-06, "epoch": 0.5606936416184971, "percentage": 18.69, "elapsed_time": "2:12:25", "remaining_time": "9:36:08"} +{"current_steps": 874, "total_steps": 4671, "loss": 0.1417, "learning_rate": 9.771525637866382e-06, "epoch": 0.5613359023763648, "percentage": 18.71, "elapsed_time": "2:12:35", "remaining_time": "9:36:00"} +{"current_steps": 875, "total_steps": 4671, "loss": 0.2446, "learning_rate": 9.77040746645878e-06, "epoch": 0.5619781631342325, "percentage": 18.73, "elapsed_time": "2:12:45", "remaining_time": "9:35:56"} +{"current_steps": 876, "total_steps": 4671, "loss": 0.175, "learning_rate": 9.769286629810572e-06, "epoch": 0.5626204238921002, "percentage": 18.75, "elapsed_time": "2:12:55", "remaining_time": "9:35:51"} +{"current_steps": 877, "total_steps": 4671, "loss": 0.1142, "learning_rate": 9.768163128547974e-06, "epoch": 0.5632626846499679, "percentage": 18.78, "elapsed_time": "2:13:04", "remaining_time": "9:35:42"} +{"current_steps": 878, "total_steps": 4671, "loss": 0.0637, "learning_rate": 9.767036963298689e-06, "epoch": 0.5639049454078355, "percentage": 18.8, "elapsed_time": "2:13:12", "remaining_time": "9:35:27"} +{"current_steps": 879, "total_steps": 4671, "loss": 0.1094, "learning_rate": 9.765908134691907e-06, "epoch": 0.5645472061657033, "percentage": 18.82, "elapsed_time": "2:13:21", "remaining_time": "9:35:17"} +{"current_steps": 880, "total_steps": 4671, "loss": 0.2117, "learning_rate": 9.76477664335831e-06, "epoch": 0.565189466923571, "percentage": 18.84, "elapsed_time": "2:13:30", "remaining_time": "9:35:09"} +{"current_steps": 881, "total_steps": 4671, "loss": 0.1624, "learning_rate": 9.763642489930064e-06, "epoch": 0.5658317276814386, "percentage": 18.86, "elapsed_time": "2:13:38", "remaining_time": "9:34:54"} +{"current_steps": 882, "total_steps": 4671, "loss": 0.0975, "learning_rate": 9.762505675040826e-06, "epoch": 0.5664739884393064, "percentage": 18.88, "elapsed_time": "2:13:47", "remaining_time": "9:34:46"} +{"current_steps": 883, "total_steps": 4671, "loss": 0.2326, "learning_rate": 9.761366199325734e-06, "epoch": 0.5671162491971741, "percentage": 18.9, "elapsed_time": "2:13:55", "remaining_time": "9:34:33"} +{"current_steps": 884, "total_steps": 4671, "loss": 0.1157, "learning_rate": 9.76022406342142e-06, "epoch": 0.5677585099550417, "percentage": 18.93, "elapsed_time": "2:14:04", "remaining_time": "9:34:23"} +{"current_steps": 885, "total_steps": 4671, "loss": 0.2778, "learning_rate": 9.759079267965998e-06, "epoch": 0.5684007707129094, "percentage": 18.95, "elapsed_time": "2:14:14", "remaining_time": "9:34:17"} +{"current_steps": 886, "total_steps": 4671, "loss": 0.2511, "learning_rate": 9.75793181359907e-06, "epoch": 0.5690430314707772, "percentage": 18.97, "elapsed_time": "2:14:24", "remaining_time": "9:34:13"} +{"current_steps": 887, "total_steps": 4671, "loss": 0.1962, "learning_rate": 9.756781700961717e-06, "epoch": 0.5696852922286448, "percentage": 18.99, "elapsed_time": "2:14:35", "remaining_time": "9:34:08"} +{"current_steps": 888, "total_steps": 4671, "loss": 0.1449, "learning_rate": 9.755628930696513e-06, "epoch": 0.5703275529865125, "percentage": 19.01, "elapsed_time": "2:14:43", "remaining_time": "9:33:56"} +{"current_steps": 889, "total_steps": 4671, "loss": 0.1302, "learning_rate": 9.754473503447516e-06, "epoch": 0.5709698137443803, "percentage": 19.03, "elapsed_time": "2:14:52", "remaining_time": "9:33:48"} +{"current_steps": 890, "total_steps": 4671, "loss": 0.1786, "learning_rate": 9.753315419860264e-06, "epoch": 0.5716120745022479, "percentage": 19.05, "elapsed_time": "2:15:01", "remaining_time": "9:33:38"} +{"current_steps": 891, "total_steps": 4671, "loss": 0.0833, "learning_rate": 9.752154680581783e-06, "epoch": 0.5722543352601156, "percentage": 19.08, "elapsed_time": "2:15:11", "remaining_time": "9:33:31"} +{"current_steps": 892, "total_steps": 4671, "loss": 0.1806, "learning_rate": 9.750991286260582e-06, "epoch": 0.5728965960179833, "percentage": 19.1, "elapsed_time": "2:15:21", "remaining_time": "9:33:26"} +{"current_steps": 893, "total_steps": 4671, "loss": 0.1458, "learning_rate": 9.749825237546652e-06, "epoch": 0.573538856775851, "percentage": 19.12, "elapsed_time": "2:15:29", "remaining_time": "9:33:11"} +{"current_steps": 894, "total_steps": 4671, "loss": 0.0938, "learning_rate": 9.748656535091467e-06, "epoch": 0.5741811175337187, "percentage": 19.14, "elapsed_time": "2:15:36", "remaining_time": "9:32:56"} +{"current_steps": 895, "total_steps": 4671, "loss": 0.1811, "learning_rate": 9.747485179547986e-06, "epoch": 0.5748233782915864, "percentage": 19.16, "elapsed_time": "2:15:48", "remaining_time": "9:32:57"} +{"current_steps": 896, "total_steps": 4671, "loss": 0.1556, "learning_rate": 9.746311171570649e-06, "epoch": 0.575465639049454, "percentage": 19.18, "elapsed_time": "2:15:57", "remaining_time": "9:32:47"} +{"current_steps": 897, "total_steps": 4671, "loss": 0.1661, "learning_rate": 9.745134511815375e-06, "epoch": 0.5761078998073218, "percentage": 19.2, "elapsed_time": "2:16:08", "remaining_time": "9:32:49"} +{"current_steps": 898, "total_steps": 4671, "loss": 0.1244, "learning_rate": 9.74395520093957e-06, "epoch": 0.5767501605651895, "percentage": 19.23, "elapsed_time": "2:16:16", "remaining_time": "9:32:35"} +{"current_steps": 899, "total_steps": 4671, "loss": 0.1065, "learning_rate": 9.742773239602118e-06, "epoch": 0.5773924213230571, "percentage": 19.25, "elapsed_time": "2:16:25", "remaining_time": "9:32:26"} +{"current_steps": 900, "total_steps": 4671, "loss": 0.1599, "learning_rate": 9.741588628463384e-06, "epoch": 0.5780346820809249, "percentage": 19.27, "elapsed_time": "2:16:36", "remaining_time": "9:32:24"} +{"current_steps": 901, "total_steps": 4671, "loss": 0.1015, "learning_rate": 9.740401368185212e-06, "epoch": 0.5786769428387926, "percentage": 19.29, "elapsed_time": "2:16:45", "remaining_time": "9:32:13"} +{"current_steps": 902, "total_steps": 4671, "loss": 0.138, "learning_rate": 9.73921145943093e-06, "epoch": 0.5793192035966602, "percentage": 19.31, "elapsed_time": "2:16:53", "remaining_time": "9:32:01"} +{"current_steps": 903, "total_steps": 4671, "loss": 0.1289, "learning_rate": 9.738018902865342e-06, "epoch": 0.5799614643545279, "percentage": 19.33, "elapsed_time": "2:17:02", "remaining_time": "9:31:51"} +{"current_steps": 904, "total_steps": 4671, "loss": 0.1202, "learning_rate": 9.736823699154734e-06, "epoch": 0.5806037251123957, "percentage": 19.35, "elapsed_time": "2:17:12", "remaining_time": "9:31:43"} +{"current_steps": 905, "total_steps": 4671, "loss": 0.1242, "learning_rate": 9.73562584896687e-06, "epoch": 0.5812459858702633, "percentage": 19.37, "elapsed_time": "2:17:19", "remaining_time": "9:31:29"} +{"current_steps": 906, "total_steps": 4671, "loss": 0.1456, "learning_rate": 9.73442535297099e-06, "epoch": 0.581888246628131, "percentage": 19.4, "elapsed_time": "2:17:28", "remaining_time": "9:31:18"} +{"current_steps": 907, "total_steps": 4671, "loss": 0.1614, "learning_rate": 9.733222211837818e-06, "epoch": 0.5825305073859988, "percentage": 19.42, "elapsed_time": "2:17:37", "remaining_time": "9:31:08"} +{"current_steps": 908, "total_steps": 4671, "loss": 0.1094, "learning_rate": 9.732016426239552e-06, "epoch": 0.5831727681438664, "percentage": 19.44, "elapsed_time": "2:17:47", "remaining_time": "9:31:00"} +{"current_steps": 909, "total_steps": 4671, "loss": 0.1649, "learning_rate": 9.730807996849864e-06, "epoch": 0.5838150289017341, "percentage": 19.46, "elapsed_time": "2:17:56", "remaining_time": "9:30:55"} +{"current_steps": 910, "total_steps": 4671, "loss": 0.2042, "learning_rate": 9.729596924343913e-06, "epoch": 0.5844572896596018, "percentage": 19.48, "elapsed_time": "2:18:05", "remaining_time": "9:30:42"} +{"current_steps": 911, "total_steps": 4671, "loss": 0.1725, "learning_rate": 9.728383209398325e-06, "epoch": 0.5850995504174695, "percentage": 19.5, "elapsed_time": "2:18:14", "remaining_time": "9:30:35"} +{"current_steps": 912, "total_steps": 4671, "loss": 0.0856, "learning_rate": 9.727166852691205e-06, "epoch": 0.5857418111753372, "percentage": 19.52, "elapsed_time": "2:18:23", "remaining_time": "9:30:25"} +{"current_steps": 913, "total_steps": 4671, "loss": 0.1197, "learning_rate": 9.725947854902137e-06, "epoch": 0.5863840719332049, "percentage": 19.55, "elapsed_time": "2:18:32", "remaining_time": "9:30:14"} +{"current_steps": 914, "total_steps": 4671, "loss": 0.1169, "learning_rate": 9.72472621671218e-06, "epoch": 0.5870263326910726, "percentage": 19.57, "elapsed_time": "2:18:41", "remaining_time": "9:30:05"} +{"current_steps": 915, "total_steps": 4671, "loss": 0.2694, "learning_rate": 9.723501938803863e-06, "epoch": 0.5876685934489403, "percentage": 19.59, "elapsed_time": "2:18:52", "remaining_time": "9:30:05"} +{"current_steps": 916, "total_steps": 4671, "loss": 0.1795, "learning_rate": 9.722275021861195e-06, "epoch": 0.588310854206808, "percentage": 19.61, "elapsed_time": "2:19:02", "remaining_time": "9:29:58"} +{"current_steps": 917, "total_steps": 4671, "loss": 0.2019, "learning_rate": 9.721045466569663e-06, "epoch": 0.5889531149646756, "percentage": 19.63, "elapsed_time": "2:19:12", "remaining_time": "9:29:55"} +{"current_steps": 918, "total_steps": 4671, "loss": 0.1886, "learning_rate": 9.719813273616216e-06, "epoch": 0.5895953757225434, "percentage": 19.65, "elapsed_time": "2:19:23", "remaining_time": "9:29:50"} +{"current_steps": 919, "total_steps": 4671, "loss": 0.1241, "learning_rate": 9.718578443689289e-06, "epoch": 0.590237636480411, "percentage": 19.67, "elapsed_time": "2:19:30", "remaining_time": "9:29:35"} +{"current_steps": 920, "total_steps": 4671, "loss": 0.0935, "learning_rate": 9.717340977478781e-06, "epoch": 0.5908798972382787, "percentage": 19.7, "elapsed_time": "2:19:40", "remaining_time": "9:29:27"} +{"current_steps": 921, "total_steps": 4671, "loss": 0.136, "learning_rate": 9.716100875676071e-06, "epoch": 0.5915221579961464, "percentage": 19.72, "elapsed_time": "2:19:49", "remaining_time": "9:29:19"} +{"current_steps": 922, "total_steps": 4671, "loss": 0.0542, "learning_rate": 9.714858138974006e-06, "epoch": 0.5921644187540142, "percentage": 19.74, "elapsed_time": "2:19:56", "remaining_time": "9:29:02"} +{"current_steps": 923, "total_steps": 4671, "loss": 0.2511, "learning_rate": 9.713612768066907e-06, "epoch": 0.5928066795118818, "percentage": 19.76, "elapsed_time": "2:20:06", "remaining_time": "9:28:54"} +{"current_steps": 924, "total_steps": 4671, "loss": 0.0746, "learning_rate": 9.712364763650568e-06, "epoch": 0.5934489402697495, "percentage": 19.78, "elapsed_time": "2:20:16", "remaining_time": "9:28:51"} +{"current_steps": 925, "total_steps": 4671, "loss": 0.2156, "learning_rate": 9.71111412642225e-06, "epoch": 0.5940912010276173, "percentage": 19.8, "elapsed_time": "2:20:27", "remaining_time": "9:28:48"} +{"current_steps": 926, "total_steps": 4671, "loss": 0.2087, "learning_rate": 9.709860857080688e-06, "epoch": 0.5947334617854849, "percentage": 19.82, "elapsed_time": "2:20:35", "remaining_time": "9:28:36"} +{"current_steps": 927, "total_steps": 4671, "loss": 0.0808, "learning_rate": 9.70860495632609e-06, "epoch": 0.5953757225433526, "percentage": 19.85, "elapsed_time": "2:20:42", "remaining_time": "9:28:19"} +{"current_steps": 928, "total_steps": 4671, "loss": 0.1489, "learning_rate": 9.707346424860129e-06, "epoch": 0.5960179833012202, "percentage": 19.87, "elapsed_time": "2:20:50", "remaining_time": "9:28:02"} +{"current_steps": 929, "total_steps": 4671, "loss": 0.0891, "learning_rate": 9.706085263385951e-06, "epoch": 0.596660244059088, "percentage": 19.89, "elapsed_time": "2:20:58", "remaining_time": "9:27:51"} +{"current_steps": 930, "total_steps": 4671, "loss": 0.1978, "learning_rate": 9.704821472608169e-06, "epoch": 0.5973025048169557, "percentage": 19.91, "elapsed_time": "2:21:07", "remaining_time": "9:27:40"} +{"current_steps": 931, "total_steps": 4671, "loss": 0.1147, "learning_rate": 9.70355505323287e-06, "epoch": 0.5979447655748233, "percentage": 19.93, "elapsed_time": "2:21:15", "remaining_time": "9:27:26"} +{"current_steps": 932, "total_steps": 4671, "loss": 0.175, "learning_rate": 9.702286005967602e-06, "epoch": 0.5985870263326911, "percentage": 19.95, "elapsed_time": "2:21:25", "remaining_time": "9:27:22"} +{"current_steps": 933, "total_steps": 4671, "loss": 0.1508, "learning_rate": 9.701014331521388e-06, "epoch": 0.5992292870905588, "percentage": 19.97, "elapsed_time": "2:21:33", "remaining_time": "9:27:09"} +{"current_steps": 934, "total_steps": 4671, "loss": 0.12, "learning_rate": 9.699740030604716e-06, "epoch": 0.5998715478484264, "percentage": 20.0, "elapsed_time": "2:21:42", "remaining_time": "9:26:57"} +{"current_steps": 935, "total_steps": 4671, "loss": 0.1644, "learning_rate": 9.698463103929542e-06, "epoch": 0.6005138086062941, "percentage": 20.02, "elapsed_time": "2:21:51", "remaining_time": "9:26:49"} +{"current_steps": 936, "total_steps": 4671, "loss": 0.1103, "learning_rate": 9.697183552209289e-06, "epoch": 0.6011560693641619, "percentage": 20.04, "elapsed_time": "2:22:00", "remaining_time": "9:26:38"} +{"current_steps": 937, "total_steps": 4671, "loss": 0.1059, "learning_rate": 9.695901376158845e-06, "epoch": 0.6017983301220295, "percentage": 20.06, "elapsed_time": "2:22:08", "remaining_time": "9:26:28"} +{"current_steps": 938, "total_steps": 4671, "loss": 0.178, "learning_rate": 9.694616576494565e-06, "epoch": 0.6024405908798972, "percentage": 20.08, "elapsed_time": "2:22:16", "remaining_time": "9:26:13"} +{"current_steps": 939, "total_steps": 4671, "loss": 0.2421, "learning_rate": 9.693329153934272e-06, "epoch": 0.603082851637765, "percentage": 20.1, "elapsed_time": "2:22:24", "remaining_time": "9:25:59"} +{"current_steps": 940, "total_steps": 4671, "loss": 0.1284, "learning_rate": 9.692039109197251e-06, "epoch": 0.6037251123956326, "percentage": 20.12, "elapsed_time": "2:22:32", "remaining_time": "9:25:44"} +{"current_steps": 941, "total_steps": 4671, "loss": 0.1376, "learning_rate": 9.690746443004255e-06, "epoch": 0.6043673731535003, "percentage": 20.15, "elapsed_time": "2:22:40", "remaining_time": "9:25:32"} +{"current_steps": 942, "total_steps": 4671, "loss": 0.1352, "learning_rate": 9.689451156077501e-06, "epoch": 0.605009633911368, "percentage": 20.17, "elapsed_time": "2:22:49", "remaining_time": "9:25:24"} +{"current_steps": 943, "total_steps": 4671, "loss": 0.1068, "learning_rate": 9.68815324914067e-06, "epoch": 0.6056518946692357, "percentage": 20.19, "elapsed_time": "2:22:58", "remaining_time": "9:25:14"} +{"current_steps": 944, "total_steps": 4671, "loss": 0.1276, "learning_rate": 9.686852722918903e-06, "epoch": 0.6062941554271034, "percentage": 20.21, "elapsed_time": "2:23:08", "remaining_time": "9:25:09"} +{"current_steps": 945, "total_steps": 4671, "loss": 0.1035, "learning_rate": 9.68554957813881e-06, "epoch": 0.6069364161849711, "percentage": 20.23, "elapsed_time": "2:23:18", "remaining_time": "9:25:02"} +{"current_steps": 946, "total_steps": 4671, "loss": 0.1989, "learning_rate": 9.684243815528464e-06, "epoch": 0.6075786769428388, "percentage": 20.25, "elapsed_time": "2:23:29", "remaining_time": "9:24:59"} +{"current_steps": 947, "total_steps": 4671, "loss": 0.0999, "learning_rate": 9.682935435817394e-06, "epoch": 0.6082209377007065, "percentage": 20.27, "elapsed_time": "2:23:37", "remaining_time": "9:24:47"} +{"current_steps": 948, "total_steps": 4671, "loss": 0.1918, "learning_rate": 9.681624439736598e-06, "epoch": 0.6088631984585742, "percentage": 20.3, "elapsed_time": "2:23:48", "remaining_time": "9:24:45"} +{"current_steps": 949, "total_steps": 4671, "loss": 0.1613, "learning_rate": 9.680310828018535e-06, "epoch": 0.6095054592164418, "percentage": 20.32, "elapsed_time": "2:23:58", "remaining_time": "9:24:38"} +{"current_steps": 950, "total_steps": 4671, "loss": 0.1682, "learning_rate": 9.67899460139712e-06, "epoch": 0.6101477199743096, "percentage": 20.34, "elapsed_time": "2:24:07", "remaining_time": "9:24:31"} +{"current_steps": 951, "total_steps": 4671, "loss": 0.1632, "learning_rate": 9.677675760607735e-06, "epoch": 0.6107899807321773, "percentage": 20.36, "elapsed_time": "2:24:17", "remaining_time": "9:24:24"} +{"current_steps": 952, "total_steps": 4671, "loss": 0.19, "learning_rate": 9.67635430638722e-06, "epoch": 0.6114322414900449, "percentage": 20.38, "elapsed_time": "2:24:25", "remaining_time": "9:24:10"} +{"current_steps": 953, "total_steps": 4671, "loss": 0.1841, "learning_rate": 9.675030239473873e-06, "epoch": 0.6120745022479126, "percentage": 20.4, "elapsed_time": "2:24:35", "remaining_time": "9:24:06"} +{"current_steps": 954, "total_steps": 4671, "loss": 0.1253, "learning_rate": 9.673703560607459e-06, "epoch": 0.6127167630057804, "percentage": 20.42, "elapsed_time": "2:24:45", "remaining_time": "9:24:00"} +{"current_steps": 955, "total_steps": 4671, "loss": 0.2707, "learning_rate": 9.672374270529192e-06, "epoch": 0.613359023763648, "percentage": 20.45, "elapsed_time": "2:24:56", "remaining_time": "9:23:59"} +{"current_steps": 956, "total_steps": 4671, "loss": 0.1428, "learning_rate": 9.671042369981753e-06, "epoch": 0.6140012845215157, "percentage": 20.47, "elapsed_time": "2:25:05", "remaining_time": "9:23:48"} +{"current_steps": 957, "total_steps": 4671, "loss": 0.0922, "learning_rate": 9.669707859709279e-06, "epoch": 0.6146435452793835, "percentage": 20.49, "elapsed_time": "2:25:14", "remaining_time": "9:23:38"} +{"current_steps": 958, "total_steps": 4671, "loss": 0.0776, "learning_rate": 9.668370740457365e-06, "epoch": 0.6152858060372511, "percentage": 20.51, "elapsed_time": "2:25:21", "remaining_time": "9:23:21"} +{"current_steps": 959, "total_steps": 4671, "loss": 0.1269, "learning_rate": 9.667031012973062e-06, "epoch": 0.6159280667951188, "percentage": 20.53, "elapsed_time": "2:25:28", "remaining_time": "9:23:06"} +{"current_steps": 960, "total_steps": 4671, "loss": 0.2368, "learning_rate": 9.66568867800488e-06, "epoch": 0.6165703275529865, "percentage": 20.55, "elapsed_time": "2:25:38", "remaining_time": "9:23:00"} +{"current_steps": 961, "total_steps": 4671, "loss": 0.2137, "learning_rate": 9.664343736302786e-06, "epoch": 0.6172125883108542, "percentage": 20.57, "elapsed_time": "2:25:47", "remaining_time": "9:22:48"} +{"current_steps": 962, "total_steps": 4671, "loss": 0.2188, "learning_rate": 9.662996188618203e-06, "epoch": 0.6178548490687219, "percentage": 20.6, "elapsed_time": "2:25:58", "remaining_time": "9:22:50"} +{"current_steps": 963, "total_steps": 4671, "loss": 0.1721, "learning_rate": 9.661646035704009e-06, "epoch": 0.6184971098265896, "percentage": 20.62, "elapsed_time": "2:26:08", "remaining_time": "9:22:41"} +{"current_steps": 964, "total_steps": 4671, "loss": 0.1369, "learning_rate": 9.660293278314539e-06, "epoch": 0.6191393705844573, "percentage": 20.64, "elapsed_time": "2:26:16", "remaining_time": "9:22:27"} +{"current_steps": 965, "total_steps": 4671, "loss": 0.1948, "learning_rate": 9.658937917205583e-06, "epoch": 0.619781631342325, "percentage": 20.66, "elapsed_time": "2:26:26", "remaining_time": "9:22:24"} +{"current_steps": 966, "total_steps": 4671, "loss": 0.0986, "learning_rate": 9.657579953134384e-06, "epoch": 0.6204238921001927, "percentage": 20.68, "elapsed_time": "2:26:36", "remaining_time": "9:22:16"} +{"current_steps": 967, "total_steps": 4671, "loss": 0.2897, "learning_rate": 9.656219386859642e-06, "epoch": 0.6210661528580603, "percentage": 20.7, "elapsed_time": "2:26:47", "remaining_time": "9:22:17"} +{"current_steps": 968, "total_steps": 4671, "loss": 0.1406, "learning_rate": 9.654856219141506e-06, "epoch": 0.6217084136159281, "percentage": 20.72, "elapsed_time": "2:26:56", "remaining_time": "9:22:07"} +{"current_steps": 969, "total_steps": 4671, "loss": 0.1529, "learning_rate": 9.653490450741587e-06, "epoch": 0.6223506743737958, "percentage": 20.75, "elapsed_time": "2:27:04", "remaining_time": "9:21:54"} +{"current_steps": 970, "total_steps": 4671, "loss": 0.0778, "learning_rate": 9.652122082422939e-06, "epoch": 0.6229929351316634, "percentage": 20.77, "elapsed_time": "2:27:12", "remaining_time": "9:21:41"} +{"current_steps": 971, "total_steps": 4671, "loss": 0.1035, "learning_rate": 9.650751114950077e-06, "epoch": 0.6236351958895312, "percentage": 20.79, "elapsed_time": "2:27:22", "remaining_time": "9:21:34"} +{"current_steps": 972, "total_steps": 4671, "loss": 0.1354, "learning_rate": 9.649377549088962e-06, "epoch": 0.6242774566473989, "percentage": 20.81, "elapsed_time": "2:27:32", "remaining_time": "9:21:28"} +{"current_steps": 973, "total_steps": 4671, "loss": 0.1756, "learning_rate": 9.64800138560701e-06, "epoch": 0.6249197174052665, "percentage": 20.83, "elapsed_time": "2:27:42", "remaining_time": "9:21:22"} +{"current_steps": 974, "total_steps": 4671, "loss": 0.125, "learning_rate": 9.646622625273088e-06, "epoch": 0.6255619781631342, "percentage": 20.85, "elapsed_time": "2:27:51", "remaining_time": "9:21:14"} +{"current_steps": 975, "total_steps": 4671, "loss": 0.0803, "learning_rate": 9.645241268857515e-06, "epoch": 0.626204238921002, "percentage": 20.87, "elapsed_time": "2:28:00", "remaining_time": "9:21:02"} +{"current_steps": 976, "total_steps": 4671, "loss": 0.1371, "learning_rate": 9.643857317132054e-06, "epoch": 0.6268464996788696, "percentage": 20.89, "elapsed_time": "2:28:11", "remaining_time": "9:21:00"} +{"current_steps": 977, "total_steps": 4671, "loss": 0.1019, "learning_rate": 9.64247077086993e-06, "epoch": 0.6274887604367373, "percentage": 20.92, "elapsed_time": "2:28:20", "remaining_time": "9:20:51"} +{"current_steps": 978, "total_steps": 4671, "loss": 0.1162, "learning_rate": 9.641081630845803e-06, "epoch": 0.628131021194605, "percentage": 20.94, "elapsed_time": "2:28:27", "remaining_time": "9:20:36"} +{"current_steps": 979, "total_steps": 4671, "loss": 0.1948, "learning_rate": 9.639689897835793e-06, "epoch": 0.6287732819524727, "percentage": 20.96, "elapsed_time": "2:28:37", "remaining_time": "9:20:30"} +{"current_steps": 980, "total_steps": 4671, "loss": 0.1642, "learning_rate": 9.638295572617466e-06, "epoch": 0.6294155427103404, "percentage": 20.98, "elapsed_time": "2:28:46", "remaining_time": "9:20:21"} +{"current_steps": 981, "total_steps": 4671, "loss": 0.0673, "learning_rate": 9.636898655969837e-06, "epoch": 0.630057803468208, "percentage": 21.0, "elapsed_time": "2:28:56", "remaining_time": "9:20:13"} +{"current_steps": 982, "total_steps": 4671, "loss": 0.1089, "learning_rate": 9.635499148673363e-06, "epoch": 0.6307000642260758, "percentage": 21.02, "elapsed_time": "2:29:04", "remaining_time": "9:20:01"} +{"current_steps": 983, "total_steps": 4671, "loss": 0.1595, "learning_rate": 9.634097051509956e-06, "epoch": 0.6313423249839435, "percentage": 21.04, "elapsed_time": "2:29:14", "remaining_time": "9:19:54"} +{"current_steps": 984, "total_steps": 4671, "loss": 0.2032, "learning_rate": 9.63269236526297e-06, "epoch": 0.6319845857418112, "percentage": 21.07, "elapsed_time": "2:29:23", "remaining_time": "9:19:46"} +{"current_steps": 985, "total_steps": 4671, "loss": 0.1621, "learning_rate": 9.631285090717208e-06, "epoch": 0.6326268464996788, "percentage": 21.09, "elapsed_time": "2:29:33", "remaining_time": "9:19:38"} +{"current_steps": 986, "total_steps": 4671, "loss": 0.1199, "learning_rate": 9.62987522865892e-06, "epoch": 0.6332691072575466, "percentage": 21.11, "elapsed_time": "2:29:41", "remaining_time": "9:19:28"} +{"current_steps": 987, "total_steps": 4671, "loss": 0.2026, "learning_rate": 9.6284627798758e-06, "epoch": 0.6339113680154143, "percentage": 21.13, "elapsed_time": "2:29:52", "remaining_time": "9:19:24"} +{"current_steps": 988, "total_steps": 4671, "loss": 0.2052, "learning_rate": 9.627047745156983e-06, "epoch": 0.6345536287732819, "percentage": 21.15, "elapsed_time": "2:30:00", "remaining_time": "9:19:11"} +{"current_steps": 989, "total_steps": 4671, "loss": 0.1831, "learning_rate": 9.625630125293058e-06, "epoch": 0.6351958895311497, "percentage": 21.17, "elapsed_time": "2:30:10", "remaining_time": "9:19:05"} +{"current_steps": 990, "total_steps": 4671, "loss": 0.1069, "learning_rate": 9.62420992107605e-06, "epoch": 0.6358381502890174, "percentage": 21.19, "elapsed_time": "2:30:18", "remaining_time": "9:18:51"} +{"current_steps": 991, "total_steps": 4671, "loss": 0.2241, "learning_rate": 9.622787133299433e-06, "epoch": 0.636480411046885, "percentage": 21.22, "elapsed_time": "2:30:28", "remaining_time": "9:18:45"} +{"current_steps": 992, "total_steps": 4671, "loss": 0.0988, "learning_rate": 9.621361762758123e-06, "epoch": 0.6371226718047527, "percentage": 21.24, "elapsed_time": "2:30:38", "remaining_time": "9:18:39"} +{"current_steps": 993, "total_steps": 4671, "loss": 0.1943, "learning_rate": 9.619933810248476e-06, "epoch": 0.6377649325626205, "percentage": 21.26, "elapsed_time": "2:30:46", "remaining_time": "9:18:27"} +{"current_steps": 994, "total_steps": 4671, "loss": 0.1134, "learning_rate": 9.618503276568298e-06, "epoch": 0.6384071933204881, "percentage": 21.28, "elapsed_time": "2:30:55", "remaining_time": "9:18:19"} +{"current_steps": 995, "total_steps": 4671, "loss": 0.1036, "learning_rate": 9.617070162516828e-06, "epoch": 0.6390494540783558, "percentage": 21.3, "elapsed_time": "2:31:04", "remaining_time": "9:18:07"} +{"current_steps": 996, "total_steps": 4671, "loss": 0.1919, "learning_rate": 9.615634468894752e-06, "epoch": 0.6396917148362236, "percentage": 21.32, "elapsed_time": "2:31:14", "remaining_time": "9:18:01"} +{"current_steps": 997, "total_steps": 4671, "loss": 0.0773, "learning_rate": 9.614196196504198e-06, "epoch": 0.6403339755940912, "percentage": 21.34, "elapsed_time": "2:31:21", "remaining_time": "9:17:47"} +{"current_steps": 998, "total_steps": 4671, "loss": 0.1635, "learning_rate": 9.612755346148732e-06, "epoch": 0.6409762363519589, "percentage": 21.37, "elapsed_time": "2:31:30", "remaining_time": "9:17:35"} +{"current_steps": 999, "total_steps": 4671, "loss": 0.0869, "learning_rate": 9.61131191863336e-06, "epoch": 0.6416184971098265, "percentage": 21.39, "elapsed_time": "2:31:38", "remaining_time": "9:17:23"} +{"current_steps": 1000, "total_steps": 4671, "loss": 0.2077, "learning_rate": 9.609865914764531e-06, "epoch": 0.6422607578676943, "percentage": 21.41, "elapsed_time": "2:31:47", "remaining_time": "9:17:13"} +{"current_steps": 1001, "total_steps": 4671, "loss": 0.0867, "learning_rate": 9.608417335350131e-06, "epoch": 0.642903018625562, "percentage": 21.43, "elapsed_time": "2:31:55", "remaining_time": "9:17:01"} +{"current_steps": 1002, "total_steps": 4671, "loss": 0.0505, "learning_rate": 9.606966181199487e-06, "epoch": 0.6435452793834296, "percentage": 21.45, "elapsed_time": "2:32:02", "remaining_time": "9:16:44"} +{"current_steps": 1003, "total_steps": 4671, "loss": 0.1643, "learning_rate": 9.605512453123358e-06, "epoch": 0.6441875401412974, "percentage": 21.47, "elapsed_time": "2:32:10", "remaining_time": "9:16:30"} +{"current_steps": 1004, "total_steps": 4671, "loss": 0.1583, "learning_rate": 9.604056151933951e-06, "epoch": 0.6448298008991651, "percentage": 21.49, "elapsed_time": "2:32:19", "remaining_time": "9:16:19"} +{"current_steps": 1005, "total_steps": 4671, "loss": 0.132, "learning_rate": 9.602597278444906e-06, "epoch": 0.6454720616570327, "percentage": 21.52, "elapsed_time": "2:32:29", "remaining_time": "9:16:16"} +{"current_steps": 1006, "total_steps": 4671, "loss": 0.115, "learning_rate": 9.601135833471299e-06, "epoch": 0.6461143224149004, "percentage": 21.54, "elapsed_time": "2:32:37", "remaining_time": "9:16:03"} +{"current_steps": 1007, "total_steps": 4671, "loss": 0.0909, "learning_rate": 9.59967181782964e-06, "epoch": 0.6467565831727682, "percentage": 21.56, "elapsed_time": "2:32:45", "remaining_time": "9:15:49"} +{"current_steps": 1008, "total_steps": 4671, "loss": 0.1408, "learning_rate": 9.598205232337882e-06, "epoch": 0.6473988439306358, "percentage": 21.58, "elapsed_time": "2:32:54", "remaining_time": "9:15:39"} +{"current_steps": 1009, "total_steps": 4671, "loss": 0.1402, "learning_rate": 9.596736077815412e-06, "epoch": 0.6480411046885035, "percentage": 21.6, "elapsed_time": "2:33:02", "remaining_time": "9:15:26"} +{"current_steps": 1010, "total_steps": 4671, "loss": 0.0998, "learning_rate": 9.595264355083046e-06, "epoch": 0.6486833654463712, "percentage": 21.62, "elapsed_time": "2:33:10", "remaining_time": "9:15:14"} +{"current_steps": 1011, "total_steps": 4671, "loss": 0.1418, "learning_rate": 9.593790064963047e-06, "epoch": 0.649325626204239, "percentage": 21.64, "elapsed_time": "2:33:22", "remaining_time": "9:15:15"} +{"current_steps": 1012, "total_steps": 4671, "loss": 0.2354, "learning_rate": 9.592313208279098e-06, "epoch": 0.6499678869621066, "percentage": 21.67, "elapsed_time": "2:33:33", "remaining_time": "9:15:10"} +{"current_steps": 1013, "total_steps": 4671, "loss": 0.1212, "learning_rate": 9.590833785856328e-06, "epoch": 0.6506101477199743, "percentage": 21.69, "elapsed_time": "2:33:42", "remaining_time": "9:15:01"} +{"current_steps": 1014, "total_steps": 4671, "loss": 0.1108, "learning_rate": 9.589351798521293e-06, "epoch": 0.651252408477842, "percentage": 21.71, "elapsed_time": "2:33:49", "remaining_time": "9:14:46"} +{"current_steps": 1015, "total_steps": 4671, "loss": 0.0834, "learning_rate": 9.587867247101984e-06, "epoch": 0.6518946692357097, "percentage": 21.73, "elapsed_time": "2:33:57", "remaining_time": "9:14:34"} +{"current_steps": 1016, "total_steps": 4671, "loss": 0.1259, "learning_rate": 9.586380132427823e-06, "epoch": 0.6525369299935774, "percentage": 21.75, "elapsed_time": "2:34:08", "remaining_time": "9:14:30"} +{"current_steps": 1017, "total_steps": 4671, "loss": 0.0794, "learning_rate": 9.584890455329667e-06, "epoch": 0.653179190751445, "percentage": 21.77, "elapsed_time": "2:34:16", "remaining_time": "9:14:16"} +{"current_steps": 1018, "total_steps": 4671, "loss": 0.1097, "learning_rate": 9.583398216639801e-06, "epoch": 0.6538214515093128, "percentage": 21.79, "elapsed_time": "2:34:25", "remaining_time": "9:14:07"} +{"current_steps": 1019, "total_steps": 4671, "loss": 0.1485, "learning_rate": 9.581903417191945e-06, "epoch": 0.6544637122671805, "percentage": 21.82, "elapsed_time": "2:34:35", "remaining_time": "9:14:03"} +{"current_steps": 1020, "total_steps": 4671, "loss": 0.1887, "learning_rate": 9.580406057821248e-06, "epoch": 0.6551059730250481, "percentage": 21.84, "elapsed_time": "2:34:45", "remaining_time": "9:13:57"} +{"current_steps": 1021, "total_steps": 4671, "loss": 0.0887, "learning_rate": 9.578906139364286e-06, "epoch": 0.6557482337829159, "percentage": 21.86, "elapsed_time": "2:34:53", "remaining_time": "9:13:41"} +{"current_steps": 1022, "total_steps": 4671, "loss": 0.0895, "learning_rate": 9.577403662659071e-06, "epoch": 0.6563904945407836, "percentage": 21.88, "elapsed_time": "2:35:00", "remaining_time": "9:13:27"} +{"current_steps": 1023, "total_steps": 4671, "loss": 0.2555, "learning_rate": 9.575898628545041e-06, "epoch": 0.6570327552986512, "percentage": 21.9, "elapsed_time": "2:35:12", "remaining_time": "9:13:26"} +{"current_steps": 1024, "total_steps": 4671, "loss": 0.2504, "learning_rate": 9.574391037863062e-06, "epoch": 0.6576750160565189, "percentage": 21.92, "elapsed_time": "2:35:20", "remaining_time": "9:13:16"} +{"current_steps": 1025, "total_steps": 4671, "loss": 0.2707, "learning_rate": 9.572880891455427e-06, "epoch": 0.6583172768143867, "percentage": 21.94, "elapsed_time": "2:35:31", "remaining_time": "9:13:14"} +{"current_steps": 1026, "total_steps": 4671, "loss": 0.195, "learning_rate": 9.571368190165865e-06, "epoch": 0.6589595375722543, "percentage": 21.97, "elapsed_time": "2:35:43", "remaining_time": "9:13:13"} +{"current_steps": 1027, "total_steps": 4671, "loss": 0.0848, "learning_rate": 9.56985293483952e-06, "epoch": 0.659601798330122, "percentage": 21.99, "elapsed_time": "2:35:51", "remaining_time": "9:13:01"} +{"current_steps": 1028, "total_steps": 4671, "loss": 0.1325, "learning_rate": 9.568335126322975e-06, "epoch": 0.6602440590879898, "percentage": 22.01, "elapsed_time": "2:36:00", "remaining_time": "9:12:50"} +{"current_steps": 1029, "total_steps": 4671, "loss": 0.1512, "learning_rate": 9.566814765464231e-06, "epoch": 0.6608863198458574, "percentage": 22.03, "elapsed_time": "2:36:09", "remaining_time": "9:12:40"} +{"current_steps": 1030, "total_steps": 4671, "loss": 0.1143, "learning_rate": 9.56529185311272e-06, "epoch": 0.6615285806037251, "percentage": 22.05, "elapsed_time": "2:36:19", "remaining_time": "9:12:34"} +{"current_steps": 1031, "total_steps": 4671, "loss": 0.1831, "learning_rate": 9.563766390119296e-06, "epoch": 0.6621708413615928, "percentage": 22.07, "elapsed_time": "2:36:28", "remaining_time": "9:12:25"} +{"current_steps": 1032, "total_steps": 4671, "loss": 0.1287, "learning_rate": 9.56223837733624e-06, "epoch": 0.6628131021194605, "percentage": 22.09, "elapsed_time": "2:36:39", "remaining_time": "9:12:23"} +{"current_steps": 1033, "total_steps": 4671, "loss": 0.2229, "learning_rate": 9.560707815617256e-06, "epoch": 0.6634553628773282, "percentage": 22.12, "elapsed_time": "2:36:48", "remaining_time": "9:12:13"} +{"current_steps": 1034, "total_steps": 4671, "loss": 0.189, "learning_rate": 9.559174705817477e-06, "epoch": 0.6640976236351959, "percentage": 22.14, "elapsed_time": "2:36:56", "remaining_time": "9:12:01"} +{"current_steps": 1035, "total_steps": 4671, "loss": 0.0574, "learning_rate": 9.557639048793453e-06, "epoch": 0.6647398843930635, "percentage": 22.16, "elapsed_time": "2:37:05", "remaining_time": "9:11:53"} +{"current_steps": 1036, "total_steps": 4671, "loss": 0.1488, "learning_rate": 9.556100845403161e-06, "epoch": 0.6653821451509313, "percentage": 22.18, "elapsed_time": "2:37:15", "remaining_time": "9:11:46"} +{"current_steps": 1037, "total_steps": 4671, "loss": 0.2426, "learning_rate": 9.554560096505998e-06, "epoch": 0.666024405908799, "percentage": 22.2, "elapsed_time": "2:37:24", "remaining_time": "9:11:36"} +{"current_steps": 1038, "total_steps": 4671, "loss": 0.0888, "learning_rate": 9.553016802962787e-06, "epoch": 0.6666666666666666, "percentage": 22.22, "elapsed_time": "2:37:32", "remaining_time": "9:11:22"} +{"current_steps": 1039, "total_steps": 4671, "loss": 0.1579, "learning_rate": 9.551470965635769e-06, "epoch": 0.6673089274245344, "percentage": 22.24, "elapsed_time": "2:37:42", "remaining_time": "9:11:16"} +{"current_steps": 1040, "total_steps": 4671, "loss": 0.171, "learning_rate": 9.54992258538861e-06, "epoch": 0.6679511881824021, "percentage": 22.27, "elapsed_time": "2:37:52", "remaining_time": "9:11:11"} +{"current_steps": 1041, "total_steps": 4671, "loss": 0.2082, "learning_rate": 9.548371663086392e-06, "epoch": 0.6685934489402697, "percentage": 22.29, "elapsed_time": "2:38:01", "remaining_time": "9:11:01"} +{"current_steps": 1042, "total_steps": 4671, "loss": 0.2234, "learning_rate": 9.546818199595624e-06, "epoch": 0.6692357096981374, "percentage": 22.31, "elapsed_time": "2:38:11", "remaining_time": "9:10:55"} +{"current_steps": 1043, "total_steps": 4671, "loss": 0.1176, "learning_rate": 9.545262195784226e-06, "epoch": 0.6698779704560052, "percentage": 22.33, "elapsed_time": "2:38:19", "remaining_time": "9:10:44"} +{"current_steps": 1044, "total_steps": 4671, "loss": 0.0992, "learning_rate": 9.543703652521543e-06, "epoch": 0.6705202312138728, "percentage": 22.35, "elapsed_time": "2:38:28", "remaining_time": "9:10:35"} +{"current_steps": 1045, "total_steps": 4671, "loss": 0.1649, "learning_rate": 9.54214257067834e-06, "epoch": 0.6711624919717405, "percentage": 22.37, "elapsed_time": "2:38:38", "remaining_time": "9:10:26"} +{"current_steps": 1046, "total_steps": 4671, "loss": 0.0857, "learning_rate": 9.540578951126796e-06, "epoch": 0.6718047527296083, "percentage": 22.39, "elapsed_time": "2:38:46", "remaining_time": "9:10:13"} +{"current_steps": 1047, "total_steps": 4671, "loss": 0.1516, "learning_rate": 9.53901279474051e-06, "epoch": 0.6724470134874759, "percentage": 22.41, "elapsed_time": "2:38:54", "remaining_time": "9:10:01"} +{"current_steps": 1048, "total_steps": 4671, "loss": 0.2151, "learning_rate": 9.537444102394498e-06, "epoch": 0.6730892742453436, "percentage": 22.44, "elapsed_time": "2:39:04", "remaining_time": "9:09:56"} +{"current_steps": 1049, "total_steps": 4671, "loss": 0.1102, "learning_rate": 9.535872874965193e-06, "epoch": 0.6737315350032113, "percentage": 22.46, "elapsed_time": "2:39:13", "remaining_time": "9:09:45"} +{"current_steps": 1050, "total_steps": 4671, "loss": 0.2076, "learning_rate": 9.534299113330444e-06, "epoch": 0.674373795761079, "percentage": 22.48, "elapsed_time": "2:39:20", "remaining_time": "9:09:30"} +{"current_steps": 1051, "total_steps": 4671, "loss": 0.2069, "learning_rate": 9.532722818369518e-06, "epoch": 0.6750160565189467, "percentage": 22.5, "elapsed_time": "2:39:31", "remaining_time": "9:09:27"} +{"current_steps": 1052, "total_steps": 4671, "loss": 0.1384, "learning_rate": 9.531143990963095e-06, "epoch": 0.6756583172768144, "percentage": 22.52, "elapsed_time": "2:39:39", "remaining_time": "9:09:15"} +{"current_steps": 1053, "total_steps": 4671, "loss": 0.1775, "learning_rate": 9.52956263199327e-06, "epoch": 0.6763005780346821, "percentage": 22.54, "elapsed_time": "2:39:48", "remaining_time": "9:09:04"} +{"current_steps": 1054, "total_steps": 4671, "loss": 0.0836, "learning_rate": 9.527978742343552e-06, "epoch": 0.6769428387925498, "percentage": 22.56, "elapsed_time": "2:39:58", "remaining_time": "9:08:57"} +{"current_steps": 1055, "total_steps": 4671, "loss": 0.184, "learning_rate": 9.526392322898865e-06, "epoch": 0.6775850995504175, "percentage": 22.59, "elapsed_time": "2:40:07", "remaining_time": "9:08:48"} +{"current_steps": 1056, "total_steps": 4671, "loss": 0.1589, "learning_rate": 9.524803374545549e-06, "epoch": 0.6782273603082851, "percentage": 22.61, "elapsed_time": "2:40:16", "remaining_time": "9:08:40"} +{"current_steps": 1057, "total_steps": 4671, "loss": 0.108, "learning_rate": 9.52321189817135e-06, "epoch": 0.6788696210661529, "percentage": 22.63, "elapsed_time": "2:40:23", "remaining_time": "9:08:24"} +{"current_steps": 1058, "total_steps": 4671, "loss": 0.2615, "learning_rate": 9.521617894665434e-06, "epoch": 0.6795118818240206, "percentage": 22.65, "elapsed_time": "2:40:31", "remaining_time": "9:08:12"} +{"current_steps": 1059, "total_steps": 4671, "loss": 0.1399, "learning_rate": 9.520021364918373e-06, "epoch": 0.6801541425818882, "percentage": 22.67, "elapsed_time": "2:40:42", "remaining_time": "9:08:06"} +{"current_steps": 1060, "total_steps": 4671, "loss": 0.1642, "learning_rate": 9.518422309822154e-06, "epoch": 0.680796403339756, "percentage": 22.69, "elapsed_time": "2:40:50", "remaining_time": "9:07:56"} +{"current_steps": 1061, "total_steps": 4671, "loss": 0.1572, "learning_rate": 9.516820730270172e-06, "epoch": 0.6814386640976237, "percentage": 22.71, "elapsed_time": "2:41:00", "remaining_time": "9:07:50"} +{"current_steps": 1062, "total_steps": 4671, "loss": 0.113, "learning_rate": 9.515216627157238e-06, "epoch": 0.6820809248554913, "percentage": 22.74, "elapsed_time": "2:41:09", "remaining_time": "9:07:41"} +{"current_steps": 1063, "total_steps": 4671, "loss": 0.0852, "learning_rate": 9.513610001379565e-06, "epoch": 0.682723185613359, "percentage": 22.76, "elapsed_time": "2:41:20", "remaining_time": "9:07:35"} +{"current_steps": 1064, "total_steps": 4671, "loss": 0.1129, "learning_rate": 9.512000853834782e-06, "epoch": 0.6833654463712268, "percentage": 22.78, "elapsed_time": "2:41:28", "remaining_time": "9:07:24"} +{"current_steps": 1065, "total_steps": 4671, "loss": 0.13, "learning_rate": 9.510389185421924e-06, "epoch": 0.6840077071290944, "percentage": 22.8, "elapsed_time": "2:41:38", "remaining_time": "9:07:19"} +{"current_steps": 1066, "total_steps": 4671, "loss": 0.2051, "learning_rate": 9.508774997041434e-06, "epoch": 0.6846499678869621, "percentage": 22.82, "elapsed_time": "2:41:47", "remaining_time": "9:07:07"} +{"current_steps": 1067, "total_steps": 4671, "loss": 0.0945, "learning_rate": 9.507158289595163e-06, "epoch": 0.6852922286448297, "percentage": 22.84, "elapsed_time": "2:41:55", "remaining_time": "9:06:57"} +{"current_steps": 1068, "total_steps": 4671, "loss": 0.0923, "learning_rate": 9.505539063986374e-06, "epoch": 0.6859344894026975, "percentage": 22.86, "elapsed_time": "2:42:03", "remaining_time": "9:06:42"} +{"current_steps": 1069, "total_steps": 4671, "loss": 0.1235, "learning_rate": 9.50391732111973e-06, "epoch": 0.6865767501605652, "percentage": 22.89, "elapsed_time": "2:42:13", "remaining_time": "9:06:37"} +{"current_steps": 1070, "total_steps": 4671, "loss": 0.1571, "learning_rate": 9.502293061901305e-06, "epoch": 0.6872190109184328, "percentage": 22.91, "elapsed_time": "2:42:24", "remaining_time": "9:06:32"} +{"current_steps": 1071, "total_steps": 4671, "loss": 0.2036, "learning_rate": 9.500666287238573e-06, "epoch": 0.6878612716763006, "percentage": 22.93, "elapsed_time": "2:42:33", "remaining_time": "9:06:24"} +{"current_steps": 1072, "total_steps": 4671, "loss": 0.2235, "learning_rate": 9.499036998040424e-06, "epoch": 0.6885035324341683, "percentage": 22.95, "elapsed_time": "2:42:42", "remaining_time": "9:06:16"} +{"current_steps": 1073, "total_steps": 4671, "loss": 0.1921, "learning_rate": 9.497405195217144e-06, "epoch": 0.689145793192036, "percentage": 22.97, "elapsed_time": "2:42:54", "remaining_time": "9:06:16"} +{"current_steps": 1074, "total_steps": 4671, "loss": 0.086, "learning_rate": 9.495770879680424e-06, "epoch": 0.6897880539499036, "percentage": 22.99, "elapsed_time": "2:43:03", "remaining_time": "9:06:06"} +{"current_steps": 1075, "total_steps": 4671, "loss": 0.0923, "learning_rate": 9.494134052343364e-06, "epoch": 0.6904303147077714, "percentage": 23.01, "elapsed_time": "2:43:12", "remaining_time": "9:05:58"} +{"current_steps": 1076, "total_steps": 4671, "loss": 0.0743, "learning_rate": 9.492494714120464e-06, "epoch": 0.691072575465639, "percentage": 23.04, "elapsed_time": "2:43:19", "remaining_time": "9:05:41"} +{"current_steps": 1077, "total_steps": 4671, "loss": 0.1428, "learning_rate": 9.490852865927624e-06, "epoch": 0.6917148362235067, "percentage": 23.06, "elapsed_time": "2:43:28", "remaining_time": "9:05:30"} +{"current_steps": 1078, "total_steps": 4671, "loss": 0.1651, "learning_rate": 9.489208508682153e-06, "epoch": 0.6923570969813745, "percentage": 23.08, "elapsed_time": "2:43:37", "remaining_time": "9:05:23"} +{"current_steps": 1079, "total_steps": 4671, "loss": 0.1775, "learning_rate": 9.487561643302757e-06, "epoch": 0.6929993577392421, "percentage": 23.1, "elapsed_time": "2:43:46", "remaining_time": "9:05:11"} +{"current_steps": 1080, "total_steps": 4671, "loss": 0.1179, "learning_rate": 9.485912270709542e-06, "epoch": 0.6936416184971098, "percentage": 23.12, "elapsed_time": "2:43:55", "remaining_time": "9:05:03"} +{"current_steps": 1081, "total_steps": 4671, "loss": 0.0777, "learning_rate": 9.48426039182402e-06, "epoch": 0.6942838792549775, "percentage": 23.14, "elapsed_time": "2:44:04", "remaining_time": "9:04:52"} +{"current_steps": 1082, "total_steps": 4671, "loss": 0.2488, "learning_rate": 9.482606007569101e-06, "epoch": 0.6949261400128453, "percentage": 23.16, "elapsed_time": "2:44:13", "remaining_time": "9:04:42"} +{"current_steps": 1083, "total_steps": 4671, "loss": 0.1549, "learning_rate": 9.480949118869092e-06, "epoch": 0.6955684007707129, "percentage": 23.19, "elapsed_time": "2:44:21", "remaining_time": "9:04:32"} +{"current_steps": 1084, "total_steps": 4671, "loss": 0.253, "learning_rate": 9.479289726649703e-06, "epoch": 0.6962106615285806, "percentage": 23.21, "elapsed_time": "2:44:31", "remaining_time": "9:04:25"} +{"current_steps": 1085, "total_steps": 4671, "loss": 0.1652, "learning_rate": 9.477627831838043e-06, "epoch": 0.6968529222864484, "percentage": 23.23, "elapsed_time": "2:44:40", "remaining_time": "9:04:14"} +{"current_steps": 1086, "total_steps": 4671, "loss": 0.1149, "learning_rate": 9.475963435362615e-06, "epoch": 0.697495183044316, "percentage": 23.25, "elapsed_time": "2:44:48", "remaining_time": "9:04:03"} +{"current_steps": 1087, "total_steps": 4671, "loss": 0.1334, "learning_rate": 9.47429653815332e-06, "epoch": 0.6981374438021837, "percentage": 23.27, "elapsed_time": "2:44:56", "remaining_time": "9:03:51"} +{"current_steps": 1088, "total_steps": 4671, "loss": 0.0833, "learning_rate": 9.472627141141464e-06, "epoch": 0.6987797045600513, "percentage": 23.29, "elapsed_time": "2:45:06", "remaining_time": "9:03:43"} +{"current_steps": 1089, "total_steps": 4671, "loss": 0.2366, "learning_rate": 9.470955245259742e-06, "epoch": 0.6994219653179191, "percentage": 23.31, "elapsed_time": "2:45:17", "remaining_time": "9:03:42"} +{"current_steps": 1090, "total_steps": 4671, "loss": 0.1395, "learning_rate": 9.469280851442245e-06, "epoch": 0.7000642260757868, "percentage": 23.34, "elapsed_time": "2:45:27", "remaining_time": "9:03:35"} +{"current_steps": 1091, "total_steps": 4671, "loss": 0.1544, "learning_rate": 9.467603960624464e-06, "epoch": 0.7007064868336544, "percentage": 23.36, "elapsed_time": "2:45:38", "remaining_time": "9:03:30"} +{"current_steps": 1092, "total_steps": 4671, "loss": 0.1495, "learning_rate": 9.465924573743279e-06, "epoch": 0.7013487475915221, "percentage": 23.38, "elapsed_time": "2:45:47", "remaining_time": "9:03:23"} +{"current_steps": 1093, "total_steps": 4671, "loss": 0.1923, "learning_rate": 9.464242691736973e-06, "epoch": 0.7019910083493899, "percentage": 23.4, "elapsed_time": "2:45:58", "remaining_time": "9:03:21"} +{"current_steps": 1094, "total_steps": 4671, "loss": 0.107, "learning_rate": 9.462558315545216e-06, "epoch": 0.7026332691072575, "percentage": 23.42, "elapsed_time": "2:46:09", "remaining_time": "9:03:16"} +{"current_steps": 1095, "total_steps": 4671, "loss": 0.2132, "learning_rate": 9.460871446109075e-06, "epoch": 0.7032755298651252, "percentage": 23.44, "elapsed_time": "2:46:18", "remaining_time": "9:03:05"} +{"current_steps": 1096, "total_steps": 4671, "loss": 0.203, "learning_rate": 9.459182084371009e-06, "epoch": 0.703917790622993, "percentage": 23.46, "elapsed_time": "2:46:26", "remaining_time": "9:02:53"} +{"current_steps": 1097, "total_steps": 4671, "loss": 0.1833, "learning_rate": 9.457490231274867e-06, "epoch": 0.7045600513808606, "percentage": 23.49, "elapsed_time": "2:46:36", "remaining_time": "9:02:49"} +{"current_steps": 1098, "total_steps": 4671, "loss": 0.1107, "learning_rate": 9.455795887765896e-06, "epoch": 0.7052023121387283, "percentage": 23.51, "elapsed_time": "2:46:45", "remaining_time": "9:02:37"} +{"current_steps": 1099, "total_steps": 4671, "loss": 0.2143, "learning_rate": 9.454099054790728e-06, "epoch": 0.705844572896596, "percentage": 23.53, "elapsed_time": "2:46:56", "remaining_time": "9:02:37"} +{"current_steps": 1100, "total_steps": 4671, "loss": 0.0704, "learning_rate": 9.452399733297388e-06, "epoch": 0.7064868336544637, "percentage": 23.55, "elapsed_time": "2:47:05", "remaining_time": "9:02:27"} +{"current_steps": 1101, "total_steps": 4671, "loss": 0.0661, "learning_rate": 9.450697924235295e-06, "epoch": 0.7071290944123314, "percentage": 23.57, "elapsed_time": "2:47:15", "remaining_time": "9:02:19"} +{"current_steps": 1102, "total_steps": 4671, "loss": 0.2401, "learning_rate": 9.44899362855525e-06, "epoch": 0.7077713551701991, "percentage": 23.59, "elapsed_time": "2:47:24", "remaining_time": "9:02:09"} +{"current_steps": 1103, "total_steps": 4671, "loss": 0.2045, "learning_rate": 9.447286847209454e-06, "epoch": 0.7084136159280668, "percentage": 23.61, "elapsed_time": "2:47:32", "remaining_time": "9:01:58"} +{"current_steps": 1104, "total_steps": 4671, "loss": 0.1241, "learning_rate": 9.445577581151486e-06, "epoch": 0.7090558766859345, "percentage": 23.64, "elapsed_time": "2:47:39", "remaining_time": "9:01:42"} +{"current_steps": 1105, "total_steps": 4671, "loss": 0.1886, "learning_rate": 9.44386583133632e-06, "epoch": 0.7096981374438022, "percentage": 23.66, "elapsed_time": "2:47:49", "remaining_time": "9:01:36"} +{"current_steps": 1106, "total_steps": 4671, "loss": 0.0564, "learning_rate": 9.442151598720314e-06, "epoch": 0.7103403982016698, "percentage": 23.68, "elapsed_time": "2:47:58", "remaining_time": "9:01:27"} +{"current_steps": 1107, "total_steps": 4671, "loss": 0.1701, "learning_rate": 9.440434884261216e-06, "epoch": 0.7109826589595376, "percentage": 23.7, "elapsed_time": "2:48:08", "remaining_time": "9:01:20"} +{"current_steps": 1108, "total_steps": 4671, "loss": 0.1883, "learning_rate": 9.43871568891816e-06, "epoch": 0.7116249197174053, "percentage": 23.72, "elapsed_time": "2:48:16", "remaining_time": "9:01:07"} +{"current_steps": 1109, "total_steps": 4671, "loss": 0.1722, "learning_rate": 9.436994013651664e-06, "epoch": 0.7122671804752729, "percentage": 23.74, "elapsed_time": "2:48:26", "remaining_time": "9:01:01"} +{"current_steps": 1110, "total_steps": 4671, "loss": 0.1895, "learning_rate": 9.435269859423634e-06, "epoch": 0.7129094412331407, "percentage": 23.76, "elapsed_time": "2:48:38", "remaining_time": "9:01:00"} +{"current_steps": 1111, "total_steps": 4671, "loss": 0.0618, "learning_rate": 9.43354322719736e-06, "epoch": 0.7135517019910084, "percentage": 23.79, "elapsed_time": "2:48:45", "remaining_time": "9:00:45"} +{"current_steps": 1112, "total_steps": 4671, "loss": 0.179, "learning_rate": 9.431814117937517e-06, "epoch": 0.714193962748876, "percentage": 23.81, "elapsed_time": "2:48:56", "remaining_time": "9:00:42"} +{"current_steps": 1113, "total_steps": 4671, "loss": 0.0999, "learning_rate": 9.43008253261016e-06, "epoch": 0.7148362235067437, "percentage": 23.83, "elapsed_time": "2:49:05", "remaining_time": "9:00:33"} +{"current_steps": 1114, "total_steps": 4671, "loss": 0.2272, "learning_rate": 9.428348472182737e-06, "epoch": 0.7154784842646115, "percentage": 23.85, "elapsed_time": "2:49:15", "remaining_time": "9:00:25"} +{"current_steps": 1115, "total_steps": 4671, "loss": 0.1539, "learning_rate": 9.426611937624067e-06, "epoch": 0.7161207450224791, "percentage": 23.87, "elapsed_time": "2:49:24", "remaining_time": "9:00:17"} +{"current_steps": 1116, "total_steps": 4671, "loss": 0.1416, "learning_rate": 9.424872929904359e-06, "epoch": 0.7167630057803468, "percentage": 23.89, "elapsed_time": "2:49:33", "remaining_time": "9:00:07"} +{"current_steps": 1117, "total_steps": 4671, "loss": 0.1196, "learning_rate": 9.423131449995202e-06, "epoch": 0.7174052665382146, "percentage": 23.91, "elapsed_time": "2:49:42", "remaining_time": "8:59:58"} +{"current_steps": 1118, "total_steps": 4671, "loss": 0.2503, "learning_rate": 9.421387498869565e-06, "epoch": 0.7180475272960822, "percentage": 23.93, "elapsed_time": "2:49:52", "remaining_time": "8:59:50"} +{"current_steps": 1119, "total_steps": 4671, "loss": 0.1705, "learning_rate": 9.4196410775018e-06, "epoch": 0.7186897880539499, "percentage": 23.96, "elapsed_time": "2:50:03", "remaining_time": "8:59:47"} +{"current_steps": 1120, "total_steps": 4671, "loss": 0.165, "learning_rate": 9.417892186867636e-06, "epoch": 0.7193320488118176, "percentage": 23.98, "elapsed_time": "2:50:10", "remaining_time": "8:59:33"} +{"current_steps": 1121, "total_steps": 4671, "loss": 0.2584, "learning_rate": 9.416140827944185e-06, "epoch": 0.7199743095696853, "percentage": 24.0, "elapsed_time": "2:50:18", "remaining_time": "8:59:21"} +{"current_steps": 1122, "total_steps": 4671, "loss": 0.1241, "learning_rate": 9.414387001709935e-06, "epoch": 0.720616570327553, "percentage": 24.02, "elapsed_time": "2:50:28", "remaining_time": "8:59:12"} +{"current_steps": 1123, "total_steps": 4671, "loss": 0.2716, "learning_rate": 9.412630709144754e-06, "epoch": 0.7212588310854207, "percentage": 24.04, "elapsed_time": "2:50:39", "remaining_time": "8:59:10"} +{"current_steps": 1124, "total_steps": 4671, "loss": 0.1457, "learning_rate": 9.41087195122989e-06, "epoch": 0.7219010918432883, "percentage": 24.06, "elapsed_time": "2:50:48", "remaining_time": "8:59:01"} +{"current_steps": 1125, "total_steps": 4671, "loss": 0.0685, "learning_rate": 9.409110728947964e-06, "epoch": 0.7225433526011561, "percentage": 24.08, "elapsed_time": "2:50:57", "remaining_time": "8:58:51"} +{"current_steps": 1126, "total_steps": 4671, "loss": 0.2111, "learning_rate": 9.407347043282974e-06, "epoch": 0.7231856133590238, "percentage": 24.11, "elapsed_time": "2:51:06", "remaining_time": "8:58:42"} +{"current_steps": 1127, "total_steps": 4671, "loss": 0.088, "learning_rate": 9.405580895220303e-06, "epoch": 0.7238278741168914, "percentage": 24.13, "elapsed_time": "2:51:15", "remaining_time": "8:58:33"} +{"current_steps": 1128, "total_steps": 4671, "loss": 0.193, "learning_rate": 9.403812285746696e-06, "epoch": 0.7244701348747592, "percentage": 24.15, "elapsed_time": "2:51:25", "remaining_time": "8:58:25"} +{"current_steps": 1129, "total_steps": 4671, "loss": 0.087, "learning_rate": 9.402041215850283e-06, "epoch": 0.7251123956326269, "percentage": 24.17, "elapsed_time": "2:51:32", "remaining_time": "8:58:11"} +{"current_steps": 1130, "total_steps": 4671, "loss": 0.072, "learning_rate": 9.400267686520568e-06, "epoch": 0.7257546563904945, "percentage": 24.19, "elapsed_time": "2:51:41", "remaining_time": "8:58:00"} +{"current_steps": 1131, "total_steps": 4671, "loss": 0.2653, "learning_rate": 9.398491698748424e-06, "epoch": 0.7263969171483622, "percentage": 24.21, "elapsed_time": "2:51:50", "remaining_time": "8:57:51"} +{"current_steps": 1132, "total_steps": 4671, "loss": 0.1325, "learning_rate": 9.3967132535261e-06, "epoch": 0.72703917790623, "percentage": 24.23, "elapsed_time": "2:51:58", "remaining_time": "8:57:38"} +{"current_steps": 1133, "total_steps": 4671, "loss": 0.1589, "learning_rate": 9.394932351847223e-06, "epoch": 0.7276814386640976, "percentage": 24.26, "elapsed_time": "2:52:07", "remaining_time": "8:57:29"} +{"current_steps": 1134, "total_steps": 4671, "loss": 0.0719, "learning_rate": 9.393148994706785e-06, "epoch": 0.7283236994219653, "percentage": 24.28, "elapsed_time": "2:52:16", "remaining_time": "8:57:19"} +{"current_steps": 1135, "total_steps": 4671, "loss": 0.1379, "learning_rate": 9.39136318310115e-06, "epoch": 0.7289659601798331, "percentage": 24.3, "elapsed_time": "2:52:24", "remaining_time": "8:57:07"} +{"current_steps": 1136, "total_steps": 4671, "loss": 0.1633, "learning_rate": 9.389574918028062e-06, "epoch": 0.7296082209377007, "percentage": 24.32, "elapsed_time": "2:52:34", "remaining_time": "8:57:01"} +{"current_steps": 1137, "total_steps": 4671, "loss": 0.0585, "learning_rate": 9.387784200486627e-06, "epoch": 0.7302504816955684, "percentage": 24.34, "elapsed_time": "2:52:41", "remaining_time": "8:56:46"} +{"current_steps": 1138, "total_steps": 4671, "loss": 0.1648, "learning_rate": 9.385991031477323e-06, "epoch": 0.730892742453436, "percentage": 24.36, "elapsed_time": "2:52:50", "remaining_time": "8:56:34"} +{"current_steps": 1139, "total_steps": 4671, "loss": 0.1886, "learning_rate": 9.384195412002001e-06, "epoch": 0.7315350032113038, "percentage": 24.38, "elapsed_time": "2:52:59", "remaining_time": "8:56:26"} +{"current_steps": 1140, "total_steps": 4671, "loss": 0.0992, "learning_rate": 9.382397343063879e-06, "epoch": 0.7321772639691715, "percentage": 24.41, "elapsed_time": "2:53:08", "remaining_time": "8:56:17"} +{"current_steps": 1141, "total_steps": 4671, "loss": 0.1739, "learning_rate": 9.380596825667541e-06, "epoch": 0.7328195247270392, "percentage": 24.43, "elapsed_time": "2:53:19", "remaining_time": "8:56:14"} +{"current_steps": 1142, "total_steps": 4671, "loss": 0.1541, "learning_rate": 9.378793860818942e-06, "epoch": 0.7334617854849069, "percentage": 24.45, "elapsed_time": "2:53:28", "remaining_time": "8:56:04"} +{"current_steps": 1143, "total_steps": 4671, "loss": 0.1699, "learning_rate": 9.376988449525405e-06, "epoch": 0.7341040462427746, "percentage": 24.47, "elapsed_time": "2:53:36", "remaining_time": "8:55:51"} +{"current_steps": 1144, "total_steps": 4671, "loss": 0.0948, "learning_rate": 9.375180592795618e-06, "epoch": 0.7347463070006423, "percentage": 24.49, "elapsed_time": "2:53:45", "remaining_time": "8:55:43"} +{"current_steps": 1145, "total_steps": 4671, "loss": 0.0842, "learning_rate": 9.373370291639636e-06, "epoch": 0.7353885677585099, "percentage": 24.51, "elapsed_time": "2:53:53", "remaining_time": "8:55:30"} +{"current_steps": 1146, "total_steps": 4671, "loss": 0.219, "learning_rate": 9.37155754706888e-06, "epoch": 0.7360308285163777, "percentage": 24.53, "elapsed_time": "2:54:04", "remaining_time": "8:55:26"} +{"current_steps": 1147, "total_steps": 4671, "loss": 0.1071, "learning_rate": 9.369742360096133e-06, "epoch": 0.7366730892742454, "percentage": 24.56, "elapsed_time": "2:54:14", "remaining_time": "8:55:18"} +{"current_steps": 1148, "total_steps": 4671, "loss": 0.1354, "learning_rate": 9.367924731735549e-06, "epoch": 0.737315350032113, "percentage": 24.58, "elapsed_time": "2:54:24", "remaining_time": "8:55:14"} +{"current_steps": 1149, "total_steps": 4671, "loss": 0.1398, "learning_rate": 9.36610466300264e-06, "epoch": 0.7379576107899807, "percentage": 24.6, "elapsed_time": "2:54:34", "remaining_time": "8:55:08"} +{"current_steps": 1150, "total_steps": 4671, "loss": 0.0706, "learning_rate": 9.364282154914285e-06, "epoch": 0.7385998715478485, "percentage": 24.62, "elapsed_time": "2:54:42", "remaining_time": "8:54:55"} +{"current_steps": 1151, "total_steps": 4671, "loss": 0.0594, "learning_rate": 9.362457208488721e-06, "epoch": 0.7392421323057161, "percentage": 24.64, "elapsed_time": "2:54:52", "remaining_time": "8:54:48"} +{"current_steps": 1152, "total_steps": 4671, "loss": 0.1301, "learning_rate": 9.360629824745558e-06, "epoch": 0.7398843930635838, "percentage": 24.66, "elapsed_time": "2:55:01", "remaining_time": "8:54:37"} +{"current_steps": 1153, "total_steps": 4671, "loss": 0.1275, "learning_rate": 9.358800004705753e-06, "epoch": 0.7405266538214516, "percentage": 24.68, "elapsed_time": "2:55:09", "remaining_time": "8:54:27"} +{"current_steps": 1154, "total_steps": 4671, "loss": 0.073, "learning_rate": 9.356967749391636e-06, "epoch": 0.7411689145793192, "percentage": 24.71, "elapsed_time": "2:55:18", "remaining_time": "8:54:16"} +{"current_steps": 1155, "total_steps": 4671, "loss": 0.187, "learning_rate": 9.355133059826896e-06, "epoch": 0.7418111753371869, "percentage": 24.73, "elapsed_time": "2:55:30", "remaining_time": "8:54:15"} +{"current_steps": 1156, "total_steps": 4671, "loss": 0.0496, "learning_rate": 9.353295937036571e-06, "epoch": 0.7424534360950545, "percentage": 24.75, "elapsed_time": "2:55:37", "remaining_time": "8:54:00"} +{"current_steps": 1157, "total_steps": 4671, "loss": 0.1246, "learning_rate": 9.351456382047075e-06, "epoch": 0.7430956968529223, "percentage": 24.77, "elapsed_time": "2:55:47", "remaining_time": "8:53:54"} +{"current_steps": 1158, "total_steps": 4671, "loss": 0.2044, "learning_rate": 9.349614395886168e-06, "epoch": 0.74373795761079, "percentage": 24.79, "elapsed_time": "2:55:55", "remaining_time": "8:53:42"} +{"current_steps": 1159, "total_steps": 4671, "loss": 0.154, "learning_rate": 9.347769979582977e-06, "epoch": 0.7443802183686576, "percentage": 24.81, "elapsed_time": "2:56:05", "remaining_time": "8:53:35"} +{"current_steps": 1160, "total_steps": 4671, "loss": 0.1657, "learning_rate": 9.34592313416798e-06, "epoch": 0.7450224791265254, "percentage": 24.83, "elapsed_time": "2:56:15", "remaining_time": "8:53:29"} +{"current_steps": 1161, "total_steps": 4671, "loss": 0.1843, "learning_rate": 9.344073860673016e-06, "epoch": 0.7456647398843931, "percentage": 24.86, "elapsed_time": "2:56:25", "remaining_time": "8:53:21"} +{"current_steps": 1162, "total_steps": 4671, "loss": 0.1373, "learning_rate": 9.342222160131276e-06, "epoch": 0.7463070006422607, "percentage": 24.88, "elapsed_time": "2:56:34", "remaining_time": "8:53:14"} +{"current_steps": 1163, "total_steps": 4671, "loss": 0.1919, "learning_rate": 9.340368033577316e-06, "epoch": 0.7469492614001284, "percentage": 24.9, "elapsed_time": "2:56:44", "remaining_time": "8:53:08"} +{"current_steps": 1164, "total_steps": 4671, "loss": 0.0948, "learning_rate": 9.338511482047039e-06, "epoch": 0.7475915221579962, "percentage": 24.92, "elapsed_time": "2:56:53", "remaining_time": "8:52:57"} +{"current_steps": 1165, "total_steps": 4671, "loss": 0.1249, "learning_rate": 9.336652506577705e-06, "epoch": 0.7482337829158638, "percentage": 24.94, "elapsed_time": "2:57:02", "remaining_time": "8:52:48"} +{"current_steps": 1166, "total_steps": 4671, "loss": 0.2138, "learning_rate": 9.334791108207932e-06, "epoch": 0.7488760436737315, "percentage": 24.96, "elapsed_time": "2:57:13", "remaining_time": "8:52:44"} +{"current_steps": 1167, "total_steps": 4671, "loss": 0.1727, "learning_rate": 9.332927287977687e-06, "epoch": 0.7495183044315993, "percentage": 24.98, "elapsed_time": "2:57:22", "remaining_time": "8:52:33"} +{"current_steps": 1168, "total_steps": 4671, "loss": 0.1025, "learning_rate": 9.33106104692829e-06, "epoch": 0.7501605651894669, "percentage": 25.01, "elapsed_time": "2:57:32", "remaining_time": "8:52:28"} +{"current_steps": 1169, "total_steps": 4671, "loss": 0.1468, "learning_rate": 9.329192386102419e-06, "epoch": 0.7508028259473346, "percentage": 25.03, "elapsed_time": "2:57:41", "remaining_time": "8:52:19"} +{"current_steps": 1170, "total_steps": 4671, "loss": 0.2183, "learning_rate": 9.327321306544097e-06, "epoch": 0.7514450867052023, "percentage": 25.05, "elapsed_time": "2:57:49", "remaining_time": "8:52:07"} +{"current_steps": 1171, "total_steps": 4671, "loss": 0.1413, "learning_rate": 9.325447809298704e-06, "epoch": 0.75208734746307, "percentage": 25.07, "elapsed_time": "2:57:59", "remaining_time": "8:52:00"} +{"current_steps": 1172, "total_steps": 4671, "loss": 0.1682, "learning_rate": 9.323571895412966e-06, "epoch": 0.7527296082209377, "percentage": 25.09, "elapsed_time": "2:58:09", "remaining_time": "8:51:52"} +{"current_steps": 1173, "total_steps": 4671, "loss": 0.1091, "learning_rate": 9.321693565934964e-06, "epoch": 0.7533718689788054, "percentage": 25.11, "elapsed_time": "2:58:16", "remaining_time": "8:51:37"} +{"current_steps": 1174, "total_steps": 4671, "loss": 0.101, "learning_rate": 9.319812821914126e-06, "epoch": 0.7540141297366731, "percentage": 25.13, "elapsed_time": "2:58:24", "remaining_time": "8:51:24"} +{"current_steps": 1175, "total_steps": 4671, "loss": 0.1346, "learning_rate": 9.317929664401226e-06, "epoch": 0.7546563904945408, "percentage": 25.16, "elapsed_time": "2:58:32", "remaining_time": "8:51:11"} +{"current_steps": 1176, "total_steps": 4671, "loss": 0.2414, "learning_rate": 9.316044094448392e-06, "epoch": 0.7552986512524085, "percentage": 25.18, "elapsed_time": "2:58:41", "remaining_time": "8:51:04"} +{"current_steps": 1177, "total_steps": 4671, "loss": 0.2088, "learning_rate": 9.314156113109101e-06, "epoch": 0.7559409120102761, "percentage": 25.2, "elapsed_time": "2:58:51", "remaining_time": "8:50:56"} +{"current_steps": 1178, "total_steps": 4671, "loss": 0.164, "learning_rate": 9.312265721438168e-06, "epoch": 0.7565831727681439, "percentage": 25.22, "elapsed_time": "2:58:59", "remaining_time": "8:50:43"} +{"current_steps": 1179, "total_steps": 4671, "loss": 0.1414, "learning_rate": 9.310372920491761e-06, "epoch": 0.7572254335260116, "percentage": 25.24, "elapsed_time": "2:59:06", "remaining_time": "8:50:30"} +{"current_steps": 1180, "total_steps": 4671, "loss": 0.1491, "learning_rate": 9.308477711327398e-06, "epoch": 0.7578676942838792, "percentage": 25.26, "elapsed_time": "2:59:13", "remaining_time": "8:50:15"} +{"current_steps": 1181, "total_steps": 4671, "loss": 0.2163, "learning_rate": 9.306580095003932e-06, "epoch": 0.7585099550417469, "percentage": 25.28, "elapsed_time": "2:59:21", "remaining_time": "8:50:00"} +{"current_steps": 1182, "total_steps": 4671, "loss": 0.1458, "learning_rate": 9.30468007258157e-06, "epoch": 0.7591522157996147, "percentage": 25.31, "elapsed_time": "2:59:29", "remaining_time": "8:49:50"} +{"current_steps": 1183, "total_steps": 4671, "loss": 0.2341, "learning_rate": 9.30277764512186e-06, "epoch": 0.7597944765574823, "percentage": 25.33, "elapsed_time": "2:59:39", "remaining_time": "8:49:42"} +{"current_steps": 1184, "total_steps": 4671, "loss": 0.1329, "learning_rate": 9.300872813687694e-06, "epoch": 0.76043673731535, "percentage": 25.35, "elapsed_time": "2:59:47", "remaining_time": "8:49:29"} +{"current_steps": 1185, "total_steps": 4671, "loss": 0.0882, "learning_rate": 9.298965579343305e-06, "epoch": 0.7610789980732178, "percentage": 25.37, "elapsed_time": "2:59:54", "remaining_time": "8:49:14"} +{"current_steps": 1186, "total_steps": 4671, "loss": 0.1465, "learning_rate": 9.297055943154273e-06, "epoch": 0.7617212588310854, "percentage": 25.39, "elapsed_time": "3:00:03", "remaining_time": "8:49:05"} +{"current_steps": 1187, "total_steps": 4671, "loss": 0.1491, "learning_rate": 9.295143906187515e-06, "epoch": 0.7623635195889531, "percentage": 25.41, "elapsed_time": "3:00:13", "remaining_time": "8:48:58"} +{"current_steps": 1188, "total_steps": 4671, "loss": 0.1032, "learning_rate": 9.293229469511293e-06, "epoch": 0.7630057803468208, "percentage": 25.43, "elapsed_time": "3:00:21", "remaining_time": "8:48:46"} +{"current_steps": 1189, "total_steps": 4671, "loss": 0.1192, "learning_rate": 9.291312634195209e-06, "epoch": 0.7636480411046885, "percentage": 25.45, "elapsed_time": "3:00:28", "remaining_time": "8:48:32"} +{"current_steps": 1190, "total_steps": 4671, "loss": 0.1128, "learning_rate": 9.289393401310203e-06, "epoch": 0.7642903018625562, "percentage": 25.48, "elapsed_time": "3:00:39", "remaining_time": "8:48:27"} +{"current_steps": 1191, "total_steps": 4671, "loss": 0.1215, "learning_rate": 9.287471771928556e-06, "epoch": 0.7649325626204239, "percentage": 25.5, "elapsed_time": "3:00:48", "remaining_time": "8:48:19"} +{"current_steps": 1192, "total_steps": 4671, "loss": 0.0627, "learning_rate": 9.285547747123888e-06, "epoch": 0.7655748233782916, "percentage": 25.52, "elapsed_time": "3:00:56", "remaining_time": "8:48:04"} +{"current_steps": 1193, "total_steps": 4671, "loss": 0.1717, "learning_rate": 9.28362132797116e-06, "epoch": 0.7662170841361593, "percentage": 25.54, "elapsed_time": "3:01:06", "remaining_time": "8:48:00"} +{"current_steps": 1194, "total_steps": 4671, "loss": 0.1274, "learning_rate": 9.281692515546665e-06, "epoch": 0.766859344894027, "percentage": 25.56, "elapsed_time": "3:01:16", "remaining_time": "8:47:52"} +{"current_steps": 1195, "total_steps": 4671, "loss": 0.1723, "learning_rate": 9.279761310928037e-06, "epoch": 0.7675016056518946, "percentage": 25.58, "elapsed_time": "3:01:26", "remaining_time": "8:47:47"} +{"current_steps": 1196, "total_steps": 4671, "loss": 0.1003, "learning_rate": 9.277827715194246e-06, "epoch": 0.7681438664097624, "percentage": 25.6, "elapsed_time": "3:01:35", "remaining_time": "8:47:36"} +{"current_steps": 1197, "total_steps": 4671, "loss": 0.1163, "learning_rate": 9.275891729425595e-06, "epoch": 0.7687861271676301, "percentage": 25.63, "elapsed_time": "3:01:44", "remaining_time": "8:47:26"} +{"current_steps": 1198, "total_steps": 4671, "loss": 0.2414, "learning_rate": 9.273953354703728e-06, "epoch": 0.7694283879254977, "percentage": 25.65, "elapsed_time": "3:01:52", "remaining_time": "8:47:15"} +{"current_steps": 1199, "total_steps": 4671, "loss": 0.1752, "learning_rate": 9.27201259211162e-06, "epoch": 0.7700706486833655, "percentage": 25.67, "elapsed_time": "3:02:02", "remaining_time": "8:47:09"} +{"current_steps": 1200, "total_steps": 4671, "loss": 0.3307, "learning_rate": 9.270069442733583e-06, "epoch": 0.7707129094412332, "percentage": 25.69, "elapsed_time": "3:02:11", "remaining_time": "8:46:58"} +{"current_steps": 1201, "total_steps": 4671, "loss": 0.2315, "learning_rate": 9.268123907655256e-06, "epoch": 0.7713551701991008, "percentage": 25.71, "elapsed_time": "3:02:20", "remaining_time": "8:46:48"} +{"current_steps": 1202, "total_steps": 4671, "loss": 0.1592, "learning_rate": 9.266175987963617e-06, "epoch": 0.7719974309569685, "percentage": 25.73, "elapsed_time": "3:02:30", "remaining_time": "8:46:42"} +{"current_steps": 1203, "total_steps": 4671, "loss": 0.1324, "learning_rate": 9.264225684746974e-06, "epoch": 0.7726396917148363, "percentage": 25.75, "elapsed_time": "3:02:40", "remaining_time": "8:46:37"} +{"current_steps": 1204, "total_steps": 4671, "loss": 0.1378, "learning_rate": 9.262272999094968e-06, "epoch": 0.7732819524727039, "percentage": 25.78, "elapsed_time": "3:02:50", "remaining_time": "8:46:31"} +{"current_steps": 1205, "total_steps": 4671, "loss": 0.2504, "learning_rate": 9.260317932098569e-06, "epoch": 0.7739242132305716, "percentage": 25.8, "elapsed_time": "3:03:02", "remaining_time": "8:46:28"} +{"current_steps": 1206, "total_steps": 4671, "loss": 0.0282, "learning_rate": 9.25836048485008e-06, "epoch": 0.7745664739884393, "percentage": 25.82, "elapsed_time": "3:03:09", "remaining_time": "8:46:13"} +{"current_steps": 1207, "total_steps": 4671, "loss": 0.0538, "learning_rate": 9.25640065844313e-06, "epoch": 0.775208734746307, "percentage": 25.84, "elapsed_time": "3:03:16", "remaining_time": "8:45:58"} +{"current_steps": 1208, "total_steps": 4671, "loss": 0.1769, "learning_rate": 9.254438453972683e-06, "epoch": 0.7758509955041747, "percentage": 25.86, "elapsed_time": "3:03:26", "remaining_time": "8:45:52"} +{"current_steps": 1209, "total_steps": 4671, "loss": 0.141, "learning_rate": 9.252473872535027e-06, "epoch": 0.7764932562620424, "percentage": 25.88, "elapsed_time": "3:03:34", "remaining_time": "8:45:41"} +{"current_steps": 1210, "total_steps": 4671, "loss": 0.1069, "learning_rate": 9.250506915227779e-06, "epoch": 0.7771355170199101, "percentage": 25.9, "elapsed_time": "3:03:43", "remaining_time": "8:45:31"} +{"current_steps": 1211, "total_steps": 4671, "loss": 0.2075, "learning_rate": 9.248537583149884e-06, "epoch": 0.7777777777777778, "percentage": 25.93, "elapsed_time": "3:03:52", "remaining_time": "8:45:20"} +{"current_steps": 1212, "total_steps": 4671, "loss": 0.1936, "learning_rate": 9.246565877401614e-06, "epoch": 0.7784200385356455, "percentage": 25.95, "elapsed_time": "3:04:01", "remaining_time": "8:45:11"} +{"current_steps": 1213, "total_steps": 4671, "loss": 0.1299, "learning_rate": 9.244591799084567e-06, "epoch": 0.7790622992935131, "percentage": 25.97, "elapsed_time": "3:04:10", "remaining_time": "8:45:03"} +{"current_steps": 1214, "total_steps": 4671, "loss": 0.134, "learning_rate": 9.242615349301664e-06, "epoch": 0.7797045600513809, "percentage": 25.99, "elapsed_time": "3:04:20", "remaining_time": "8:44:55"} +{"current_steps": 1215, "total_steps": 4671, "loss": 0.0796, "learning_rate": 9.240636529157158e-06, "epoch": 0.7803468208092486, "percentage": 26.01, "elapsed_time": "3:04:27", "remaining_time": "8:44:41"} +{"current_steps": 1216, "total_steps": 4671, "loss": 0.1751, "learning_rate": 9.238655339756616e-06, "epoch": 0.7809890815671162, "percentage": 26.03, "elapsed_time": "3:04:37", "remaining_time": "8:44:34"} +{"current_steps": 1217, "total_steps": 4671, "loss": 0.1304, "learning_rate": 9.236671782206939e-06, "epoch": 0.781631342324984, "percentage": 26.05, "elapsed_time": "3:04:47", "remaining_time": "8:44:28"} +{"current_steps": 1218, "total_steps": 4671, "loss": 0.2279, "learning_rate": 9.234685857616343e-06, "epoch": 0.7822736030828517, "percentage": 26.08, "elapsed_time": "3:04:55", "remaining_time": "8:44:15"} +{"current_steps": 1219, "total_steps": 4671, "loss": 0.0689, "learning_rate": 9.232697567094371e-06, "epoch": 0.7829158638407193, "percentage": 26.1, "elapsed_time": "3:05:06", "remaining_time": "8:44:11"} +{"current_steps": 1220, "total_steps": 4671, "loss": 0.1017, "learning_rate": 9.230706911751888e-06, "epoch": 0.783558124598587, "percentage": 26.12, "elapsed_time": "3:05:16", "remaining_time": "8:44:05"} +{"current_steps": 1221, "total_steps": 4671, "loss": 0.1464, "learning_rate": 9.228713892701078e-06, "epoch": 0.7842003853564548, "percentage": 26.14, "elapsed_time": "3:05:24", "remaining_time": "8:43:54"} +{"current_steps": 1222, "total_steps": 4671, "loss": 0.1148, "learning_rate": 9.226718511055447e-06, "epoch": 0.7848426461143224, "percentage": 26.16, "elapsed_time": "3:05:34", "remaining_time": "8:43:47"} +{"current_steps": 1223, "total_steps": 4671, "loss": 0.0487, "learning_rate": 9.224720767929819e-06, "epoch": 0.7854849068721901, "percentage": 26.18, "elapsed_time": "3:05:42", "remaining_time": "8:43:34"} +{"current_steps": 1224, "total_steps": 4671, "loss": 0.199, "learning_rate": 9.22272066444034e-06, "epoch": 0.7861271676300579, "percentage": 26.2, "elapsed_time": "3:05:50", "remaining_time": "8:43:21"} +{"current_steps": 1225, "total_steps": 4671, "loss": 0.2633, "learning_rate": 9.220718201704475e-06, "epoch": 0.7867694283879255, "percentage": 26.23, "elapsed_time": "3:06:01", "remaining_time": "8:43:17"} +{"current_steps": 1226, "total_steps": 4671, "loss": 0.0959, "learning_rate": 9.218713380841003e-06, "epoch": 0.7874116891457932, "percentage": 26.25, "elapsed_time": "3:06:10", "remaining_time": "8:43:09"} +{"current_steps": 1227, "total_steps": 4671, "loss": 0.2084, "learning_rate": 9.216706202970027e-06, "epoch": 0.7880539499036608, "percentage": 26.27, "elapsed_time": "3:06:19", "remaining_time": "8:43:00"} +{"current_steps": 1228, "total_steps": 4671, "loss": 0.1081, "learning_rate": 9.21469666921296e-06, "epoch": 0.7886962106615286, "percentage": 26.29, "elapsed_time": "3:06:28", "remaining_time": "8:42:48"} +{"current_steps": 1229, "total_steps": 4671, "loss": 0.1428, "learning_rate": 9.212684780692534e-06, "epoch": 0.7893384714193963, "percentage": 26.31, "elapsed_time": "3:06:37", "remaining_time": "8:42:41"} +{"current_steps": 1230, "total_steps": 4671, "loss": 0.1095, "learning_rate": 9.210670538532798e-06, "epoch": 0.789980732177264, "percentage": 26.33, "elapsed_time": "3:06:47", "remaining_time": "8:42:33"} +{"current_steps": 1231, "total_steps": 4671, "loss": 0.3089, "learning_rate": 9.208653943859117e-06, "epoch": 0.7906229929351317, "percentage": 26.35, "elapsed_time": "3:06:57", "remaining_time": "8:42:26"} +{"current_steps": 1232, "total_steps": 4671, "loss": 0.0964, "learning_rate": 9.206634997798165e-06, "epoch": 0.7912652536929994, "percentage": 26.38, "elapsed_time": "3:07:05", "remaining_time": "8:42:15"} +{"current_steps": 1233, "total_steps": 4671, "loss": 0.1906, "learning_rate": 9.204613701477935e-06, "epoch": 0.791907514450867, "percentage": 26.4, "elapsed_time": "3:07:15", "remaining_time": "8:42:08"} +{"current_steps": 1234, "total_steps": 4671, "loss": 0.1992, "learning_rate": 9.202590056027733e-06, "epoch": 0.7925497752087347, "percentage": 26.42, "elapsed_time": "3:07:24", "remaining_time": "8:42:00"} +{"current_steps": 1235, "total_steps": 4671, "loss": 0.1872, "learning_rate": 9.200564062578172e-06, "epoch": 0.7931920359666025, "percentage": 26.44, "elapsed_time": "3:07:33", "remaining_time": "8:41:49"} +{"current_steps": 1236, "total_steps": 4671, "loss": 0.1372, "learning_rate": 9.198535722261182e-06, "epoch": 0.7938342967244701, "percentage": 26.46, "elapsed_time": "3:07:41", "remaining_time": "8:41:36"} +{"current_steps": 1237, "total_steps": 4671, "loss": 0.2033, "learning_rate": 9.196505036210002e-06, "epoch": 0.7944765574823378, "percentage": 26.48, "elapsed_time": "3:07:50", "remaining_time": "8:41:27"} +{"current_steps": 1238, "total_steps": 4671, "loss": 0.1982, "learning_rate": 9.194472005559184e-06, "epoch": 0.7951188182402055, "percentage": 26.5, "elapsed_time": "3:08:01", "remaining_time": "8:41:23"} +{"current_steps": 1239, "total_steps": 4671, "loss": 0.0629, "learning_rate": 9.192436631444587e-06, "epoch": 0.7957610789980732, "percentage": 26.53, "elapsed_time": "3:08:08", "remaining_time": "8:41:08"} +{"current_steps": 1240, "total_steps": 4671, "loss": 0.1943, "learning_rate": 9.19039891500338e-06, "epoch": 0.7964033397559409, "percentage": 26.55, "elapsed_time": "3:08:17", "remaining_time": "8:40:59"} +{"current_steps": 1241, "total_steps": 4671, "loss": 0.1348, "learning_rate": 9.188358857374042e-06, "epoch": 0.7970456005138086, "percentage": 26.57, "elapsed_time": "3:08:27", "remaining_time": "8:40:52"} +{"current_steps": 1242, "total_steps": 4671, "loss": 0.1249, "learning_rate": 9.186316459696359e-06, "epoch": 0.7976878612716763, "percentage": 26.59, "elapsed_time": "3:08:37", "remaining_time": "8:40:44"} +{"current_steps": 1243, "total_steps": 4671, "loss": 0.1519, "learning_rate": 9.184271723111424e-06, "epoch": 0.798330122029544, "percentage": 26.61, "elapsed_time": "3:08:45", "remaining_time": "8:40:33"} +{"current_steps": 1244, "total_steps": 4671, "loss": 0.2776, "learning_rate": 9.182224648761637e-06, "epoch": 0.7989723827874117, "percentage": 26.63, "elapsed_time": "3:08:53", "remaining_time": "8:40:21"} +{"current_steps": 1245, "total_steps": 4671, "loss": 0.1141, "learning_rate": 9.180175237790707e-06, "epoch": 0.7996146435452793, "percentage": 26.65, "elapsed_time": "3:09:01", "remaining_time": "8:40:10"} +{"current_steps": 1246, "total_steps": 4671, "loss": 0.0622, "learning_rate": 9.178123491343642e-06, "epoch": 0.8002569043031471, "percentage": 26.68, "elapsed_time": "3:09:10", "remaining_time": "8:39:59"} +{"current_steps": 1247, "total_steps": 4671, "loss": 0.2182, "learning_rate": 9.176069410566763e-06, "epoch": 0.8008991650610148, "percentage": 26.7, "elapsed_time": "3:09:19", "remaining_time": "8:39:50"} +{"current_steps": 1248, "total_steps": 4671, "loss": 0.1306, "learning_rate": 9.174012996607687e-06, "epoch": 0.8015414258188824, "percentage": 26.72, "elapsed_time": "3:09:27", "remaining_time": "8:39:38"} +{"current_steps": 1249, "total_steps": 4671, "loss": 0.1528, "learning_rate": 9.17195425061534e-06, "epoch": 0.8021836865767502, "percentage": 26.74, "elapsed_time": "3:09:36", "remaining_time": "8:39:30"} +{"current_steps": 1250, "total_steps": 4671, "loss": 0.1753, "learning_rate": 9.16989317373995e-06, "epoch": 0.8028259473346179, "percentage": 26.76, "elapsed_time": "3:09:46", "remaining_time": "8:39:22"} +{"current_steps": 1251, "total_steps": 4671, "loss": 0.2032, "learning_rate": 9.167829767133047e-06, "epoch": 0.8034682080924855, "percentage": 26.78, "elapsed_time": "3:09:54", "remaining_time": "8:39:11"} +{"current_steps": 1252, "total_steps": 4671, "loss": 0.1412, "learning_rate": 9.165764031947461e-06, "epoch": 0.8041104688503532, "percentage": 26.8, "elapsed_time": "3:10:03", "remaining_time": "8:39:01"} +{"current_steps": 1253, "total_steps": 4671, "loss": 0.1272, "learning_rate": 9.163695969337325e-06, "epoch": 0.804752729608221, "percentage": 26.83, "elapsed_time": "3:10:10", "remaining_time": "8:38:46"} +{"current_steps": 1254, "total_steps": 4671, "loss": 0.1765, "learning_rate": 9.161625580458073e-06, "epoch": 0.8053949903660886, "percentage": 26.85, "elapsed_time": "3:10:20", "remaining_time": "8:38:38"} +{"current_steps": 1255, "total_steps": 4671, "loss": 0.0831, "learning_rate": 9.159552866466434e-06, "epoch": 0.8060372511239563, "percentage": 26.87, "elapsed_time": "3:10:27", "remaining_time": "8:38:25"} +{"current_steps": 1256, "total_steps": 4671, "loss": 0.1435, "learning_rate": 9.15747782852044e-06, "epoch": 0.8066795118818241, "percentage": 26.89, "elapsed_time": "3:10:36", "remaining_time": "8:38:14"} +{"current_steps": 1257, "total_steps": 4671, "loss": 0.1617, "learning_rate": 9.155400467779424e-06, "epoch": 0.8073217726396917, "percentage": 26.91, "elapsed_time": "3:10:46", "remaining_time": "8:38:07"} +{"current_steps": 1258, "total_steps": 4671, "loss": 0.2268, "learning_rate": 9.153320785404011e-06, "epoch": 0.8079640333975594, "percentage": 26.93, "elapsed_time": "3:10:54", "remaining_time": "8:37:55"} +{"current_steps": 1259, "total_steps": 4671, "loss": 0.1931, "learning_rate": 9.151238782556127e-06, "epoch": 0.8086062941554271, "percentage": 26.95, "elapsed_time": "3:11:04", "remaining_time": "8:37:48"} +{"current_steps": 1260, "total_steps": 4671, "loss": 0.1226, "learning_rate": 9.149154460398993e-06, "epoch": 0.8092485549132948, "percentage": 26.97, "elapsed_time": "3:11:12", "remaining_time": "8:37:36"} +{"current_steps": 1261, "total_steps": 4671, "loss": 0.1011, "learning_rate": 9.147067820097122e-06, "epoch": 0.8098908156711625, "percentage": 27.0, "elapsed_time": "3:11:19", "remaining_time": "8:37:23"} +{"current_steps": 1262, "total_steps": 4671, "loss": 0.172, "learning_rate": 9.144978862816332e-06, "epoch": 0.8105330764290302, "percentage": 27.02, "elapsed_time": "3:11:30", "remaining_time": "8:37:19"} +{"current_steps": 1263, "total_steps": 4671, "loss": 0.2572, "learning_rate": 9.142887589723724e-06, "epoch": 0.8111753371868978, "percentage": 27.04, "elapsed_time": "3:11:41", "remaining_time": "8:37:13"} +{"current_steps": 1264, "total_steps": 4671, "loss": 0.0782, "learning_rate": 9.140794001987703e-06, "epoch": 0.8118175979447656, "percentage": 27.06, "elapsed_time": "3:11:48", "remaining_time": "8:37:00"} +{"current_steps": 1265, "total_steps": 4671, "loss": 0.0943, "learning_rate": 9.138698100777961e-06, "epoch": 0.8124598587026333, "percentage": 27.08, "elapsed_time": "3:11:56", "remaining_time": "8:36:48"} +{"current_steps": 1266, "total_steps": 4671, "loss": 0.1853, "learning_rate": 9.136599887265483e-06, "epoch": 0.8131021194605009, "percentage": 27.1, "elapsed_time": "3:12:05", "remaining_time": "8:36:39"} +{"current_steps": 1267, "total_steps": 4671, "loss": 0.2084, "learning_rate": 9.134499362622546e-06, "epoch": 0.8137443802183687, "percentage": 27.12, "elapsed_time": "3:12:15", "remaining_time": "8:36:31"} +{"current_steps": 1268, "total_steps": 4671, "loss": 0.2315, "learning_rate": 9.132396528022724e-06, "epoch": 0.8143866409762364, "percentage": 27.15, "elapsed_time": "3:12:25", "remaining_time": "8:36:24"} +{"current_steps": 1269, "total_steps": 4671, "loss": 0.1596, "learning_rate": 9.130291384640873e-06, "epoch": 0.815028901734104, "percentage": 27.17, "elapsed_time": "3:12:33", "remaining_time": "8:36:12"} +{"current_steps": 1270, "total_steps": 4671, "loss": 0.1707, "learning_rate": 9.128183933653142e-06, "epoch": 0.8156711624919717, "percentage": 27.19, "elapsed_time": "3:12:40", "remaining_time": "8:35:59"} +{"current_steps": 1271, "total_steps": 4671, "loss": 0.0558, "learning_rate": 9.126074176236975e-06, "epoch": 0.8163134232498395, "percentage": 27.21, "elapsed_time": "3:12:49", "remaining_time": "8:35:49"} +{"current_steps": 1272, "total_steps": 4671, "loss": 0.1192, "learning_rate": 9.123962113571095e-06, "epoch": 0.8169556840077071, "percentage": 27.23, "elapsed_time": "3:12:57", "remaining_time": "8:35:36"} +{"current_steps": 1273, "total_steps": 4671, "loss": 0.2263, "learning_rate": 9.121847746835517e-06, "epoch": 0.8175979447655748, "percentage": 27.25, "elapsed_time": "3:13:07", "remaining_time": "8:35:30"} +{"current_steps": 1274, "total_steps": 4671, "loss": 0.1055, "learning_rate": 9.119731077211549e-06, "epoch": 0.8182402055234426, "percentage": 27.27, "elapsed_time": "3:13:17", "remaining_time": "8:35:23"} +{"current_steps": 1275, "total_steps": 4671, "loss": 0.1783, "learning_rate": 9.117612105881775e-06, "epoch": 0.8188824662813102, "percentage": 27.3, "elapsed_time": "3:13:26", "remaining_time": "8:35:14"} +{"current_steps": 1276, "total_steps": 4671, "loss": 0.1679, "learning_rate": 9.115490834030074e-06, "epoch": 0.8195247270391779, "percentage": 27.32, "elapsed_time": "3:13:35", "remaining_time": "8:35:03"} +{"current_steps": 1277, "total_steps": 4671, "loss": 0.171, "learning_rate": 9.113367262841606e-06, "epoch": 0.8201669877970456, "percentage": 27.34, "elapsed_time": "3:13:46", "remaining_time": "8:34:59"} +{"current_steps": 1278, "total_steps": 4671, "loss": 0.1673, "learning_rate": 9.111241393502814e-06, "epoch": 0.8208092485549133, "percentage": 27.36, "elapsed_time": "3:13:54", "remaining_time": "8:34:49"} +{"current_steps": 1279, "total_steps": 4671, "loss": 0.1481, "learning_rate": 9.10911322720143e-06, "epoch": 0.821451509312781, "percentage": 27.38, "elapsed_time": "3:14:05", "remaining_time": "8:34:44"} +{"current_steps": 1280, "total_steps": 4671, "loss": 0.1372, "learning_rate": 9.106982765126469e-06, "epoch": 0.8220937700706487, "percentage": 27.4, "elapsed_time": "3:14:14", "remaining_time": "8:34:34"} +{"current_steps": 1281, "total_steps": 4671, "loss": 0.1875, "learning_rate": 9.104850008468222e-06, "epoch": 0.8227360308285164, "percentage": 27.42, "elapsed_time": "3:14:22", "remaining_time": "8:34:23"} +{"current_steps": 1282, "total_steps": 4671, "loss": 0.0632, "learning_rate": 9.102714958418266e-06, "epoch": 0.8233782915863841, "percentage": 27.45, "elapsed_time": "3:14:30", "remaining_time": "8:34:11"} +{"current_steps": 1283, "total_steps": 4671, "loss": 0.1536, "learning_rate": 9.100577616169463e-06, "epoch": 0.8240205523442518, "percentage": 27.47, "elapsed_time": "3:14:38", "remaining_time": "8:34:00"} +{"current_steps": 1284, "total_steps": 4671, "loss": 0.3766, "learning_rate": 9.098437982915953e-06, "epoch": 0.8246628131021194, "percentage": 27.49, "elapsed_time": "3:14:49", "remaining_time": "8:33:54"} +{"current_steps": 1285, "total_steps": 4671, "loss": 0.1244, "learning_rate": 9.096296059853151e-06, "epoch": 0.8253050738599872, "percentage": 27.51, "elapsed_time": "3:14:57", "remaining_time": "8:33:43"} +{"current_steps": 1286, "total_steps": 4671, "loss": 0.0948, "learning_rate": 9.094151848177759e-06, "epoch": 0.8259473346178549, "percentage": 27.53, "elapsed_time": "3:15:05", "remaining_time": "8:33:30"} +{"current_steps": 1287, "total_steps": 4671, "loss": 0.0663, "learning_rate": 9.092005349087754e-06, "epoch": 0.8265895953757225, "percentage": 27.55, "elapsed_time": "3:15:13", "remaining_time": "8:33:18"} +{"current_steps": 1288, "total_steps": 4671, "loss": 0.146, "learning_rate": 9.089856563782391e-06, "epoch": 0.8272318561335903, "percentage": 27.57, "elapsed_time": "3:15:22", "remaining_time": "8:33:09"} +{"current_steps": 1289, "total_steps": 4671, "loss": 0.1814, "learning_rate": 9.0877054934622e-06, "epoch": 0.827874116891458, "percentage": 27.6, "elapsed_time": "3:15:31", "remaining_time": "8:33:00"} +{"current_steps": 1290, "total_steps": 4671, "loss": 0.1106, "learning_rate": 9.085552139328995e-06, "epoch": 0.8285163776493256, "percentage": 27.62, "elapsed_time": "3:15:40", "remaining_time": "8:32:50"} +{"current_steps": 1291, "total_steps": 4671, "loss": 0.1584, "learning_rate": 9.083396502585858e-06, "epoch": 0.8291586384071933, "percentage": 27.64, "elapsed_time": "3:15:49", "remaining_time": "8:32:41"} +{"current_steps": 1292, "total_steps": 4671, "loss": 0.1659, "learning_rate": 9.081238584437151e-06, "epoch": 0.8298008991650611, "percentage": 27.66, "elapsed_time": "3:15:59", "remaining_time": "8:32:36"} +{"current_steps": 1293, "total_steps": 4671, "loss": 0.2268, "learning_rate": 9.079078386088508e-06, "epoch": 0.8304431599229287, "percentage": 27.68, "elapsed_time": "3:16:09", "remaining_time": "8:32:29"} +{"current_steps": 1294, "total_steps": 4671, "loss": 0.039, "learning_rate": 9.07691590874684e-06, "epoch": 0.8310854206807964, "percentage": 27.7, "elapsed_time": "3:16:17", "remaining_time": "8:32:16"} +{"current_steps": 1295, "total_steps": 4671, "loss": 0.0606, "learning_rate": 9.074751153620327e-06, "epoch": 0.831727681438664, "percentage": 27.72, "elapsed_time": "3:16:24", "remaining_time": "8:32:02"} +{"current_steps": 1296, "total_steps": 4671, "loss": 0.2021, "learning_rate": 9.072584121918426e-06, "epoch": 0.8323699421965318, "percentage": 27.75, "elapsed_time": "3:16:34", "remaining_time": "8:31:54"} +{"current_steps": 1297, "total_steps": 4671, "loss": 0.0903, "learning_rate": 9.070414814851862e-06, "epoch": 0.8330122029543995, "percentage": 27.77, "elapsed_time": "3:16:42", "remaining_time": "8:31:43"} +{"current_steps": 1298, "total_steps": 4671, "loss": 0.1399, "learning_rate": 9.068243233632634e-06, "epoch": 0.8336544637122671, "percentage": 27.79, "elapsed_time": "3:16:51", "remaining_time": "8:31:33"} +{"current_steps": 1299, "total_steps": 4671, "loss": 0.2603, "learning_rate": 9.066069379474014e-06, "epoch": 0.8342967244701349, "percentage": 27.81, "elapsed_time": "3:17:00", "remaining_time": "8:31:24"} +{"current_steps": 1300, "total_steps": 4671, "loss": 0.2343, "learning_rate": 9.063893253590535e-06, "epoch": 0.8349389852280026, "percentage": 27.83, "elapsed_time": "3:17:11", "remaining_time": "8:31:19"} +{"current_steps": 1301, "total_steps": 4671, "loss": 0.1542, "learning_rate": 9.06171485719801e-06, "epoch": 0.8355812459858702, "percentage": 27.85, "elapsed_time": "3:17:20", "remaining_time": "8:31:11"} +{"current_steps": 1302, "total_steps": 4671, "loss": 0.0989, "learning_rate": 9.059534191513512e-06, "epoch": 0.8362235067437379, "percentage": 27.87, "elapsed_time": "3:17:28", "remaining_time": "8:30:59"} +{"current_steps": 1303, "total_steps": 4671, "loss": 0.137, "learning_rate": 9.057351257755387e-06, "epoch": 0.8368657675016057, "percentage": 27.9, "elapsed_time": "3:17:35", "remaining_time": "8:30:45"} +{"current_steps": 1304, "total_steps": 4671, "loss": 0.0989, "learning_rate": 9.055166057143246e-06, "epoch": 0.8375080282594733, "percentage": 27.92, "elapsed_time": "3:17:45", "remaining_time": "8:30:36"} +{"current_steps": 1305, "total_steps": 4671, "loss": 0.1346, "learning_rate": 9.052978590897964e-06, "epoch": 0.838150289017341, "percentage": 27.94, "elapsed_time": "3:17:55", "remaining_time": "8:30:29"} +{"current_steps": 1306, "total_steps": 4671, "loss": 0.1006, "learning_rate": 9.050788860241691e-06, "epoch": 0.8387925497752088, "percentage": 27.96, "elapsed_time": "3:18:03", "remaining_time": "8:30:18"} +{"current_steps": 1307, "total_steps": 4671, "loss": 0.1046, "learning_rate": 9.048596866397832e-06, "epoch": 0.8394348105330764, "percentage": 27.98, "elapsed_time": "3:18:13", "remaining_time": "8:30:11"} +{"current_steps": 1308, "total_steps": 4671, "loss": 0.1628, "learning_rate": 9.046402610591062e-06, "epoch": 0.8400770712909441, "percentage": 28.0, "elapsed_time": "3:18:23", "remaining_time": "8:30:05"} +{"current_steps": 1309, "total_steps": 4671, "loss": 0.0967, "learning_rate": 9.044206094047314e-06, "epoch": 0.8407193320488118, "percentage": 28.02, "elapsed_time": "3:18:31", "remaining_time": "8:29:52"} +{"current_steps": 1310, "total_steps": 4671, "loss": 0.1448, "learning_rate": 9.042007317993795e-06, "epoch": 0.8413615928066795, "percentage": 28.05, "elapsed_time": "3:18:38", "remaining_time": "8:29:39"} +{"current_steps": 1311, "total_steps": 4671, "loss": 0.1265, "learning_rate": 9.039806283658961e-06, "epoch": 0.8420038535645472, "percentage": 28.07, "elapsed_time": "3:18:45", "remaining_time": "8:29:24"} +{"current_steps": 1312, "total_steps": 4671, "loss": 0.1375, "learning_rate": 9.037602992272542e-06, "epoch": 0.8426461143224149, "percentage": 28.09, "elapsed_time": "3:18:54", "remaining_time": "8:29:15"} +{"current_steps": 1313, "total_steps": 4671, "loss": 0.1367, "learning_rate": 9.035397445065519e-06, "epoch": 0.8432883750802826, "percentage": 28.11, "elapsed_time": "3:19:02", "remaining_time": "8:29:02"} +{"current_steps": 1314, "total_steps": 4671, "loss": 0.1064, "learning_rate": 9.033189643270139e-06, "epoch": 0.8439306358381503, "percentage": 28.13, "elapsed_time": "3:19:10", "remaining_time": "8:28:52"} +{"current_steps": 1315, "total_steps": 4671, "loss": 0.0751, "learning_rate": 9.030979588119908e-06, "epoch": 0.844572896596018, "percentage": 28.15, "elapsed_time": "3:19:20", "remaining_time": "8:28:44"} +{"current_steps": 1316, "total_steps": 4671, "loss": 0.0961, "learning_rate": 9.028767280849592e-06, "epoch": 0.8452151573538856, "percentage": 28.17, "elapsed_time": "3:19:27", "remaining_time": "8:28:30"} +{"current_steps": 1317, "total_steps": 4671, "loss": 0.2598, "learning_rate": 9.026552722695209e-06, "epoch": 0.8458574181117534, "percentage": 28.2, "elapsed_time": "3:19:37", "remaining_time": "8:28:23"} +{"current_steps": 1318, "total_steps": 4671, "loss": 0.1946, "learning_rate": 9.024335914894042e-06, "epoch": 0.8464996788696211, "percentage": 28.22, "elapsed_time": "3:19:45", "remaining_time": "8:28:11"} +{"current_steps": 1319, "total_steps": 4671, "loss": 0.152, "learning_rate": 9.022116858684627e-06, "epoch": 0.8471419396274887, "percentage": 28.24, "elapsed_time": "3:19:53", "remaining_time": "8:27:59"} +{"current_steps": 1320, "total_steps": 4671, "loss": 0.1858, "learning_rate": 9.01989555530676e-06, "epoch": 0.8477842003853564, "percentage": 28.26, "elapsed_time": "3:20:03", "remaining_time": "8:27:51"} +{"current_steps": 1321, "total_steps": 4671, "loss": 0.1261, "learning_rate": 9.017672006001486e-06, "epoch": 0.8484264611432242, "percentage": 28.28, "elapsed_time": "3:20:13", "remaining_time": "8:27:45"} +{"current_steps": 1322, "total_steps": 4671, "loss": 0.2568, "learning_rate": 9.01544621201111e-06, "epoch": 0.8490687219010918, "percentage": 28.3, "elapsed_time": "3:20:23", "remaining_time": "8:27:39"} +{"current_steps": 1323, "total_steps": 4671, "loss": 0.1231, "learning_rate": 9.013218174579189e-06, "epoch": 0.8497109826589595, "percentage": 28.32, "elapsed_time": "3:20:33", "remaining_time": "8:27:32"} +{"current_steps": 1324, "total_steps": 4671, "loss": 0.2216, "learning_rate": 9.010987894950536e-06, "epoch": 0.8503532434168273, "percentage": 28.35, "elapsed_time": "3:20:43", "remaining_time": "8:27:24"} +{"current_steps": 1325, "total_steps": 4671, "loss": 0.0918, "learning_rate": 9.008755374371211e-06, "epoch": 0.8509955041746949, "percentage": 28.37, "elapsed_time": "3:20:50", "remaining_time": "8:27:11"} +{"current_steps": 1326, "total_steps": 4671, "loss": 0.1759, "learning_rate": 9.006520614088535e-06, "epoch": 0.8516377649325626, "percentage": 28.39, "elapsed_time": "3:21:01", "remaining_time": "8:27:06"} +{"current_steps": 1327, "total_steps": 4671, "loss": 0.0425, "learning_rate": 9.004283615351072e-06, "epoch": 0.8522800256904303, "percentage": 28.41, "elapsed_time": "3:21:08", "remaining_time": "8:26:51"} +{"current_steps": 1328, "total_steps": 4671, "loss": 0.052, "learning_rate": 9.002044379408639e-06, "epoch": 0.852922286448298, "percentage": 28.43, "elapsed_time": "3:21:16", "remaining_time": "8:26:39"} +{"current_steps": 1329, "total_steps": 4671, "loss": 0.1306, "learning_rate": 8.999802907512304e-06, "epoch": 0.8535645472061657, "percentage": 28.45, "elapsed_time": "3:21:24", "remaining_time": "8:26:28"} +{"current_steps": 1330, "total_steps": 4671, "loss": 0.0861, "learning_rate": 8.997559200914385e-06, "epoch": 0.8542068079640334, "percentage": 28.47, "elapsed_time": "3:21:32", "remaining_time": "8:26:16"} +{"current_steps": 1331, "total_steps": 4671, "loss": 0.1946, "learning_rate": 8.995313260868447e-06, "epoch": 0.8548490687219011, "percentage": 28.49, "elapsed_time": "3:21:44", "remaining_time": "8:26:15"} +{"current_steps": 1332, "total_steps": 4671, "loss": 0.1207, "learning_rate": 8.993065088629304e-06, "epoch": 0.8554913294797688, "percentage": 28.52, "elapsed_time": "3:21:54", "remaining_time": "8:26:07"} +{"current_steps": 1333, "total_steps": 4671, "loss": 0.0792, "learning_rate": 8.990814685453015e-06, "epoch": 0.8561335902376365, "percentage": 28.54, "elapsed_time": "3:22:02", "remaining_time": "8:25:56"} +{"current_steps": 1334, "total_steps": 4671, "loss": 0.0602, "learning_rate": 8.988562052596889e-06, "epoch": 0.8567758509955041, "percentage": 28.56, "elapsed_time": "3:22:12", "remaining_time": "8:25:48"} +{"current_steps": 1335, "total_steps": 4671, "loss": 0.1245, "learning_rate": 8.986307191319477e-06, "epoch": 0.8574181117533719, "percentage": 28.58, "elapsed_time": "3:22:20", "remaining_time": "8:25:38"} +{"current_steps": 1336, "total_steps": 4671, "loss": 0.1084, "learning_rate": 8.984050102880575e-06, "epoch": 0.8580603725112396, "percentage": 28.6, "elapsed_time": "3:22:27", "remaining_time": "8:25:24"} +{"current_steps": 1337, "total_steps": 4671, "loss": 0.2236, "learning_rate": 8.981790788541226e-06, "epoch": 0.8587026332691072, "percentage": 28.62, "elapsed_time": "3:22:36", "remaining_time": "8:25:14"} +{"current_steps": 1338, "total_steps": 4671, "loss": 0.1617, "learning_rate": 8.979529249563718e-06, "epoch": 0.859344894026975, "percentage": 28.64, "elapsed_time": "3:22:45", "remaining_time": "8:25:04"} +{"current_steps": 1339, "total_steps": 4671, "loss": 0.0927, "learning_rate": 8.977265487211576e-06, "epoch": 0.8599871547848427, "percentage": 28.67, "elapsed_time": "3:22:53", "remaining_time": "8:24:53"} +{"current_steps": 1340, "total_steps": 4671, "loss": 0.1604, "learning_rate": 8.974999502749576e-06, "epoch": 0.8606294155427103, "percentage": 28.69, "elapsed_time": "3:23:03", "remaining_time": "8:24:44"} +{"current_steps": 1341, "total_steps": 4671, "loss": 0.1179, "learning_rate": 8.972731297443722e-06, "epoch": 0.861271676300578, "percentage": 28.71, "elapsed_time": "3:23:10", "remaining_time": "8:24:31"} +{"current_steps": 1342, "total_steps": 4671, "loss": 0.1443, "learning_rate": 8.970460872561272e-06, "epoch": 0.8619139370584458, "percentage": 28.73, "elapsed_time": "3:23:21", "remaining_time": "8:24:26"} +{"current_steps": 1343, "total_steps": 4671, "loss": 0.1182, "learning_rate": 8.96818822937072e-06, "epoch": 0.8625561978163134, "percentage": 28.75, "elapsed_time": "3:23:29", "remaining_time": "8:24:16"} +{"current_steps": 1344, "total_steps": 4671, "loss": 0.1288, "learning_rate": 8.965913369141796e-06, "epoch": 0.8631984585741811, "percentage": 28.77, "elapsed_time": "3:23:39", "remaining_time": "8:24:08"} +{"current_steps": 1345, "total_steps": 4671, "loss": 0.1142, "learning_rate": 8.963636293145472e-06, "epoch": 0.8638407193320488, "percentage": 28.79, "elapsed_time": "3:23:47", "remaining_time": "8:23:56"} +{"current_steps": 1346, "total_steps": 4671, "loss": 0.0909, "learning_rate": 8.961357002653957e-06, "epoch": 0.8644829800899165, "percentage": 28.82, "elapsed_time": "3:23:56", "remaining_time": "8:23:47"} +{"current_steps": 1347, "total_steps": 4671, "loss": 0.1924, "learning_rate": 8.959075498940695e-06, "epoch": 0.8651252408477842, "percentage": 28.84, "elapsed_time": "3:24:05", "remaining_time": "8:23:37"} +{"current_steps": 1348, "total_steps": 4671, "loss": 0.1253, "learning_rate": 8.956791783280373e-06, "epoch": 0.8657675016056519, "percentage": 28.86, "elapsed_time": "3:24:14", "remaining_time": "8:23:28"} +{"current_steps": 1349, "total_steps": 4671, "loss": 0.1342, "learning_rate": 8.954505856948907e-06, "epoch": 0.8664097623635196, "percentage": 28.88, "elapsed_time": "3:24:23", "remaining_time": "8:23:19"} +{"current_steps": 1350, "total_steps": 4671, "loss": 0.1082, "learning_rate": 8.95221772122345e-06, "epoch": 0.8670520231213873, "percentage": 28.9, "elapsed_time": "3:24:32", "remaining_time": "8:23:09"} +{"current_steps": 1351, "total_steps": 4671, "loss": 0.2031, "learning_rate": 8.949927377382395e-06, "epoch": 0.867694283879255, "percentage": 28.92, "elapsed_time": "3:24:40", "remaining_time": "8:22:57"} +{"current_steps": 1352, "total_steps": 4671, "loss": 0.0916, "learning_rate": 8.947634826705356e-06, "epoch": 0.8683365446371226, "percentage": 28.94, "elapsed_time": "3:24:49", "remaining_time": "8:22:48"} +{"current_steps": 1353, "total_steps": 4671, "loss": 0.1955, "learning_rate": 8.945340070473194e-06, "epoch": 0.8689788053949904, "percentage": 28.97, "elapsed_time": "3:24:59", "remaining_time": "8:22:41"} +{"current_steps": 1354, "total_steps": 4671, "loss": 0.1172, "learning_rate": 8.943043109967994e-06, "epoch": 0.8696210661528581, "percentage": 28.99, "elapsed_time": "3:25:07", "remaining_time": "8:22:30"} +{"current_steps": 1355, "total_steps": 4671, "loss": 0.1993, "learning_rate": 8.940743946473074e-06, "epoch": 0.8702633269107257, "percentage": 29.01, "elapsed_time": "3:25:17", "remaining_time": "8:22:22"} +{"current_steps": 1356, "total_steps": 4671, "loss": 0.1569, "learning_rate": 8.938442581272984e-06, "epoch": 0.8709055876685935, "percentage": 29.03, "elapsed_time": "3:25:26", "remaining_time": "8:22:15"} +{"current_steps": 1357, "total_steps": 4671, "loss": 0.0732, "learning_rate": 8.936139015653503e-06, "epoch": 0.8715478484264612, "percentage": 29.05, "elapsed_time": "3:25:35", "remaining_time": "8:22:04"} +{"current_steps": 1358, "total_steps": 4671, "loss": 0.1423, "learning_rate": 8.93383325090164e-06, "epoch": 0.8721901091843288, "percentage": 29.07, "elapsed_time": "3:25:45", "remaining_time": "8:21:58"} +{"current_steps": 1359, "total_steps": 4671, "loss": 0.1389, "learning_rate": 8.931525288305633e-06, "epoch": 0.8728323699421965, "percentage": 29.09, "elapsed_time": "3:25:54", "remaining_time": "8:21:48"} +{"current_steps": 1360, "total_steps": 4671, "loss": 0.1724, "learning_rate": 8.929215129154947e-06, "epoch": 0.8734746307000643, "percentage": 29.12, "elapsed_time": "3:26:04", "remaining_time": "8:21:42"} +{"current_steps": 1361, "total_steps": 4671, "loss": 0.3024, "learning_rate": 8.926902774740276e-06, "epoch": 0.8741168914579319, "percentage": 29.14, "elapsed_time": "3:26:15", "remaining_time": "8:21:37"} +{"current_steps": 1362, "total_steps": 4671, "loss": 0.244, "learning_rate": 8.924588226353536e-06, "epoch": 0.8747591522157996, "percentage": 29.16, "elapsed_time": "3:26:25", "remaining_time": "8:21:31"} +{"current_steps": 1363, "total_steps": 4671, "loss": 0.1156, "learning_rate": 8.922271485287876e-06, "epoch": 0.8754014129736674, "percentage": 29.18, "elapsed_time": "3:26:35", "remaining_time": "8:21:23"} +{"current_steps": 1364, "total_steps": 4671, "loss": 0.1148, "learning_rate": 8.919952552837662e-06, "epoch": 0.876043673731535, "percentage": 29.2, "elapsed_time": "3:26:44", "remaining_time": "8:21:15"} +{"current_steps": 1365, "total_steps": 4671, "loss": 0.1289, "learning_rate": 8.917631430298493e-06, "epoch": 0.8766859344894027, "percentage": 29.22, "elapsed_time": "3:26:54", "remaining_time": "8:21:07"} +{"current_steps": 1366, "total_steps": 4671, "loss": 0.15, "learning_rate": 8.915308118967181e-06, "epoch": 0.8773281952472703, "percentage": 29.24, "elapsed_time": "3:27:02", "remaining_time": "8:20:55"} +{"current_steps": 1367, "total_steps": 4671, "loss": 0.0613, "learning_rate": 8.912982620141772e-06, "epoch": 0.8779704560051381, "percentage": 29.27, "elapsed_time": "3:27:12", "remaining_time": "8:20:48"} +{"current_steps": 1368, "total_steps": 4671, "loss": 0.1142, "learning_rate": 8.910654935121528e-06, "epoch": 0.8786127167630058, "percentage": 29.29, "elapsed_time": "3:27:21", "remaining_time": "8:20:40"} +{"current_steps": 1369, "total_steps": 4671, "loss": 0.118, "learning_rate": 8.908325065206932e-06, "epoch": 0.8792549775208734, "percentage": 29.31, "elapsed_time": "3:27:29", "remaining_time": "8:20:28"} +{"current_steps": 1370, "total_steps": 4671, "loss": 0.1151, "learning_rate": 8.905993011699687e-06, "epoch": 0.8798972382787412, "percentage": 29.33, "elapsed_time": "3:27:38", "remaining_time": "8:20:19"} +{"current_steps": 1371, "total_steps": 4671, "loss": 0.0805, "learning_rate": 8.903658775902725e-06, "epoch": 0.8805394990366089, "percentage": 29.35, "elapsed_time": "3:27:46", "remaining_time": "8:20:06"} +{"current_steps": 1372, "total_steps": 4671, "loss": 0.1296, "learning_rate": 8.901322359120183e-06, "epoch": 0.8811817597944765, "percentage": 29.37, "elapsed_time": "3:27:55", "remaining_time": "8:19:58"} +{"current_steps": 1373, "total_steps": 4671, "loss": 0.1777, "learning_rate": 8.898983762657426e-06, "epoch": 0.8818240205523442, "percentage": 29.39, "elapsed_time": "3:28:04", "remaining_time": "8:19:47"} +{"current_steps": 1374, "total_steps": 4671, "loss": 0.1399, "learning_rate": 8.89664298782104e-06, "epoch": 0.882466281310212, "percentage": 29.42, "elapsed_time": "3:28:11", "remaining_time": "8:19:33"} +{"current_steps": 1375, "total_steps": 4671, "loss": 0.1267, "learning_rate": 8.894300035918816e-06, "epoch": 0.8831085420680796, "percentage": 29.44, "elapsed_time": "3:28:21", "remaining_time": "8:19:26"} +{"current_steps": 1376, "total_steps": 4671, "loss": 0.2041, "learning_rate": 8.89195490825977e-06, "epoch": 0.8837508028259473, "percentage": 29.46, "elapsed_time": "3:28:31", "remaining_time": "8:19:20"} +{"current_steps": 1377, "total_steps": 4671, "loss": 0.0874, "learning_rate": 8.889607606154132e-06, "epoch": 0.884393063583815, "percentage": 29.48, "elapsed_time": "3:28:40", "remaining_time": "8:19:10"} +{"current_steps": 1378, "total_steps": 4671, "loss": 0.1002, "learning_rate": 8.887258130913347e-06, "epoch": 0.8850353243416827, "percentage": 29.5, "elapsed_time": "3:28:50", "remaining_time": "8:19:04"} +{"current_steps": 1379, "total_steps": 4671, "loss": 0.1388, "learning_rate": 8.884906483850075e-06, "epoch": 0.8856775850995504, "percentage": 29.52, "elapsed_time": "3:29:00", "remaining_time": "8:18:56"} +{"current_steps": 1380, "total_steps": 4671, "loss": 0.0768, "learning_rate": 8.882552666278185e-06, "epoch": 0.8863198458574181, "percentage": 29.54, "elapsed_time": "3:29:09", "remaining_time": "8:18:48"} +{"current_steps": 1381, "total_steps": 4671, "loss": 0.2042, "learning_rate": 8.880196679512765e-06, "epoch": 0.8869621066152859, "percentage": 29.57, "elapsed_time": "3:29:19", "remaining_time": "8:18:41"} +{"current_steps": 1382, "total_steps": 4671, "loss": 0.1333, "learning_rate": 8.877838524870109e-06, "epoch": 0.8876043673731535, "percentage": 29.59, "elapsed_time": "3:29:29", "remaining_time": "8:18:34"} +{"current_steps": 1383, "total_steps": 4671, "loss": 0.1498, "learning_rate": 8.875478203667725e-06, "epoch": 0.8882466281310212, "percentage": 29.61, "elapsed_time": "3:29:38", "remaining_time": "8:18:24"} +{"current_steps": 1384, "total_steps": 4671, "loss": 0.2862, "learning_rate": 8.873115717224334e-06, "epoch": 0.8888888888888888, "percentage": 29.63, "elapsed_time": "3:29:49", "remaining_time": "8:18:20"} +{"current_steps": 1385, "total_steps": 4671, "loss": 0.0639, "learning_rate": 8.870751066859862e-06, "epoch": 0.8895311496467566, "percentage": 29.65, "elapsed_time": "3:29:57", "remaining_time": "8:18:08"} +{"current_steps": 1386, "total_steps": 4671, "loss": 0.2169, "learning_rate": 8.868384253895445e-06, "epoch": 0.8901734104046243, "percentage": 29.67, "elapsed_time": "3:30:06", "remaining_time": "8:17:59"} +{"current_steps": 1387, "total_steps": 4671, "loss": 0.1191, "learning_rate": 8.866015279653432e-06, "epoch": 0.8908156711624919, "percentage": 29.69, "elapsed_time": "3:30:16", "remaining_time": "8:17:51"} +{"current_steps": 1388, "total_steps": 4671, "loss": 0.1762, "learning_rate": 8.863644145457371e-06, "epoch": 0.8914579319203597, "percentage": 29.72, "elapsed_time": "3:30:27", "remaining_time": "8:17:46"} +{"current_steps": 1389, "total_steps": 4671, "loss": 0.1537, "learning_rate": 8.861270852632027e-06, "epoch": 0.8921001926782274, "percentage": 29.74, "elapsed_time": "3:30:36", "remaining_time": "8:17:38"} +{"current_steps": 1390, "total_steps": 4671, "loss": 0.1614, "learning_rate": 8.85889540250336e-06, "epoch": 0.892742453436095, "percentage": 29.76, "elapsed_time": "3:30:45", "remaining_time": "8:17:29"} +{"current_steps": 1391, "total_steps": 4671, "loss": 0.1721, "learning_rate": 8.856517796398546e-06, "epoch": 0.8933847141939627, "percentage": 29.78, "elapsed_time": "3:30:55", "remaining_time": "8:17:21"} +{"current_steps": 1392, "total_steps": 4671, "loss": 0.1296, "learning_rate": 8.854138035645958e-06, "epoch": 0.8940269749518305, "percentage": 29.8, "elapsed_time": "3:31:04", "remaining_time": "8:17:12"} +{"current_steps": 1393, "total_steps": 4671, "loss": 0.1179, "learning_rate": 8.851756121575174e-06, "epoch": 0.8946692357096981, "percentage": 29.82, "elapsed_time": "3:31:15", "remaining_time": "8:17:07"} +{"current_steps": 1394, "total_steps": 4671, "loss": 0.1321, "learning_rate": 8.84937205551698e-06, "epoch": 0.8953114964675658, "percentage": 29.84, "elapsed_time": "3:31:25", "remaining_time": "8:17:01"} +{"current_steps": 1395, "total_steps": 4671, "loss": 0.11, "learning_rate": 8.846985838803357e-06, "epoch": 0.8959537572254336, "percentage": 29.87, "elapsed_time": "3:31:34", "remaining_time": "8:16:50"} +{"current_steps": 1396, "total_steps": 4671, "loss": 0.0934, "learning_rate": 8.844597472767492e-06, "epoch": 0.8965960179833012, "percentage": 29.89, "elapsed_time": "3:31:41", "remaining_time": "8:16:36"} +{"current_steps": 1397, "total_steps": 4671, "loss": 0.0964, "learning_rate": 8.842206958743777e-06, "epoch": 0.8972382787411689, "percentage": 29.91, "elapsed_time": "3:31:51", "remaining_time": "8:16:31"} +{"current_steps": 1398, "total_steps": 4671, "loss": 0.1077, "learning_rate": 8.839814298067792e-06, "epoch": 0.8978805394990366, "percentage": 29.93, "elapsed_time": "3:31:59", "remaining_time": "8:16:19"} +{"current_steps": 1399, "total_steps": 4671, "loss": 0.0768, "learning_rate": 8.837419492076326e-06, "epoch": 0.8985228002569043, "percentage": 29.95, "elapsed_time": "3:32:08", "remaining_time": "8:16:09"} +{"current_steps": 1400, "total_steps": 4671, "loss": 0.1184, "learning_rate": 8.835022542107367e-06, "epoch": 0.899165061014772, "percentage": 29.97, "elapsed_time": "3:32:17", "remaining_time": "8:15:59"} +{"current_steps": 1401, "total_steps": 4671, "loss": 0.2108, "learning_rate": 8.832623449500096e-06, "epoch": 0.8998073217726397, "percentage": 29.99, "elapsed_time": "3:32:27", "remaining_time": "8:15:54"} +{"current_steps": 1402, "total_steps": 4671, "loss": 0.0693, "learning_rate": 8.83022221559489e-06, "epoch": 0.9004495825305073, "percentage": 30.01, "elapsed_time": "3:32:36", "remaining_time": "8:15:44"} +{"current_steps": 1403, "total_steps": 4671, "loss": 0.1362, "learning_rate": 8.827818841733331e-06, "epoch": 0.9010918432883751, "percentage": 30.04, "elapsed_time": "3:32:46", "remaining_time": "8:15:35"} +{"current_steps": 1404, "total_steps": 4671, "loss": 0.0694, "learning_rate": 8.825413329258187e-06, "epoch": 0.9017341040462428, "percentage": 30.06, "elapsed_time": "3:32:54", "remaining_time": "8:15:26"} +{"current_steps": 1405, "total_steps": 4671, "loss": 0.2799, "learning_rate": 8.823005679513426e-06, "epoch": 0.9023763648041104, "percentage": 30.08, "elapsed_time": "3:33:04", "remaining_time": "8:15:18"} +{"current_steps": 1406, "total_steps": 4671, "loss": 0.1634, "learning_rate": 8.820595893844209e-06, "epoch": 0.9030186255619782, "percentage": 30.1, "elapsed_time": "3:33:15", "remaining_time": "8:15:12"} +{"current_steps": 1407, "total_steps": 4671, "loss": 0.094, "learning_rate": 8.81818397359689e-06, "epoch": 0.9036608863198459, "percentage": 30.12, "elapsed_time": "3:33:23", "remaining_time": "8:15:01"} +{"current_steps": 1408, "total_steps": 4671, "loss": 0.1031, "learning_rate": 8.815769920119017e-06, "epoch": 0.9043031470777135, "percentage": 30.14, "elapsed_time": "3:33:30", "remaining_time": "8:14:49"} +{"current_steps": 1409, "total_steps": 4671, "loss": 0.2028, "learning_rate": 8.813353734759327e-06, "epoch": 0.9049454078355812, "percentage": 30.16, "elapsed_time": "3:33:40", "remaining_time": "8:14:40"} +{"current_steps": 1410, "total_steps": 4671, "loss": 0.108, "learning_rate": 8.810935418867752e-06, "epoch": 0.905587668593449, "percentage": 30.19, "elapsed_time": "3:33:49", "remaining_time": "8:14:30"} +{"current_steps": 1411, "total_steps": 4671, "loss": 0.3477, "learning_rate": 8.80851497379541e-06, "epoch": 0.9062299293513166, "percentage": 30.21, "elapsed_time": "3:33:58", "remaining_time": "8:14:22"} +{"current_steps": 1412, "total_steps": 4671, "loss": 0.1965, "learning_rate": 8.806092400894612e-06, "epoch": 0.9068721901091843, "percentage": 30.23, "elapsed_time": "3:34:07", "remaining_time": "8:14:12"} +{"current_steps": 1413, "total_steps": 4671, "loss": 0.1078, "learning_rate": 8.803667701518857e-06, "epoch": 0.9075144508670521, "percentage": 30.25, "elapsed_time": "3:34:16", "remaining_time": "8:14:04"} +{"current_steps": 1414, "total_steps": 4671, "loss": 0.1132, "learning_rate": 8.801240877022829e-06, "epoch": 0.9081567116249197, "percentage": 30.27, "elapsed_time": "3:34:24", "remaining_time": "8:13:52"} +{"current_steps": 1415, "total_steps": 4671, "loss": 0.0869, "learning_rate": 8.798811928762405e-06, "epoch": 0.9087989723827874, "percentage": 30.29, "elapsed_time": "3:34:33", "remaining_time": "8:13:43"} +{"current_steps": 1416, "total_steps": 4671, "loss": 0.1491, "learning_rate": 8.796380858094645e-06, "epoch": 0.9094412331406551, "percentage": 30.31, "elapsed_time": "3:34:44", "remaining_time": "8:13:36"} +{"current_steps": 1417, "total_steps": 4671, "loss": 0.1311, "learning_rate": 8.793947666377793e-06, "epoch": 0.9100834938985228, "percentage": 30.34, "elapsed_time": "3:34:53", "remaining_time": "8:13:29"} +{"current_steps": 1418, "total_steps": 4671, "loss": 0.2153, "learning_rate": 8.791512354971283e-06, "epoch": 0.9107257546563905, "percentage": 30.36, "elapsed_time": "3:35:04", "remaining_time": "8:13:23"} +{"current_steps": 1419, "total_steps": 4671, "loss": 0.2812, "learning_rate": 8.789074925235729e-06, "epoch": 0.9113680154142582, "percentage": 30.38, "elapsed_time": "3:35:13", "remaining_time": "8:13:14"} +{"current_steps": 1420, "total_steps": 4671, "loss": 0.0943, "learning_rate": 8.786635378532933e-06, "epoch": 0.9120102761721259, "percentage": 30.4, "elapsed_time": "3:35:23", "remaining_time": "8:13:07"} +{"current_steps": 1421, "total_steps": 4671, "loss": 0.2622, "learning_rate": 8.784193716225872e-06, "epoch": 0.9126525369299936, "percentage": 30.42, "elapsed_time": "3:35:33", "remaining_time": "8:12:59"} +{"current_steps": 1422, "total_steps": 4671, "loss": 0.1757, "learning_rate": 8.781749939678712e-06, "epoch": 0.9132947976878613, "percentage": 30.44, "elapsed_time": "3:35:40", "remaining_time": "8:12:47"} +{"current_steps": 1423, "total_steps": 4671, "loss": 0.2086, "learning_rate": 8.779304050256801e-06, "epoch": 0.9139370584457289, "percentage": 30.46, "elapsed_time": "3:35:49", "remaining_time": "8:12:37"} +{"current_steps": 1424, "total_steps": 4671, "loss": 0.2121, "learning_rate": 8.77685604932666e-06, "epoch": 0.9145793192035967, "percentage": 30.49, "elapsed_time": "3:35:59", "remaining_time": "8:12:30"} +{"current_steps": 1425, "total_steps": 4671, "loss": 0.1493, "learning_rate": 8.774405938255997e-06, "epoch": 0.9152215799614644, "percentage": 30.51, "elapsed_time": "3:36:07", "remaining_time": "8:12:18"} +{"current_steps": 1426, "total_steps": 4671, "loss": 0.1428, "learning_rate": 8.771953718413698e-06, "epoch": 0.915863840719332, "percentage": 30.53, "elapsed_time": "3:36:14", "remaining_time": "8:12:04"} +{"current_steps": 1427, "total_steps": 4671, "loss": 0.1242, "learning_rate": 8.769499391169819e-06, "epoch": 0.9165061014771998, "percentage": 30.55, "elapsed_time": "3:36:24", "remaining_time": "8:11:57"} +{"current_steps": 1428, "total_steps": 4671, "loss": 0.2359, "learning_rate": 8.767042957895607e-06, "epoch": 0.9171483622350675, "percentage": 30.57, "elapsed_time": "3:36:33", "remaining_time": "8:11:48"} +{"current_steps": 1429, "total_steps": 4671, "loss": 0.3206, "learning_rate": 8.764584419963474e-06, "epoch": 0.9177906229929351, "percentage": 30.59, "elapsed_time": "3:36:41", "remaining_time": "8:11:37"} +{"current_steps": 1430, "total_steps": 4671, "loss": 0.1391, "learning_rate": 8.762123778747011e-06, "epoch": 0.9184328837508028, "percentage": 30.61, "elapsed_time": "3:36:50", "remaining_time": "8:11:26"} +{"current_steps": 1431, "total_steps": 4671, "loss": 0.1134, "learning_rate": 8.759661035620992e-06, "epoch": 0.9190751445086706, "percentage": 30.64, "elapsed_time": "3:37:01", "remaining_time": "8:11:22"} +{"current_steps": 1432, "total_steps": 4671, "loss": 0.1835, "learning_rate": 8.757196191961353e-06, "epoch": 0.9197174052665382, "percentage": 30.66, "elapsed_time": "3:37:10", "remaining_time": "8:11:12"} +{"current_steps": 1433, "total_steps": 4671, "loss": 0.0867, "learning_rate": 8.754729249145211e-06, "epoch": 0.9203596660244059, "percentage": 30.68, "elapsed_time": "3:37:19", "remaining_time": "8:11:04"} +{"current_steps": 1434, "total_steps": 4671, "loss": 0.2073, "learning_rate": 8.752260208550855e-06, "epoch": 0.9210019267822736, "percentage": 30.7, "elapsed_time": "3:37:29", "remaining_time": "8:10:57"} +{"current_steps": 1435, "total_steps": 4671, "loss": 0.0669, "learning_rate": 8.749789071557745e-06, "epoch": 0.9216441875401413, "percentage": 30.72, "elapsed_time": "3:37:37", "remaining_time": "8:10:45"} +{"current_steps": 1436, "total_steps": 4671, "loss": 0.1864, "learning_rate": 8.747315839546512e-06, "epoch": 0.922286448298009, "percentage": 30.74, "elapsed_time": "3:37:47", "remaining_time": "8:10:37"} +{"current_steps": 1437, "total_steps": 4671, "loss": 0.1559, "learning_rate": 8.744840513898957e-06, "epoch": 0.9229287090558767, "percentage": 30.76, "elapsed_time": "3:37:56", "remaining_time": "8:10:28"} +{"current_steps": 1438, "total_steps": 4671, "loss": 0.0993, "learning_rate": 8.742363095998054e-06, "epoch": 0.9235709698137444, "percentage": 30.79, "elapsed_time": "3:38:05", "remaining_time": "8:10:19"} +{"current_steps": 1439, "total_steps": 4671, "loss": 0.1248, "learning_rate": 8.739883587227941e-06, "epoch": 0.9242132305716121, "percentage": 30.81, "elapsed_time": "3:38:15", "remaining_time": "8:10:11"} +{"current_steps": 1440, "total_steps": 4671, "loss": 0.2302, "learning_rate": 8.73740198897393e-06, "epoch": 0.9248554913294798, "percentage": 30.83, "elapsed_time": "3:38:26", "remaining_time": "8:10:07"} +{"current_steps": 1441, "total_steps": 4671, "loss": 0.2291, "learning_rate": 8.734918302622493e-06, "epoch": 0.9254977520873474, "percentage": 30.85, "elapsed_time": "3:38:36", "remaining_time": "8:10:00"} +{"current_steps": 1442, "total_steps": 4671, "loss": 0.2367, "learning_rate": 8.732432529561277e-06, "epoch": 0.9261400128452152, "percentage": 30.87, "elapsed_time": "3:38:45", "remaining_time": "8:09:51"} +{"current_steps": 1443, "total_steps": 4671, "loss": 0.0973, "learning_rate": 8.729944671179088e-06, "epoch": 0.9267822736030829, "percentage": 30.89, "elapsed_time": "3:38:54", "remaining_time": "8:09:41"} +{"current_steps": 1444, "total_steps": 4671, "loss": 0.2055, "learning_rate": 8.727454728865901e-06, "epoch": 0.9274245343609505, "percentage": 30.91, "elapsed_time": "3:39:04", "remaining_time": "8:09:34"} +{"current_steps": 1445, "total_steps": 4671, "loss": 0.206, "learning_rate": 8.724962704012853e-06, "epoch": 0.9280667951188183, "percentage": 30.94, "elapsed_time": "3:39:14", "remaining_time": "8:09:26"} +{"current_steps": 1446, "total_steps": 4671, "loss": 0.1871, "learning_rate": 8.722468598012246e-06, "epoch": 0.928709055876686, "percentage": 30.96, "elapsed_time": "3:39:22", "remaining_time": "8:09:15"} +{"current_steps": 1447, "total_steps": 4671, "loss": 0.1541, "learning_rate": 8.719972412257545e-06, "epoch": 0.9293513166345536, "percentage": 30.98, "elapsed_time": "3:39:31", "remaining_time": "8:09:06"} +{"current_steps": 1448, "total_steps": 4671, "loss": 0.0984, "learning_rate": 8.717474148143377e-06, "epoch": 0.9299935773924213, "percentage": 31.0, "elapsed_time": "3:39:40", "remaining_time": "8:08:58"} +{"current_steps": 1449, "total_steps": 4671, "loss": 0.1054, "learning_rate": 8.714973807065525e-06, "epoch": 0.930635838150289, "percentage": 31.02, "elapsed_time": "3:39:48", "remaining_time": "8:08:46"} +{"current_steps": 1450, "total_steps": 4671, "loss": 0.1331, "learning_rate": 8.712471390420944e-06, "epoch": 0.9312780989081567, "percentage": 31.04, "elapsed_time": "3:39:57", "remaining_time": "8:08:35"} +{"current_steps": 1451, "total_steps": 4671, "loss": 0.0792, "learning_rate": 8.709966899607735e-06, "epoch": 0.9319203596660244, "percentage": 31.06, "elapsed_time": "3:40:04", "remaining_time": "8:08:23"} +{"current_steps": 1452, "total_steps": 4671, "loss": 0.2259, "learning_rate": 8.707460336025168e-06, "epoch": 0.9325626204238922, "percentage": 31.09, "elapsed_time": "3:40:15", "remaining_time": "8:08:17"} +{"current_steps": 1453, "total_steps": 4671, "loss": 0.1259, "learning_rate": 8.704951701073668e-06, "epoch": 0.9332048811817598, "percentage": 31.11, "elapsed_time": "3:40:24", "remaining_time": "8:08:08"} +{"current_steps": 1454, "total_steps": 4671, "loss": 0.0769, "learning_rate": 8.702440996154813e-06, "epoch": 0.9338471419396275, "percentage": 31.13, "elapsed_time": "3:40:33", "remaining_time": "8:08:00"} +{"current_steps": 1455, "total_steps": 4671, "loss": 0.2281, "learning_rate": 8.699928222671343e-06, "epoch": 0.9344894026974951, "percentage": 31.15, "elapsed_time": "3:40:45", "remaining_time": "8:07:55"} +{"current_steps": 1456, "total_steps": 4671, "loss": 0.0993, "learning_rate": 8.697413382027153e-06, "epoch": 0.9351316634553629, "percentage": 31.17, "elapsed_time": "3:40:54", "remaining_time": "8:07:47"} +{"current_steps": 1457, "total_steps": 4671, "loss": 0.1225, "learning_rate": 8.694896475627292e-06, "epoch": 0.9357739242132306, "percentage": 31.19, "elapsed_time": "3:41:03", "remaining_time": "8:07:37"} +{"current_steps": 1458, "total_steps": 4671, "loss": 0.1346, "learning_rate": 8.69237750487796e-06, "epoch": 0.9364161849710982, "percentage": 31.21, "elapsed_time": "3:41:12", "remaining_time": "8:07:28"} +{"current_steps": 1459, "total_steps": 4671, "loss": 0.0862, "learning_rate": 8.689856471186518e-06, "epoch": 0.9370584457289659, "percentage": 31.24, "elapsed_time": "3:41:21", "remaining_time": "8:07:18"} +{"current_steps": 1460, "total_steps": 4671, "loss": 0.0782, "learning_rate": 8.687333375961468e-06, "epoch": 0.9377007064868337, "percentage": 31.26, "elapsed_time": "3:41:30", "remaining_time": "8:07:09"} +{"current_steps": 1461, "total_steps": 4671, "loss": 0.2049, "learning_rate": 8.684808220612478e-06, "epoch": 0.9383429672447013, "percentage": 31.28, "elapsed_time": "3:41:40", "remaining_time": "8:07:01"} +{"current_steps": 1462, "total_steps": 4671, "loss": 0.1286, "learning_rate": 8.682281006550356e-06, "epoch": 0.938985228002569, "percentage": 31.3, "elapsed_time": "3:41:49", "remaining_time": "8:06:54"} +{"current_steps": 1463, "total_steps": 4671, "loss": 0.1913, "learning_rate": 8.679751735187065e-06, "epoch": 0.9396274887604368, "percentage": 31.32, "elapsed_time": "3:41:59", "remaining_time": "8:06:47"} +{"current_steps": 1464, "total_steps": 4671, "loss": 0.1004, "learning_rate": 8.677220407935714e-06, "epoch": 0.9402697495183044, "percentage": 31.34, "elapsed_time": "3:42:07", "remaining_time": "8:06:35"} +{"current_steps": 1465, "total_steps": 4671, "loss": 0.1202, "learning_rate": 8.674687026210567e-06, "epoch": 0.9409120102761721, "percentage": 31.36, "elapsed_time": "3:42:17", "remaining_time": "8:06:27"} +{"current_steps": 1466, "total_steps": 4671, "loss": 0.2097, "learning_rate": 8.672151591427027e-06, "epoch": 0.9415542710340398, "percentage": 31.39, "elapsed_time": "3:42:24", "remaining_time": "8:06:13"} +{"current_steps": 1467, "total_steps": 4671, "loss": 0.176, "learning_rate": 8.669614105001652e-06, "epoch": 0.9421965317919075, "percentage": 31.41, "elapsed_time": "3:42:35", "remaining_time": "8:06:09"} +{"current_steps": 1468, "total_steps": 4671, "loss": 0.14, "learning_rate": 8.667074568352143e-06, "epoch": 0.9428387925497752, "percentage": 31.43, "elapsed_time": "3:42:42", "remaining_time": "8:05:55"} +{"current_steps": 1469, "total_steps": 4671, "loss": 0.1564, "learning_rate": 8.664532982897346e-06, "epoch": 0.9434810533076429, "percentage": 31.45, "elapsed_time": "3:42:50", "remaining_time": "8:05:43"} +{"current_steps": 1470, "total_steps": 4671, "loss": 0.331, "learning_rate": 8.661989350057251e-06, "epoch": 0.9441233140655106, "percentage": 31.47, "elapsed_time": "3:42:59", "remaining_time": "8:05:35"} +{"current_steps": 1471, "total_steps": 4671, "loss": 0.158, "learning_rate": 8.659443671252995e-06, "epoch": 0.9447655748233783, "percentage": 31.49, "elapsed_time": "3:43:10", "remaining_time": "8:05:29"} +{"current_steps": 1472, "total_steps": 4671, "loss": 0.3138, "learning_rate": 8.656895947906856e-06, "epoch": 0.945407835581246, "percentage": 31.51, "elapsed_time": "3:43:19", "remaining_time": "8:05:19"} +{"current_steps": 1473, "total_steps": 4671, "loss": 0.1146, "learning_rate": 8.654346181442255e-06, "epoch": 0.9460500963391136, "percentage": 31.54, "elapsed_time": "3:43:27", "remaining_time": "8:05:09"} +{"current_steps": 1474, "total_steps": 4671, "loss": 0.1801, "learning_rate": 8.65179437328375e-06, "epoch": 0.9466923570969814, "percentage": 31.56, "elapsed_time": "3:43:34", "remaining_time": "8:04:55"} +{"current_steps": 1475, "total_steps": 4671, "loss": 0.1845, "learning_rate": 8.64924052485705e-06, "epoch": 0.9473346178548491, "percentage": 31.58, "elapsed_time": "3:43:45", "remaining_time": "8:04:49"} +{"current_steps": 1476, "total_steps": 4671, "loss": 0.0789, "learning_rate": 8.646684637588992e-06, "epoch": 0.9479768786127167, "percentage": 31.6, "elapsed_time": "3:43:52", "remaining_time": "8:04:37"} +{"current_steps": 1477, "total_steps": 4671, "loss": 0.1395, "learning_rate": 8.64412671290756e-06, "epoch": 0.9486191393705845, "percentage": 31.62, "elapsed_time": "3:44:00", "remaining_time": "8:04:25"} +{"current_steps": 1478, "total_steps": 4671, "loss": 0.1689, "learning_rate": 8.641566752241874e-06, "epoch": 0.9492614001284522, "percentage": 31.64, "elapsed_time": "3:44:10", "remaining_time": "8:04:17"} +{"current_steps": 1479, "total_steps": 4671, "loss": 0.107, "learning_rate": 8.63900475702219e-06, "epoch": 0.9499036608863198, "percentage": 31.66, "elapsed_time": "3:44:20", "remaining_time": "8:04:10"} +{"current_steps": 1480, "total_steps": 4671, "loss": 0.0728, "learning_rate": 8.636440728679907e-06, "epoch": 0.9505459216441875, "percentage": 31.68, "elapsed_time": "3:44:29", "remaining_time": "8:04:01"} +{"current_steps": 1481, "total_steps": 4671, "loss": 0.1094, "learning_rate": 8.63387466864755e-06, "epoch": 0.9511881824020553, "percentage": 31.71, "elapsed_time": "3:44:37", "remaining_time": "8:03:50"} +{"current_steps": 1482, "total_steps": 4671, "loss": 0.0701, "learning_rate": 8.631306578358787e-06, "epoch": 0.9518304431599229, "percentage": 31.73, "elapsed_time": "3:44:44", "remaining_time": "8:03:36"} +{"current_steps": 1483, "total_steps": 4671, "loss": 0.1381, "learning_rate": 8.628736459248414e-06, "epoch": 0.9524727039177906, "percentage": 31.75, "elapsed_time": "3:44:53", "remaining_time": "8:03:26"} +{"current_steps": 1484, "total_steps": 4671, "loss": 0.0869, "learning_rate": 8.62616431275237e-06, "epoch": 0.9531149646756584, "percentage": 31.77, "elapsed_time": "3:45:02", "remaining_time": "8:03:16"} +{"current_steps": 1485, "total_steps": 4671, "loss": 0.1238, "learning_rate": 8.623590140307715e-06, "epoch": 0.953757225433526, "percentage": 31.79, "elapsed_time": "3:45:12", "remaining_time": "8:03:10"} +{"current_steps": 1486, "total_steps": 4671, "loss": 0.1157, "learning_rate": 8.62101394335265e-06, "epoch": 0.9543994861913937, "percentage": 31.81, "elapsed_time": "3:45:20", "remaining_time": "8:02:59"} +{"current_steps": 1487, "total_steps": 4671, "loss": 0.1794, "learning_rate": 8.618435723326502e-06, "epoch": 0.9550417469492614, "percentage": 31.83, "elapsed_time": "3:45:30", "remaining_time": "8:02:50"} +{"current_steps": 1488, "total_steps": 4671, "loss": 0.064, "learning_rate": 8.615855481669733e-06, "epoch": 0.9556840077071291, "percentage": 31.86, "elapsed_time": "3:45:38", "remaining_time": "8:02:39"} +{"current_steps": 1489, "total_steps": 4671, "loss": 0.1986, "learning_rate": 8.613273219823927e-06, "epoch": 0.9563262684649968, "percentage": 31.88, "elapsed_time": "3:45:46", "remaining_time": "8:02:28"} +{"current_steps": 1490, "total_steps": 4671, "loss": 0.0836, "learning_rate": 8.610688939231805e-06, "epoch": 0.9569685292228645, "percentage": 31.9, "elapsed_time": "3:45:54", "remaining_time": "8:02:16"} +{"current_steps": 1491, "total_steps": 4671, "loss": 0.143, "learning_rate": 8.60810264133721e-06, "epoch": 0.9576107899807321, "percentage": 31.92, "elapsed_time": "3:46:03", "remaining_time": "8:02:07"} +{"current_steps": 1492, "total_steps": 4671, "loss": 0.0753, "learning_rate": 8.605514327585116e-06, "epoch": 0.9582530507385999, "percentage": 31.94, "elapsed_time": "3:46:11", "remaining_time": "8:01:56"} +{"current_steps": 1493, "total_steps": 4671, "loss": 0.0866, "learning_rate": 8.602923999421621e-06, "epoch": 0.9588953114964676, "percentage": 31.96, "elapsed_time": "3:46:19", "remaining_time": "8:01:44"} +{"current_steps": 1494, "total_steps": 4671, "loss": 0.0737, "learning_rate": 8.600331658293948e-06, "epoch": 0.9595375722543352, "percentage": 31.98, "elapsed_time": "3:46:26", "remaining_time": "8:01:32"} +{"current_steps": 1495, "total_steps": 4671, "loss": 0.1196, "learning_rate": 8.597737305650445e-06, "epoch": 0.960179833012203, "percentage": 32.01, "elapsed_time": "3:46:34", "remaining_time": "8:01:20"} +{"current_steps": 1496, "total_steps": 4671, "loss": 0.1962, "learning_rate": 8.595140942940587e-06, "epoch": 0.9608220937700707, "percentage": 32.03, "elapsed_time": "3:46:44", "remaining_time": "8:01:14"} +{"current_steps": 1497, "total_steps": 4671, "loss": 0.1203, "learning_rate": 8.592542571614966e-06, "epoch": 0.9614643545279383, "percentage": 32.05, "elapsed_time": "3:46:55", "remaining_time": "8:01:07"} +{"current_steps": 1498, "total_steps": 4671, "loss": 0.2528, "learning_rate": 8.589942193125303e-06, "epoch": 0.962106615285806, "percentage": 32.07, "elapsed_time": "3:47:03", "remaining_time": "8:00:57"} +{"current_steps": 1499, "total_steps": 4671, "loss": 0.0811, "learning_rate": 8.587339808924435e-06, "epoch": 0.9627488760436738, "percentage": 32.09, "elapsed_time": "3:47:13", "remaining_time": "8:00:50"} +{"current_steps": 1500, "total_steps": 4671, "loss": 0.128, "learning_rate": 8.584735420466323e-06, "epoch": 0.9633911368015414, "percentage": 32.11, "elapsed_time": "3:47:22", "remaining_time": "8:00:40"} +{"current_steps": 1501, "total_steps": 4671, "loss": 0.1852, "learning_rate": 8.582129029206045e-06, "epoch": 0.9640333975594091, "percentage": 32.13, "elapsed_time": "3:47:31", "remaining_time": "8:00:31"} +{"current_steps": 1502, "total_steps": 4671, "loss": 0.1456, "learning_rate": 8.579520636599801e-06, "epoch": 0.9646756583172769, "percentage": 32.16, "elapsed_time": "3:47:42", "remaining_time": "8:00:25"} +{"current_steps": 1503, "total_steps": 4671, "loss": 0.1201, "learning_rate": 8.576910244104905e-06, "epoch": 0.9653179190751445, "percentage": 32.18, "elapsed_time": "3:47:52", "remaining_time": "8:00:18"} +{"current_steps": 1504, "total_steps": 4671, "loss": 0.0815, "learning_rate": 8.574297853179795e-06, "epoch": 0.9659601798330122, "percentage": 32.2, "elapsed_time": "3:48:01", "remaining_time": "8:00:08"} +{"current_steps": 1505, "total_steps": 4671, "loss": 0.0994, "learning_rate": 8.571683465284017e-06, "epoch": 0.9666024405908799, "percentage": 32.22, "elapsed_time": "3:48:10", "remaining_time": "8:00:00"} +{"current_steps": 1506, "total_steps": 4671, "loss": 0.1251, "learning_rate": 8.56906708187824e-06, "epoch": 0.9672447013487476, "percentage": 32.24, "elapsed_time": "3:48:20", "remaining_time": "7:59:52"} +{"current_steps": 1507, "total_steps": 4671, "loss": 0.1334, "learning_rate": 8.566448704424244e-06, "epoch": 0.9678869621066153, "percentage": 32.26, "elapsed_time": "3:48:30", "remaining_time": "7:59:46"} +{"current_steps": 1508, "total_steps": 4671, "loss": 0.1124, "learning_rate": 8.563828334384925e-06, "epoch": 0.968529222864483, "percentage": 32.28, "elapsed_time": "3:48:39", "remaining_time": "7:59:36"} +{"current_steps": 1509, "total_steps": 4671, "loss": 0.1422, "learning_rate": 8.56120597322429e-06, "epoch": 0.9691714836223507, "percentage": 32.31, "elapsed_time": "3:48:49", "remaining_time": "7:59:29"} +{"current_steps": 1510, "total_steps": 4671, "loss": 0.0922, "learning_rate": 8.558581622407463e-06, "epoch": 0.9698137443802184, "percentage": 32.33, "elapsed_time": "3:48:58", "remaining_time": "7:59:19"} +{"current_steps": 1511, "total_steps": 4671, "loss": 0.0881, "learning_rate": 8.555955283400672e-06, "epoch": 0.970456005138086, "percentage": 32.35, "elapsed_time": "3:49:07", "remaining_time": "7:59:11"} +{"current_steps": 1512, "total_steps": 4671, "loss": 0.1309, "learning_rate": 8.553326957671264e-06, "epoch": 0.9710982658959537, "percentage": 32.37, "elapsed_time": "3:49:16", "remaining_time": "7:59:01"} +{"current_steps": 1513, "total_steps": 4671, "loss": 0.1081, "learning_rate": 8.55069664668769e-06, "epoch": 0.9717405266538215, "percentage": 32.39, "elapsed_time": "3:49:24", "remaining_time": "7:58:50"} +{"current_steps": 1514, "total_steps": 4671, "loss": 0.179, "learning_rate": 8.548064351919513e-06, "epoch": 0.9723827874116892, "percentage": 32.41, "elapsed_time": "3:49:33", "remaining_time": "7:58:40"} +{"current_steps": 1515, "total_steps": 4671, "loss": 0.132, "learning_rate": 8.545430074837404e-06, "epoch": 0.9730250481695568, "percentage": 32.43, "elapsed_time": "3:49:42", "remaining_time": "7:58:30"} +{"current_steps": 1516, "total_steps": 4671, "loss": 0.0566, "learning_rate": 8.542793816913142e-06, "epoch": 0.9736673089274245, "percentage": 32.46, "elapsed_time": "3:49:50", "remaining_time": "7:58:19"} +{"current_steps": 1517, "total_steps": 4671, "loss": 0.1739, "learning_rate": 8.54015557961961e-06, "epoch": 0.9743095696852923, "percentage": 32.48, "elapsed_time": "3:49:58", "remaining_time": "7:58:09"} +{"current_steps": 1518, "total_steps": 4671, "loss": 0.1191, "learning_rate": 8.537515364430801e-06, "epoch": 0.9749518304431599, "percentage": 32.5, "elapsed_time": "3:50:06", "remaining_time": "7:57:58"} +{"current_steps": 1519, "total_steps": 4671, "loss": 0.0661, "learning_rate": 8.534873172821809e-06, "epoch": 0.9755940912010276, "percentage": 32.52, "elapsed_time": "3:50:15", "remaining_time": "7:57:48"} +{"current_steps": 1520, "total_steps": 4671, "loss": 0.1157, "learning_rate": 8.532229006268837e-06, "epoch": 0.9762363519588954, "percentage": 32.54, "elapsed_time": "3:50:23", "remaining_time": "7:57:37"} +{"current_steps": 1521, "total_steps": 4671, "loss": 0.2067, "learning_rate": 8.529582866249187e-06, "epoch": 0.976878612716763, "percentage": 32.56, "elapsed_time": "3:50:34", "remaining_time": "7:57:30"} +{"current_steps": 1522, "total_steps": 4671, "loss": 0.144, "learning_rate": 8.526934754241263e-06, "epoch": 0.9775208734746307, "percentage": 32.58, "elapsed_time": "3:50:43", "remaining_time": "7:57:22"} +{"current_steps": 1523, "total_steps": 4671, "loss": 0.1592, "learning_rate": 8.524284671724576e-06, "epoch": 0.9781631342324983, "percentage": 32.61, "elapsed_time": "3:50:52", "remaining_time": "7:57:12"} +{"current_steps": 1524, "total_steps": 4671, "loss": 0.1315, "learning_rate": 8.521632620179735e-06, "epoch": 0.9788053949903661, "percentage": 32.63, "elapsed_time": "3:51:03", "remaining_time": "7:57:08"} +{"current_steps": 1525, "total_steps": 4671, "loss": 0.2046, "learning_rate": 8.518978601088448e-06, "epoch": 0.9794476557482338, "percentage": 32.65, "elapsed_time": "3:51:13", "remaining_time": "7:57:01"} +{"current_steps": 1526, "total_steps": 4671, "loss": 0.1379, "learning_rate": 8.516322615933521e-06, "epoch": 0.9800899165061014, "percentage": 32.67, "elapsed_time": "3:51:24", "remaining_time": "7:56:54"} +{"current_steps": 1527, "total_steps": 4671, "loss": 0.1388, "learning_rate": 8.513664666198865e-06, "epoch": 0.9807321772639692, "percentage": 32.69, "elapsed_time": "3:51:32", "remaining_time": "7:56:44"} +{"current_steps": 1528, "total_steps": 4671, "loss": 0.1047, "learning_rate": 8.51100475336948e-06, "epoch": 0.9813744380218369, "percentage": 32.71, "elapsed_time": "3:51:41", "remaining_time": "7:56:35"} +{"current_steps": 1529, "total_steps": 4671, "loss": 0.1425, "learning_rate": 8.50834287893147e-06, "epoch": 0.9820166987797045, "percentage": 32.73, "elapsed_time": "3:51:51", "remaining_time": "7:56:27"} +{"current_steps": 1530, "total_steps": 4671, "loss": 0.1342, "learning_rate": 8.50567904437203e-06, "epoch": 0.9826589595375722, "percentage": 32.76, "elapsed_time": "3:52:01", "remaining_time": "7:56:19"} +{"current_steps": 1531, "total_steps": 4671, "loss": 0.199, "learning_rate": 8.503013251179455e-06, "epoch": 0.98330122029544, "percentage": 32.78, "elapsed_time": "3:52:10", "remaining_time": "7:56:09"} +{"current_steps": 1532, "total_steps": 4671, "loss": 0.0782, "learning_rate": 8.50034550084313e-06, "epoch": 0.9839434810533076, "percentage": 32.8, "elapsed_time": "3:52:18", "remaining_time": "7:55:58"} +{"current_steps": 1533, "total_steps": 4671, "loss": 0.1224, "learning_rate": 8.497675794853532e-06, "epoch": 0.9845857418111753, "percentage": 32.82, "elapsed_time": "3:52:26", "remaining_time": "7:55:48"} +{"current_steps": 1534, "total_steps": 4671, "loss": 0.1432, "learning_rate": 8.49500413470224e-06, "epoch": 0.9852280025690431, "percentage": 32.84, "elapsed_time": "3:52:35", "remaining_time": "7:55:39"} +{"current_steps": 1535, "total_steps": 4671, "loss": 0.0778, "learning_rate": 8.492330521881914e-06, "epoch": 0.9858702633269107, "percentage": 32.86, "elapsed_time": "3:52:42", "remaining_time": "7:55:26"} +{"current_steps": 1536, "total_steps": 4671, "loss": 0.0762, "learning_rate": 8.489654957886306e-06, "epoch": 0.9865125240847784, "percentage": 32.88, "elapsed_time": "3:52:50", "remaining_time": "7:55:14"} +{"current_steps": 1537, "total_steps": 4671, "loss": 0.1376, "learning_rate": 8.486977444210268e-06, "epoch": 0.9871547848426461, "percentage": 32.91, "elapsed_time": "3:52:59", "remaining_time": "7:55:04"} +{"current_steps": 1538, "total_steps": 4671, "loss": 0.1762, "learning_rate": 8.484297982349731e-06, "epoch": 0.9877970456005138, "percentage": 32.93, "elapsed_time": "3:53:06", "remaining_time": "7:54:51"} +{"current_steps": 1539, "total_steps": 4671, "loss": 0.1559, "learning_rate": 8.48161657380172e-06, "epoch": 0.9884393063583815, "percentage": 32.95, "elapsed_time": "3:53:16", "remaining_time": "7:54:43"} +{"current_steps": 1540, "total_steps": 4671, "loss": 0.1203, "learning_rate": 8.478933220064347e-06, "epoch": 0.9890815671162492, "percentage": 32.97, "elapsed_time": "3:53:25", "remaining_time": "7:54:34"} +{"current_steps": 1541, "total_steps": 4671, "loss": 0.1599, "learning_rate": 8.476247922636805e-06, "epoch": 0.989723827874117, "percentage": 32.99, "elapsed_time": "3:53:35", "remaining_time": "7:54:27"} +{"current_steps": 1542, "total_steps": 4671, "loss": 0.1066, "learning_rate": 8.47356068301938e-06, "epoch": 0.9903660886319846, "percentage": 33.01, "elapsed_time": "3:53:44", "remaining_time": "7:54:19"} +{"current_steps": 1543, "total_steps": 4671, "loss": 0.1299, "learning_rate": 8.470871502713442e-06, "epoch": 0.9910083493898523, "percentage": 33.03, "elapsed_time": "3:53:54", "remaining_time": "7:54:11"} +{"current_steps": 1544, "total_steps": 4671, "loss": 0.1822, "learning_rate": 8.468180383221441e-06, "epoch": 0.9916506101477199, "percentage": 33.06, "elapsed_time": "3:54:03", "remaining_time": "7:54:00"} +{"current_steps": 1545, "total_steps": 4671, "loss": 0.1105, "learning_rate": 8.465487326046917e-06, "epoch": 0.9922928709055877, "percentage": 33.08, "elapsed_time": "3:54:12", "remaining_time": "7:53:52"} +{"current_steps": 1546, "total_steps": 4671, "loss": 0.0975, "learning_rate": 8.462792332694485e-06, "epoch": 0.9929351316634554, "percentage": 33.1, "elapsed_time": "3:54:21", "remaining_time": "7:53:42"} +{"current_steps": 1547, "total_steps": 4671, "loss": 0.1536, "learning_rate": 8.460095404669848e-06, "epoch": 0.993577392421323, "percentage": 33.12, "elapsed_time": "3:54:30", "remaining_time": "7:53:34"} +{"current_steps": 1548, "total_steps": 4671, "loss": 0.1607, "learning_rate": 8.457396543479787e-06, "epoch": 0.9942196531791907, "percentage": 33.14, "elapsed_time": "3:54:40", "remaining_time": "7:53:25"} +{"current_steps": 1549, "total_steps": 4671, "loss": 0.1017, "learning_rate": 8.454695750632165e-06, "epoch": 0.9948619139370585, "percentage": 33.16, "elapsed_time": "3:54:47", "remaining_time": "7:53:14"} +{"current_steps": 1550, "total_steps": 4671, "loss": 0.1395, "learning_rate": 8.451993027635921e-06, "epoch": 0.9955041746949261, "percentage": 33.18, "elapsed_time": "3:54:57", "remaining_time": "7:53:05"} +{"current_steps": 1551, "total_steps": 4671, "loss": 0.1547, "learning_rate": 8.449288376001074e-06, "epoch": 0.9961464354527938, "percentage": 33.2, "elapsed_time": "3:55:06", "remaining_time": "7:52:57"} +{"current_steps": 1552, "total_steps": 4671, "loss": 0.1316, "learning_rate": 8.446581797238722e-06, "epoch": 0.9967886962106616, "percentage": 33.23, "elapsed_time": "3:55:15", "remaining_time": "7:52:46"} +{"current_steps": 1553, "total_steps": 4671, "loss": 0.1331, "learning_rate": 8.44387329286104e-06, "epoch": 0.9974309569685292, "percentage": 33.25, "elapsed_time": "3:55:24", "remaining_time": "7:52:38"} +{"current_steps": 1554, "total_steps": 4671, "loss": 0.2209, "learning_rate": 8.441162864381274e-06, "epoch": 0.9980732177263969, "percentage": 33.27, "elapsed_time": "3:55:34", "remaining_time": "7:52:31"} +{"current_steps": 1555, "total_steps": 4671, "loss": 0.1539, "learning_rate": 8.438450513313749e-06, "epoch": 0.9987154784842646, "percentage": 33.29, "elapsed_time": "3:55:43", "remaining_time": "7:52:21"} +{"current_steps": 1556, "total_steps": 4671, "loss": 0.1403, "learning_rate": 8.435736241173866e-06, "epoch": 0.9993577392421323, "percentage": 33.31, "elapsed_time": "3:55:53", "remaining_time": "7:52:14"} +{"current_steps": 1557, "total_steps": 4671, "loss": 0.1814, "learning_rate": 8.433020049478093e-06, "epoch": 1.0, "percentage": 33.33, "elapsed_time": "3:56:04", "remaining_time": "7:52:08"} +{"current_steps": 1558, "total_steps": 4671, "loss": 0.0714, "learning_rate": 8.430301939743979e-06, "epoch": 1.0006422607578678, "percentage": 33.35, "elapsed_time": "3:56:12", "remaining_time": "7:51:58"} +{"current_steps": 1559, "total_steps": 4671, "loss": 0.062, "learning_rate": 8.427581913490134e-06, "epoch": 1.0012845215157353, "percentage": 33.38, "elapsed_time": "3:56:21", "remaining_time": "7:51:47"} +{"current_steps": 1560, "total_steps": 4671, "loss": 0.078, "learning_rate": 8.42485997223625e-06, "epoch": 1.001926782273603, "percentage": 33.4, "elapsed_time": "3:56:32", "remaining_time": "7:51:42"} +{"current_steps": 1561, "total_steps": 4671, "loss": 0.1591, "learning_rate": 8.42213611750308e-06, "epoch": 1.0025690430314709, "percentage": 33.42, "elapsed_time": "3:56:42", "remaining_time": "7:51:36"} +{"current_steps": 1562, "total_steps": 4671, "loss": 0.0824, "learning_rate": 8.419410350812453e-06, "epoch": 1.0032113037893384, "percentage": 33.44, "elapsed_time": "3:56:52", "remaining_time": "7:51:27"} +{"current_steps": 1563, "total_steps": 4671, "loss": 0.0891, "learning_rate": 8.41668267368726e-06, "epoch": 1.0038535645472062, "percentage": 33.46, "elapsed_time": "3:57:00", "remaining_time": "7:51:17"} +{"current_steps": 1564, "total_steps": 4671, "loss": 0.0236, "learning_rate": 8.413953087651462e-06, "epoch": 1.0044958253050738, "percentage": 33.48, "elapsed_time": "3:57:07", "remaining_time": "7:51:03"} +{"current_steps": 1565, "total_steps": 4671, "loss": 0.0657, "learning_rate": 8.411221594230085e-06, "epoch": 1.0051380860629415, "percentage": 33.5, "elapsed_time": "3:57:15", "remaining_time": "7:50:52"} +{"current_steps": 1566, "total_steps": 4671, "loss": 0.056, "learning_rate": 8.408488194949229e-06, "epoch": 1.0057803468208093, "percentage": 33.53, "elapsed_time": "3:57:23", "remaining_time": "7:50:41"} +{"current_steps": 1567, "total_steps": 4671, "loss": 0.0857, "learning_rate": 8.405752891336047e-06, "epoch": 1.0064226075786769, "percentage": 33.55, "elapsed_time": "3:57:32", "remaining_time": "7:50:32"} +{"current_steps": 1568, "total_steps": 4671, "loss": 0.0894, "learning_rate": 8.403015684918763e-06, "epoch": 1.0070648683365446, "percentage": 33.57, "elapsed_time": "3:57:41", "remaining_time": "7:50:22"} +{"current_steps": 1569, "total_steps": 4671, "loss": 0.0546, "learning_rate": 8.40027657722666e-06, "epoch": 1.0077071290944124, "percentage": 33.59, "elapsed_time": "3:57:50", "remaining_time": "7:50:13"} +{"current_steps": 1570, "total_steps": 4671, "loss": 0.0698, "learning_rate": 8.397535569790088e-06, "epoch": 1.00834938985228, "percentage": 33.61, "elapsed_time": "3:57:59", "remaining_time": "7:50:03"} +{"current_steps": 1571, "total_steps": 4671, "loss": 0.0973, "learning_rate": 8.394792664140454e-06, "epoch": 1.0089916506101477, "percentage": 33.63, "elapsed_time": "3:58:10", "remaining_time": "7:49:59"} +{"current_steps": 1572, "total_steps": 4671, "loss": 0.174, "learning_rate": 8.39204786181023e-06, "epoch": 1.0096339113680155, "percentage": 33.65, "elapsed_time": "3:58:20", "remaining_time": "7:49:51"} +{"current_steps": 1573, "total_steps": 4671, "loss": 0.0653, "learning_rate": 8.38930116433294e-06, "epoch": 1.010276172125883, "percentage": 33.68, "elapsed_time": "3:58:29", "remaining_time": "7:49:41"} +{"current_steps": 1574, "total_steps": 4671, "loss": 0.0766, "learning_rate": 8.386552573243182e-06, "epoch": 1.0109184328837508, "percentage": 33.7, "elapsed_time": "3:58:37", "remaining_time": "7:49:32"} +{"current_steps": 1575, "total_steps": 4671, "loss": 0.0518, "learning_rate": 8.383802090076589e-06, "epoch": 1.0115606936416186, "percentage": 33.72, "elapsed_time": "3:58:48", "remaining_time": "7:49:25"} +{"current_steps": 1576, "total_steps": 4671, "loss": 0.0869, "learning_rate": 8.38104971636987e-06, "epoch": 1.0122029543994862, "percentage": 33.74, "elapsed_time": "3:58:59", "remaining_time": "7:49:19"} +{"current_steps": 1577, "total_steps": 4671, "loss": 0.0778, "learning_rate": 8.378295453660788e-06, "epoch": 1.012845215157354, "percentage": 33.76, "elapsed_time": "3:59:07", "remaining_time": "7:49:09"} +{"current_steps": 1578, "total_steps": 4671, "loss": 0.0609, "learning_rate": 8.375539303488152e-06, "epoch": 1.0134874759152215, "percentage": 33.78, "elapsed_time": "3:59:17", "remaining_time": "7:49:01"} +{"current_steps": 1579, "total_steps": 4671, "loss": 0.0638, "learning_rate": 8.372781267391834e-06, "epoch": 1.0141297366730893, "percentage": 33.8, "elapsed_time": "3:59:25", "remaining_time": "7:48:50"} +{"current_steps": 1580, "total_steps": 4671, "loss": 0.0875, "learning_rate": 8.370021346912756e-06, "epoch": 1.014771997430957, "percentage": 33.83, "elapsed_time": "3:59:34", "remaining_time": "7:48:40"} +{"current_steps": 1581, "total_steps": 4671, "loss": 0.0643, "learning_rate": 8.367259543592892e-06, "epoch": 1.0154142581888246, "percentage": 33.85, "elapsed_time": "3:59:42", "remaining_time": "7:48:29"} +{"current_steps": 1582, "total_steps": 4671, "loss": 0.0386, "learning_rate": 8.364495858975274e-06, "epoch": 1.0160565189466924, "percentage": 33.87, "elapsed_time": "3:59:50", "remaining_time": "7:48:18"} +{"current_steps": 1583, "total_steps": 4671, "loss": 0.0903, "learning_rate": 8.361730294603975e-06, "epoch": 1.0166987797045601, "percentage": 33.89, "elapsed_time": "4:00:01", "remaining_time": "7:48:12"} +{"current_steps": 1584, "total_steps": 4671, "loss": 0.0593, "learning_rate": 8.358962852024128e-06, "epoch": 1.0173410404624277, "percentage": 33.91, "elapsed_time": "4:00:09", "remaining_time": "7:48:02"} +{"current_steps": 1585, "total_steps": 4671, "loss": 0.0826, "learning_rate": 8.356193532781912e-06, "epoch": 1.0179833012202955, "percentage": 33.93, "elapsed_time": "4:00:18", "remaining_time": "7:47:53"} +{"current_steps": 1586, "total_steps": 4671, "loss": 0.0661, "learning_rate": 8.35342233842455e-06, "epoch": 1.0186255619781632, "percentage": 33.95, "elapsed_time": "4:00:26", "remaining_time": "7:47:42"} +{"current_steps": 1587, "total_steps": 4671, "loss": 0.0597, "learning_rate": 8.350649270500319e-06, "epoch": 1.0192678227360308, "percentage": 33.98, "elapsed_time": "4:00:35", "remaining_time": "7:47:32"} +{"current_steps": 1588, "total_steps": 4671, "loss": 0.047, "learning_rate": 8.347874330558539e-06, "epoch": 1.0199100834938986, "percentage": 34.0, "elapsed_time": "4:00:45", "remaining_time": "7:47:25"} +{"current_steps": 1589, "total_steps": 4671, "loss": 0.0633, "learning_rate": 8.345097520149578e-06, "epoch": 1.020552344251766, "percentage": 34.02, "elapsed_time": "4:00:54", "remaining_time": "7:47:15"} +{"current_steps": 1590, "total_steps": 4671, "loss": 0.0897, "learning_rate": 8.342318840824849e-06, "epoch": 1.0211946050096339, "percentage": 34.04, "elapsed_time": "4:01:02", "remaining_time": "7:47:04"} +{"current_steps": 1591, "total_steps": 4671, "loss": 0.0871, "learning_rate": 8.339538294136805e-06, "epoch": 1.0218368657675017, "percentage": 34.06, "elapsed_time": "4:01:11", "remaining_time": "7:46:55"} +{"current_steps": 1592, "total_steps": 4671, "loss": 0.077, "learning_rate": 8.336755881638946e-06, "epoch": 1.0224791265253692, "percentage": 34.08, "elapsed_time": "4:01:21", "remaining_time": "7:46:48"} +{"current_steps": 1593, "total_steps": 4671, "loss": 0.0539, "learning_rate": 8.333971604885817e-06, "epoch": 1.023121387283237, "percentage": 34.1, "elapsed_time": "4:01:31", "remaining_time": "7:46:39"} +{"current_steps": 1594, "total_steps": 4671, "loss": 0.0555, "learning_rate": 8.331185465433e-06, "epoch": 1.0237636480411048, "percentage": 34.13, "elapsed_time": "4:01:39", "remaining_time": "7:46:29"} +{"current_steps": 1595, "total_steps": 4671, "loss": 0.062, "learning_rate": 8.328397464837119e-06, "epoch": 1.0244059087989723, "percentage": 34.15, "elapsed_time": "4:01:49", "remaining_time": "7:46:21"} +{"current_steps": 1596, "total_steps": 4671, "loss": 0.085, "learning_rate": 8.32560760465584e-06, "epoch": 1.02504816955684, "percentage": 34.17, "elapsed_time": "4:01:58", "remaining_time": "7:46:12"} +{"current_steps": 1597, "total_steps": 4671, "loss": 0.0739, "learning_rate": 8.32281588644786e-06, "epoch": 1.0256904303147079, "percentage": 34.19, "elapsed_time": "4:02:07", "remaining_time": "7:46:03"} +{"current_steps": 1598, "total_steps": 4671, "loss": 0.0919, "learning_rate": 8.32002231177293e-06, "epoch": 1.0263326910725754, "percentage": 34.21, "elapsed_time": "4:02:16", "remaining_time": "7:45:54"} +{"current_steps": 1599, "total_steps": 4671, "loss": 0.1751, "learning_rate": 8.31722688219182e-06, "epoch": 1.0269749518304432, "percentage": 34.23, "elapsed_time": "4:02:26", "remaining_time": "7:45:46"} +{"current_steps": 1600, "total_steps": 4671, "loss": 0.0495, "learning_rate": 8.314429599266348e-06, "epoch": 1.027617212588311, "percentage": 34.25, "elapsed_time": "4:02:35", "remaining_time": "7:45:36"} +{"current_steps": 1601, "total_steps": 4671, "loss": 0.0949, "learning_rate": 8.311630464559364e-06, "epoch": 1.0282594733461785, "percentage": 34.28, "elapsed_time": "4:02:44", "remaining_time": "7:45:28"} +{"current_steps": 1602, "total_steps": 4671, "loss": 0.0452, "learning_rate": 8.308829479634753e-06, "epoch": 1.0289017341040463, "percentage": 34.3, "elapsed_time": "4:02:52", "remaining_time": "7:45:17"} +{"current_steps": 1603, "total_steps": 4671, "loss": 0.1748, "learning_rate": 8.30602664605743e-06, "epoch": 1.0295439948619138, "percentage": 34.32, "elapsed_time": "4:03:04", "remaining_time": "7:45:14"} +{"current_steps": 1604, "total_steps": 4671, "loss": 0.0728, "learning_rate": 8.303221965393351e-06, "epoch": 1.0301862556197816, "percentage": 34.34, "elapsed_time": "4:03:14", "remaining_time": "7:45:06"} +{"current_steps": 1605, "total_steps": 4671, "loss": 0.109, "learning_rate": 8.3004154392095e-06, "epoch": 1.0308285163776494, "percentage": 34.36, "elapsed_time": "4:03:24", "remaining_time": "7:44:58"} +{"current_steps": 1606, "total_steps": 4671, "loss": 0.0857, "learning_rate": 8.297607069073886e-06, "epoch": 1.031470777135517, "percentage": 34.38, "elapsed_time": "4:03:32", "remaining_time": "7:44:47"} +{"current_steps": 1607, "total_steps": 4671, "loss": 0.0559, "learning_rate": 8.294796856555557e-06, "epoch": 1.0321130378933847, "percentage": 34.4, "elapsed_time": "4:03:40", "remaining_time": "7:44:35"} +{"current_steps": 1608, "total_steps": 4671, "loss": 0.0622, "learning_rate": 8.291984803224587e-06, "epoch": 1.0327552986512525, "percentage": 34.43, "elapsed_time": "4:03:48", "remaining_time": "7:44:25"} +{"current_steps": 1609, "total_steps": 4671, "loss": 0.0524, "learning_rate": 8.289170910652077e-06, "epoch": 1.03339755940912, "percentage": 34.45, "elapsed_time": "4:03:56", "remaining_time": "7:44:13"} +{"current_steps": 1610, "total_steps": 4671, "loss": 0.0389, "learning_rate": 8.28635518041016e-06, "epoch": 1.0340398201669878, "percentage": 34.47, "elapsed_time": "4:04:05", "remaining_time": "7:44:04"} +{"current_steps": 1611, "total_steps": 4671, "loss": 0.0903, "learning_rate": 8.283537614071987e-06, "epoch": 1.0346820809248556, "percentage": 34.49, "elapsed_time": "4:04:14", "remaining_time": "7:43:55"} +{"current_steps": 1612, "total_steps": 4671, "loss": 0.068, "learning_rate": 8.280718213211746e-06, "epoch": 1.0353243416827231, "percentage": 34.51, "elapsed_time": "4:04:21", "remaining_time": "7:43:42"} +{"current_steps": 1613, "total_steps": 4671, "loss": 0.1299, "learning_rate": 8.277896979404646e-06, "epoch": 1.035966602440591, "percentage": 34.53, "elapsed_time": "4:04:30", "remaining_time": "7:43:32"} +{"current_steps": 1614, "total_steps": 4671, "loss": 0.0407, "learning_rate": 8.275073914226911e-06, "epoch": 1.0366088631984587, "percentage": 34.55, "elapsed_time": "4:04:38", "remaining_time": "7:43:22"} +{"current_steps": 1615, "total_steps": 4671, "loss": 0.0924, "learning_rate": 8.272249019255802e-06, "epoch": 1.0372511239563262, "percentage": 34.58, "elapsed_time": "4:04:47", "remaining_time": "7:43:13"} +{"current_steps": 1616, "total_steps": 4671, "loss": 0.058, "learning_rate": 8.269422296069593e-06, "epoch": 1.037893384714194, "percentage": 34.6, "elapsed_time": "4:04:57", "remaining_time": "7:43:04"} +{"current_steps": 1617, "total_steps": 4671, "loss": 0.0637, "learning_rate": 8.266593746247586e-06, "epoch": 1.0385356454720616, "percentage": 34.62, "elapsed_time": "4:05:08", "remaining_time": "7:43:00"} +{"current_steps": 1618, "total_steps": 4671, "loss": 0.088, "learning_rate": 8.263763371370096e-06, "epoch": 1.0391779062299293, "percentage": 34.64, "elapsed_time": "4:05:17", "remaining_time": "7:42:50"} +{"current_steps": 1619, "total_steps": 4671, "loss": 0.0522, "learning_rate": 8.260931173018462e-06, "epoch": 1.0398201669877971, "percentage": 34.66, "elapsed_time": "4:05:27", "remaining_time": "7:42:43"} +{"current_steps": 1620, "total_steps": 4671, "loss": 0.0917, "learning_rate": 8.258097152775045e-06, "epoch": 1.0404624277456647, "percentage": 34.68, "elapsed_time": "4:05:36", "remaining_time": "7:42:34"} +{"current_steps": 1621, "total_steps": 4671, "loss": 0.0668, "learning_rate": 8.255261312223218e-06, "epoch": 1.0411046885035324, "percentage": 34.7, "elapsed_time": "4:05:46", "remaining_time": "7:42:25"} +{"current_steps": 1622, "total_steps": 4671, "loss": 0.0944, "learning_rate": 8.252423652947374e-06, "epoch": 1.0417469492614002, "percentage": 34.72, "elapsed_time": "4:05:54", "remaining_time": "7:42:15"} +{"current_steps": 1623, "total_steps": 4671, "loss": 0.0445, "learning_rate": 8.24958417653292e-06, "epoch": 1.0423892100192678, "percentage": 34.75, "elapsed_time": "4:06:03", "remaining_time": "7:42:06"} +{"current_steps": 1624, "total_steps": 4671, "loss": 0.0548, "learning_rate": 8.246742884566282e-06, "epoch": 1.0430314707771355, "percentage": 34.77, "elapsed_time": "4:06:13", "remaining_time": "7:41:57"} +{"current_steps": 1625, "total_steps": 4671, "loss": 0.0515, "learning_rate": 8.243899778634898e-06, "epoch": 1.0436737315350033, "percentage": 34.79, "elapsed_time": "4:06:23", "remaining_time": "7:41:50"} +{"current_steps": 1626, "total_steps": 4671, "loss": 0.0518, "learning_rate": 8.241054860327216e-06, "epoch": 1.0443159922928709, "percentage": 34.81, "elapsed_time": "4:06:32", "remaining_time": "7:41:42"} +{"current_steps": 1627, "total_steps": 4671, "loss": 0.0962, "learning_rate": 8.238208131232705e-06, "epoch": 1.0449582530507386, "percentage": 34.83, "elapsed_time": "4:06:40", "remaining_time": "7:41:31"} +{"current_steps": 1628, "total_steps": 4671, "loss": 0.0562, "learning_rate": 8.235359592941839e-06, "epoch": 1.0456005138086062, "percentage": 34.85, "elapsed_time": "4:06:48", "remaining_time": "7:41:20"} +{"current_steps": 1629, "total_steps": 4671, "loss": 0.0829, "learning_rate": 8.232509247046106e-06, "epoch": 1.046242774566474, "percentage": 34.87, "elapsed_time": "4:06:58", "remaining_time": "7:41:12"} +{"current_steps": 1630, "total_steps": 4671, "loss": 0.0966, "learning_rate": 8.229657095137998e-06, "epoch": 1.0468850353243417, "percentage": 34.9, "elapsed_time": "4:07:09", "remaining_time": "7:41:06"} +{"current_steps": 1631, "total_steps": 4671, "loss": 0.0482, "learning_rate": 8.226803138811025e-06, "epoch": 1.0475272960822093, "percentage": 34.92, "elapsed_time": "4:07:17", "remaining_time": "7:40:56"} +{"current_steps": 1632, "total_steps": 4671, "loss": 0.0826, "learning_rate": 8.2239473796597e-06, "epoch": 1.048169556840077, "percentage": 34.94, "elapsed_time": "4:07:25", "remaining_time": "7:40:44"} +{"current_steps": 1633, "total_steps": 4671, "loss": 0.0771, "learning_rate": 8.221089819279543e-06, "epoch": 1.0488118175979448, "percentage": 34.96, "elapsed_time": "4:07:35", "remaining_time": "7:40:37"} +{"current_steps": 1634, "total_steps": 4671, "loss": 0.056, "learning_rate": 8.218230459267082e-06, "epoch": 1.0494540783558124, "percentage": 34.98, "elapsed_time": "4:07:43", "remaining_time": "7:40:26"} +{"current_steps": 1635, "total_steps": 4671, "loss": 0.1075, "learning_rate": 8.215369301219849e-06, "epoch": 1.0500963391136802, "percentage": 35.0, "elapsed_time": "4:07:52", "remaining_time": "7:40:15"} +{"current_steps": 1636, "total_steps": 4671, "loss": 0.1371, "learning_rate": 8.212506346736382e-06, "epoch": 1.050738599871548, "percentage": 35.02, "elapsed_time": "4:08:01", "remaining_time": "7:40:07"} +{"current_steps": 1637, "total_steps": 4671, "loss": 0.0931, "learning_rate": 8.209641597416223e-06, "epoch": 1.0513808606294155, "percentage": 35.05, "elapsed_time": "4:08:10", "remaining_time": "7:39:57"} +{"current_steps": 1638, "total_steps": 4671, "loss": 0.1106, "learning_rate": 8.206775054859914e-06, "epoch": 1.0520231213872833, "percentage": 35.07, "elapsed_time": "4:08:19", "remaining_time": "7:39:48"} +{"current_steps": 1639, "total_steps": 4671, "loss": 0.0507, "learning_rate": 8.203906720669002e-06, "epoch": 1.0526653821451508, "percentage": 35.09, "elapsed_time": "4:08:29", "remaining_time": "7:39:41"} +{"current_steps": 1640, "total_steps": 4671, "loss": 0.0411, "learning_rate": 8.201036596446034e-06, "epoch": 1.0533076429030186, "percentage": 35.11, "elapsed_time": "4:08:36", "remaining_time": "7:39:28"} +{"current_steps": 1641, "total_steps": 4671, "loss": 0.1107, "learning_rate": 8.198164683794555e-06, "epoch": 1.0539499036608864, "percentage": 35.13, "elapsed_time": "4:08:45", "remaining_time": "7:39:19"} +{"current_steps": 1642, "total_steps": 4671, "loss": 0.0685, "learning_rate": 8.195290984319112e-06, "epoch": 1.054592164418754, "percentage": 35.15, "elapsed_time": "4:08:53", "remaining_time": "7:39:08"} +{"current_steps": 1643, "total_steps": 4671, "loss": 0.1235, "learning_rate": 8.192415499625251e-06, "epoch": 1.0552344251766217, "percentage": 35.17, "elapsed_time": "4:09:04", "remaining_time": "7:39:01"} +{"current_steps": 1644, "total_steps": 4671, "loss": 0.0676, "learning_rate": 8.18953823131951e-06, "epoch": 1.0558766859344895, "percentage": 35.2, "elapsed_time": "4:09:15", "remaining_time": "7:38:56"} +{"current_steps": 1645, "total_steps": 4671, "loss": 0.0593, "learning_rate": 8.186659181009432e-06, "epoch": 1.056518946692357, "percentage": 35.22, "elapsed_time": "4:09:23", "remaining_time": "7:38:45"} +{"current_steps": 1646, "total_steps": 4671, "loss": 0.1035, "learning_rate": 8.183778350303544e-06, "epoch": 1.0571612074502248, "percentage": 35.24, "elapsed_time": "4:09:33", "remaining_time": "7:38:37"} +{"current_steps": 1647, "total_steps": 4671, "loss": 0.0384, "learning_rate": 8.180895740811381e-06, "epoch": 1.0578034682080926, "percentage": 35.26, "elapsed_time": "4:09:40", "remaining_time": "7:38:24"} +{"current_steps": 1648, "total_steps": 4671, "loss": 0.0408, "learning_rate": 8.178011354143463e-06, "epoch": 1.0584457289659601, "percentage": 35.28, "elapsed_time": "4:09:47", "remaining_time": "7:38:13"} +{"current_steps": 1649, "total_steps": 4671, "loss": 0.0594, "learning_rate": 8.175125191911307e-06, "epoch": 1.059087989723828, "percentage": 35.3, "elapsed_time": "4:09:56", "remaining_time": "7:38:02"} +{"current_steps": 1650, "total_steps": 4671, "loss": 0.0588, "learning_rate": 8.172237255727416e-06, "epoch": 1.0597302504816957, "percentage": 35.32, "elapsed_time": "4:10:04", "remaining_time": "7:37:51"} +{"current_steps": 1651, "total_steps": 4671, "loss": 0.1022, "learning_rate": 8.16934754720529e-06, "epoch": 1.0603725112395632, "percentage": 35.35, "elapsed_time": "4:10:13", "remaining_time": "7:37:43"} +{"current_steps": 1652, "total_steps": 4671, "loss": 0.0521, "learning_rate": 8.166456067959422e-06, "epoch": 1.061014771997431, "percentage": 35.37, "elapsed_time": "4:10:22", "remaining_time": "7:37:32"} +{"current_steps": 1653, "total_steps": 4671, "loss": 0.1091, "learning_rate": 8.163562819605285e-06, "epoch": 1.0616570327552985, "percentage": 35.39, "elapsed_time": "4:10:31", "remaining_time": "7:37:24"} +{"current_steps": 1654, "total_steps": 4671, "loss": 0.0691, "learning_rate": 8.160667803759346e-06, "epoch": 1.0622992935131663, "percentage": 35.41, "elapsed_time": "4:10:39", "remaining_time": "7:37:13"} +{"current_steps": 1655, "total_steps": 4671, "loss": 0.0515, "learning_rate": 8.157771022039061e-06, "epoch": 1.062941554271034, "percentage": 35.43, "elapsed_time": "4:10:49", "remaining_time": "7:37:05"} +{"current_steps": 1656, "total_steps": 4671, "loss": 0.1297, "learning_rate": 8.154872476062868e-06, "epoch": 1.0635838150289016, "percentage": 35.45, "elapsed_time": "4:11:00", "remaining_time": "7:36:59"} +{"current_steps": 1657, "total_steps": 4671, "loss": 0.0468, "learning_rate": 8.151972167450195e-06, "epoch": 1.0642260757867694, "percentage": 35.47, "elapsed_time": "4:11:10", "remaining_time": "7:36:51"} +{"current_steps": 1658, "total_steps": 4671, "loss": 0.0918, "learning_rate": 8.149070097821452e-06, "epoch": 1.0648683365446372, "percentage": 35.5, "elapsed_time": "4:11:18", "remaining_time": "7:36:41"} +{"current_steps": 1659, "total_steps": 4671, "loss": 0.0409, "learning_rate": 8.146166268798032e-06, "epoch": 1.0655105973025047, "percentage": 35.52, "elapsed_time": "4:11:25", "remaining_time": "7:36:28"} +{"current_steps": 1660, "total_steps": 4671, "loss": 0.1151, "learning_rate": 8.143260682002317e-06, "epoch": 1.0661528580603725, "percentage": 35.54, "elapsed_time": "4:11:34", "remaining_time": "7:36:19"} +{"current_steps": 1661, "total_steps": 4671, "loss": 0.1398, "learning_rate": 8.140353339057665e-06, "epoch": 1.0667951188182403, "percentage": 35.56, "elapsed_time": "4:11:46", "remaining_time": "7:36:14"} +{"current_steps": 1662, "total_steps": 4671, "loss": 0.0706, "learning_rate": 8.137444241588414e-06, "epoch": 1.0674373795761078, "percentage": 35.58, "elapsed_time": "4:11:54", "remaining_time": "7:36:05"} +{"current_steps": 1663, "total_steps": 4671, "loss": 0.1515, "learning_rate": 8.13453339121989e-06, "epoch": 1.0680796403339756, "percentage": 35.6, "elapsed_time": "4:12:04", "remaining_time": "7:35:57"} +{"current_steps": 1664, "total_steps": 4671, "loss": 0.0473, "learning_rate": 8.131620789578389e-06, "epoch": 1.0687219010918434, "percentage": 35.62, "elapsed_time": "4:12:13", "remaining_time": "7:35:46"} +{"current_steps": 1665, "total_steps": 4671, "loss": 0.1053, "learning_rate": 8.128706438291193e-06, "epoch": 1.069364161849711, "percentage": 35.65, "elapsed_time": "4:12:22", "remaining_time": "7:35:37"} +{"current_steps": 1666, "total_steps": 4671, "loss": 0.0592, "learning_rate": 8.12579033898656e-06, "epoch": 1.0700064226075787, "percentage": 35.67, "elapsed_time": "4:12:32", "remaining_time": "7:35:30"} +{"current_steps": 1667, "total_steps": 4671, "loss": 0.0852, "learning_rate": 8.122872493293718e-06, "epoch": 1.0706486833654463, "percentage": 35.69, "elapsed_time": "4:12:40", "remaining_time": "7:35:20"} +{"current_steps": 1668, "total_steps": 4671, "loss": 0.0653, "learning_rate": 8.119952902842883e-06, "epoch": 1.071290944123314, "percentage": 35.71, "elapsed_time": "4:12:50", "remaining_time": "7:35:11"} +{"current_steps": 1669, "total_steps": 4671, "loss": 0.0275, "learning_rate": 8.117031569265233e-06, "epoch": 1.0719332048811818, "percentage": 35.73, "elapsed_time": "4:12:57", "remaining_time": "7:34:59"} +{"current_steps": 1670, "total_steps": 4671, "loss": 0.0821, "learning_rate": 8.114108494192927e-06, "epoch": 1.0725754656390494, "percentage": 35.75, "elapsed_time": "4:13:08", "remaining_time": "7:34:54"} +{"current_steps": 1671, "total_steps": 4671, "loss": 0.0764, "learning_rate": 8.111183679259097e-06, "epoch": 1.0732177263969171, "percentage": 35.77, "elapsed_time": "4:13:18", "remaining_time": "7:34:47"} +{"current_steps": 1672, "total_steps": 4671, "loss": 0.0837, "learning_rate": 8.108257126097843e-06, "epoch": 1.073859987154785, "percentage": 35.8, "elapsed_time": "4:13:27", "remaining_time": "7:34:37"} +{"current_steps": 1673, "total_steps": 4671, "loss": 0.1041, "learning_rate": 8.105328836344244e-06, "epoch": 1.0745022479126525, "percentage": 35.82, "elapsed_time": "4:13:36", "remaining_time": "7:34:27"} +{"current_steps": 1674, "total_steps": 4671, "loss": 0.1303, "learning_rate": 8.102398811634338e-06, "epoch": 1.0751445086705202, "percentage": 35.84, "elapsed_time": "4:13:45", "remaining_time": "7:34:17"} +{"current_steps": 1675, "total_steps": 4671, "loss": 0.0779, "learning_rate": 8.09946705360514e-06, "epoch": 1.075786769428388, "percentage": 35.86, "elapsed_time": "4:13:52", "remaining_time": "7:34:06"} +{"current_steps": 1676, "total_steps": 4671, "loss": 0.1005, "learning_rate": 8.096533563894636e-06, "epoch": 1.0764290301862556, "percentage": 35.88, "elapsed_time": "4:14:03", "remaining_time": "7:34:00"} +{"current_steps": 1677, "total_steps": 4671, "loss": 0.0646, "learning_rate": 8.09359834414177e-06, "epoch": 1.0770712909441233, "percentage": 35.9, "elapsed_time": "4:14:13", "remaining_time": "7:33:51"} +{"current_steps": 1678, "total_steps": 4671, "loss": 0.0497, "learning_rate": 8.090661395986458e-06, "epoch": 1.077713551701991, "percentage": 35.92, "elapsed_time": "4:14:21", "remaining_time": "7:33:41"} +{"current_steps": 1679, "total_steps": 4671, "loss": 0.0415, "learning_rate": 8.087722721069586e-06, "epoch": 1.0783558124598587, "percentage": 35.95, "elapsed_time": "4:14:29", "remaining_time": "7:33:30"} +{"current_steps": 1680, "total_steps": 4671, "loss": 0.0631, "learning_rate": 8.084782321032999e-06, "epoch": 1.0789980732177264, "percentage": 35.97, "elapsed_time": "4:14:40", "remaining_time": "7:33:25"} +{"current_steps": 1681, "total_steps": 4671, "loss": 0.0356, "learning_rate": 8.081840197519502e-06, "epoch": 1.079640333975594, "percentage": 35.99, "elapsed_time": "4:14:48", "remaining_time": "7:33:13"} +{"current_steps": 1682, "total_steps": 4671, "loss": 0.082, "learning_rate": 8.078896352172873e-06, "epoch": 1.0802825947334618, "percentage": 36.01, "elapsed_time": "4:14:57", "remaining_time": "7:33:04"} +{"current_steps": 1683, "total_steps": 4671, "loss": 0.0753, "learning_rate": 8.075950786637847e-06, "epoch": 1.0809248554913296, "percentage": 36.03, "elapsed_time": "4:15:07", "remaining_time": "7:32:56"} +{"current_steps": 1684, "total_steps": 4671, "loss": 0.105, "learning_rate": 8.07300350256012e-06, "epoch": 1.081567116249197, "percentage": 36.05, "elapsed_time": "4:15:16", "remaining_time": "7:32:48"} +{"current_steps": 1685, "total_steps": 4671, "loss": 0.0581, "learning_rate": 8.070054501586345e-06, "epoch": 1.0822093770070649, "percentage": 36.07, "elapsed_time": "4:15:25", "remaining_time": "7:32:38"} +{"current_steps": 1686, "total_steps": 4671, "loss": 0.0752, "learning_rate": 8.06710378536414e-06, "epoch": 1.0828516377649327, "percentage": 36.1, "elapsed_time": "4:15:33", "remaining_time": "7:32:28"} +{"current_steps": 1687, "total_steps": 4671, "loss": 0.0295, "learning_rate": 8.064151355542079e-06, "epoch": 1.0834938985228002, "percentage": 36.12, "elapsed_time": "4:15:42", "remaining_time": "7:32:19"} +{"current_steps": 1688, "total_steps": 4671, "loss": 0.066, "learning_rate": 8.061197213769693e-06, "epoch": 1.084136159280668, "percentage": 36.14, "elapsed_time": "4:15:52", "remaining_time": "7:32:09"} +{"current_steps": 1689, "total_steps": 4671, "loss": 0.1455, "learning_rate": 8.058241361697467e-06, "epoch": 1.0847784200385355, "percentage": 36.16, "elapsed_time": "4:16:01", "remaining_time": "7:32:00"} +{"current_steps": 1690, "total_steps": 4671, "loss": 0.0752, "learning_rate": 8.055283800976848e-06, "epoch": 1.0854206807964033, "percentage": 36.18, "elapsed_time": "4:16:08", "remaining_time": "7:31:49"} +{"current_steps": 1691, "total_steps": 4671, "loss": 0.0887, "learning_rate": 8.052324533260232e-06, "epoch": 1.086062941554271, "percentage": 36.2, "elapsed_time": "4:16:18", "remaining_time": "7:31:41"} +{"current_steps": 1692, "total_steps": 4671, "loss": 0.0889, "learning_rate": 8.049363560200972e-06, "epoch": 1.0867052023121386, "percentage": 36.22, "elapsed_time": "4:16:28", "remaining_time": "7:31:33"} +{"current_steps": 1693, "total_steps": 4671, "loss": 0.1593, "learning_rate": 8.04640088345337e-06, "epoch": 1.0873474630700064, "percentage": 36.24, "elapsed_time": "4:16:37", "remaining_time": "7:31:24"} +{"current_steps": 1694, "total_steps": 4671, "loss": 0.1245, "learning_rate": 8.043436504672684e-06, "epoch": 1.0879897238278742, "percentage": 36.27, "elapsed_time": "4:16:47", "remaining_time": "7:31:17"} +{"current_steps": 1695, "total_steps": 4671, "loss": 0.0992, "learning_rate": 8.040470425515119e-06, "epoch": 1.0886319845857417, "percentage": 36.29, "elapsed_time": "4:16:58", "remaining_time": "7:31:11"} +{"current_steps": 1696, "total_steps": 4671, "loss": 0.0484, "learning_rate": 8.037502647637835e-06, "epoch": 1.0892742453436095, "percentage": 36.31, "elapsed_time": "4:17:07", "remaining_time": "7:31:02"} +{"current_steps": 1697, "total_steps": 4671, "loss": 0.0732, "learning_rate": 8.034533172698935e-06, "epoch": 1.0899165061014773, "percentage": 36.33, "elapsed_time": "4:17:16", "remaining_time": "7:30:52"} +{"current_steps": 1698, "total_steps": 4671, "loss": 0.0295, "learning_rate": 8.031562002357476e-06, "epoch": 1.0905587668593448, "percentage": 36.35, "elapsed_time": "4:17:24", "remaining_time": "7:30:41"} +{"current_steps": 1699, "total_steps": 4671, "loss": 0.1246, "learning_rate": 8.028589138273458e-06, "epoch": 1.0912010276172126, "percentage": 36.37, "elapsed_time": "4:17:34", "remaining_time": "7:30:34"} +{"current_steps": 1700, "total_steps": 4671, "loss": 0.1272, "learning_rate": 8.02561458210783e-06, "epoch": 1.0918432883750804, "percentage": 36.39, "elapsed_time": "4:17:45", "remaining_time": "7:30:28"} +{"current_steps": 1701, "total_steps": 4671, "loss": 0.0275, "learning_rate": 8.022638335522484e-06, "epoch": 1.092485549132948, "percentage": 36.42, "elapsed_time": "4:17:54", "remaining_time": "7:30:19"} +{"current_steps": 1702, "total_steps": 4671, "loss": 0.0986, "learning_rate": 8.019660400180258e-06, "epoch": 1.0931278098908157, "percentage": 36.44, "elapsed_time": "4:18:03", "remaining_time": "7:30:09"} +{"current_steps": 1703, "total_steps": 4671, "loss": 0.0312, "learning_rate": 8.016680777744935e-06, "epoch": 1.0937700706486835, "percentage": 36.46, "elapsed_time": "4:18:10", "remaining_time": "7:29:56"} +{"current_steps": 1704, "total_steps": 4671, "loss": 0.0888, "learning_rate": 8.013699469881236e-06, "epoch": 1.094412331406551, "percentage": 36.48, "elapsed_time": "4:18:18", "remaining_time": "7:29:45"} +{"current_steps": 1705, "total_steps": 4671, "loss": 0.0738, "learning_rate": 8.010716478254827e-06, "epoch": 1.0950545921644188, "percentage": 36.5, "elapsed_time": "4:18:26", "remaining_time": "7:29:35"} +{"current_steps": 1706, "total_steps": 4671, "loss": 0.0928, "learning_rate": 8.007731804532316e-06, "epoch": 1.0956968529222864, "percentage": 36.52, "elapsed_time": "4:18:34", "remaining_time": "7:29:24"} +{"current_steps": 1707, "total_steps": 4671, "loss": 0.0579, "learning_rate": 8.004745450381248e-06, "epoch": 1.0963391136801541, "percentage": 36.54, "elapsed_time": "4:18:45", "remaining_time": "7:29:17"} +{"current_steps": 1708, "total_steps": 4671, "loss": 0.0495, "learning_rate": 8.001757417470106e-06, "epoch": 1.096981374438022, "percentage": 36.57, "elapsed_time": "4:18:52", "remaining_time": "7:29:06"} +{"current_steps": 1709, "total_steps": 4671, "loss": 0.0335, "learning_rate": 7.998767707468316e-06, "epoch": 1.0976236351958895, "percentage": 36.59, "elapsed_time": "4:19:00", "remaining_time": "7:28:53"} +{"current_steps": 1710, "total_steps": 4671, "loss": 0.0666, "learning_rate": 7.995776322046236e-06, "epoch": 1.0982658959537572, "percentage": 36.61, "elapsed_time": "4:19:08", "remaining_time": "7:28:42"} +{"current_steps": 1711, "total_steps": 4671, "loss": 0.0817, "learning_rate": 7.992783262875162e-06, "epoch": 1.098908156711625, "percentage": 36.63, "elapsed_time": "4:19:17", "remaining_time": "7:28:34"} +{"current_steps": 1712, "total_steps": 4671, "loss": 0.1935, "learning_rate": 7.989788531627322e-06, "epoch": 1.0995504174694926, "percentage": 36.65, "elapsed_time": "4:19:27", "remaining_time": "7:28:26"} +{"current_steps": 1713, "total_steps": 4671, "loss": 0.0941, "learning_rate": 7.986792129975887e-06, "epoch": 1.1001926782273603, "percentage": 36.67, "elapsed_time": "4:19:36", "remaining_time": "7:28:17"} +{"current_steps": 1714, "total_steps": 4671, "loss": 0.0647, "learning_rate": 7.983794059594951e-06, "epoch": 1.100834938985228, "percentage": 36.69, "elapsed_time": "4:19:46", "remaining_time": "7:28:09"} +{"current_steps": 1715, "total_steps": 4671, "loss": 0.0739, "learning_rate": 7.980794322159544e-06, "epoch": 1.1014771997430957, "percentage": 36.72, "elapsed_time": "4:19:54", "remaining_time": "7:27:59"} +{"current_steps": 1716, "total_steps": 4671, "loss": 0.0584, "learning_rate": 7.977792919345632e-06, "epoch": 1.1021194605009634, "percentage": 36.74, "elapsed_time": "4:20:01", "remaining_time": "7:27:46"} +{"current_steps": 1717, "total_steps": 4671, "loss": 0.1243, "learning_rate": 7.974789852830105e-06, "epoch": 1.102761721258831, "percentage": 36.76, "elapsed_time": "4:20:12", "remaining_time": "7:27:39"} +{"current_steps": 1718, "total_steps": 4671, "loss": 0.2187, "learning_rate": 7.971785124290787e-06, "epoch": 1.1034039820166988, "percentage": 36.78, "elapsed_time": "4:20:23", "remaining_time": "7:27:34"} +{"current_steps": 1719, "total_steps": 4671, "loss": 0.0945, "learning_rate": 7.968778735406426e-06, "epoch": 1.1040462427745665, "percentage": 36.8, "elapsed_time": "4:20:31", "remaining_time": "7:27:23"} +{"current_steps": 1720, "total_steps": 4671, "loss": 0.072, "learning_rate": 7.965770687856702e-06, "epoch": 1.104688503532434, "percentage": 36.82, "elapsed_time": "4:20:40", "remaining_time": "7:27:15"} +{"current_steps": 1721, "total_steps": 4671, "loss": 0.1141, "learning_rate": 7.962760983322217e-06, "epoch": 1.1053307642903019, "percentage": 36.84, "elapsed_time": "4:20:51", "remaining_time": "7:27:08"} +{"current_steps": 1722, "total_steps": 4671, "loss": 0.0428, "learning_rate": 7.959749623484507e-06, "epoch": 1.1059730250481696, "percentage": 36.87, "elapsed_time": "4:21:01", "remaining_time": "7:27:01"} +{"current_steps": 1723, "total_steps": 4671, "loss": 0.0689, "learning_rate": 7.956736610026023e-06, "epoch": 1.1066152858060372, "percentage": 36.89, "elapsed_time": "4:21:10", "remaining_time": "7:26:52"} +{"current_steps": 1724, "total_steps": 4671, "loss": 0.0664, "learning_rate": 7.953721944630146e-06, "epoch": 1.107257546563905, "percentage": 36.91, "elapsed_time": "4:21:20", "remaining_time": "7:26:43"} +{"current_steps": 1725, "total_steps": 4671, "loss": 0.0947, "learning_rate": 7.95070562898118e-06, "epoch": 1.1078998073217727, "percentage": 36.93, "elapsed_time": "4:21:29", "remaining_time": "7:26:34"} +{"current_steps": 1726, "total_steps": 4671, "loss": 0.0223, "learning_rate": 7.947687664764347e-06, "epoch": 1.1085420680796403, "percentage": 36.95, "elapsed_time": "4:21:37", "remaining_time": "7:26:23"} +{"current_steps": 1727, "total_steps": 4671, "loss": 0.0375, "learning_rate": 7.944668053665795e-06, "epoch": 1.109184328837508, "percentage": 36.97, "elapsed_time": "4:21:46", "remaining_time": "7:26:14"} +{"current_steps": 1728, "total_steps": 4671, "loss": 0.0747, "learning_rate": 7.941646797372584e-06, "epoch": 1.1098265895953756, "percentage": 36.99, "elapsed_time": "4:21:55", "remaining_time": "7:26:04"} +{"current_steps": 1729, "total_steps": 4671, "loss": 0.0431, "learning_rate": 7.938623897572705e-06, "epoch": 1.1104688503532434, "percentage": 37.02, "elapsed_time": "4:22:04", "remaining_time": "7:25:55"} +{"current_steps": 1730, "total_steps": 4671, "loss": 0.0564, "learning_rate": 7.935599355955059e-06, "epoch": 1.1111111111111112, "percentage": 37.04, "elapsed_time": "4:22:12", "remaining_time": "7:25:44"} +{"current_steps": 1731, "total_steps": 4671, "loss": 0.0901, "learning_rate": 7.932573174209463e-06, "epoch": 1.1117533718689787, "percentage": 37.06, "elapsed_time": "4:22:21", "remaining_time": "7:25:35"} +{"current_steps": 1732, "total_steps": 4671, "loss": 0.0563, "learning_rate": 7.92954535402666e-06, "epoch": 1.1123956326268465, "percentage": 37.08, "elapsed_time": "4:22:28", "remaining_time": "7:25:23"} +{"current_steps": 1733, "total_steps": 4671, "loss": 0.035, "learning_rate": 7.926515897098295e-06, "epoch": 1.1130378933847143, "percentage": 37.1, "elapsed_time": "4:22:37", "remaining_time": "7:25:14"} +{"current_steps": 1734, "total_steps": 4671, "loss": 0.1269, "learning_rate": 7.92348480511694e-06, "epoch": 1.1136801541425818, "percentage": 37.12, "elapsed_time": "4:22:46", "remaining_time": "7:25:05"} +{"current_steps": 1735, "total_steps": 4671, "loss": 0.0695, "learning_rate": 7.920452079776074e-06, "epoch": 1.1143224149004496, "percentage": 37.14, "elapsed_time": "4:22:54", "remaining_time": "7:24:54"} +{"current_steps": 1736, "total_steps": 4671, "loss": 0.0468, "learning_rate": 7.917417722770086e-06, "epoch": 1.1149646756583174, "percentage": 37.17, "elapsed_time": "4:23:02", "remaining_time": "7:24:43"} +{"current_steps": 1737, "total_steps": 4671, "loss": 0.0664, "learning_rate": 7.914381735794282e-06, "epoch": 1.115606936416185, "percentage": 37.19, "elapsed_time": "4:23:12", "remaining_time": "7:24:35"} +{"current_steps": 1738, "total_steps": 4671, "loss": 0.0873, "learning_rate": 7.911344120544878e-06, "epoch": 1.1162491971740527, "percentage": 37.21, "elapsed_time": "4:23:22", "remaining_time": "7:24:27"} +{"current_steps": 1739, "total_steps": 4671, "loss": 0.0449, "learning_rate": 7.908304878718999e-06, "epoch": 1.1168914579319205, "percentage": 37.23, "elapsed_time": "4:23:30", "remaining_time": "7:24:17"} +{"current_steps": 1740, "total_steps": 4671, "loss": 0.0774, "learning_rate": 7.905264012014675e-06, "epoch": 1.117533718689788, "percentage": 37.25, "elapsed_time": "4:23:40", "remaining_time": "7:24:08"} +{"current_steps": 1741, "total_steps": 4671, "loss": 0.0738, "learning_rate": 7.90222152213085e-06, "epoch": 1.1181759794476558, "percentage": 37.27, "elapsed_time": "4:23:48", "remaining_time": "7:23:59"} +{"current_steps": 1742, "total_steps": 4671, "loss": 0.0631, "learning_rate": 7.899177410767372e-06, "epoch": 1.1188182402055233, "percentage": 37.29, "elapsed_time": "4:23:58", "remaining_time": "7:23:51"} +{"current_steps": 1743, "total_steps": 4671, "loss": 0.1026, "learning_rate": 7.896131679624995e-06, "epoch": 1.1194605009633911, "percentage": 37.32, "elapsed_time": "4:24:07", "remaining_time": "7:23:41"} +{"current_steps": 1744, "total_steps": 4671, "loss": 0.0888, "learning_rate": 7.893084330405374e-06, "epoch": 1.1201027617212589, "percentage": 37.34, "elapsed_time": "4:24:16", "remaining_time": "7:23:32"} +{"current_steps": 1745, "total_steps": 4671, "loss": 0.0683, "learning_rate": 7.890035364811076e-06, "epoch": 1.1207450224791264, "percentage": 37.36, "elapsed_time": "4:24:25", "remaining_time": "7:23:23"} +{"current_steps": 1746, "total_steps": 4671, "loss": 0.0446, "learning_rate": 7.886984784545565e-06, "epoch": 1.1213872832369942, "percentage": 37.38, "elapsed_time": "4:24:33", "remaining_time": "7:23:12"} +{"current_steps": 1747, "total_steps": 4671, "loss": 0.0498, "learning_rate": 7.883932591313213e-06, "epoch": 1.122029543994862, "percentage": 37.4, "elapsed_time": "4:24:41", "remaining_time": "7:23:00"} +{"current_steps": 1748, "total_steps": 4671, "loss": 0.075, "learning_rate": 7.880878786819283e-06, "epoch": 1.1226718047527295, "percentage": 37.42, "elapsed_time": "4:24:50", "remaining_time": "7:22:51"} +{"current_steps": 1749, "total_steps": 4671, "loss": 0.0374, "learning_rate": 7.877823372769951e-06, "epoch": 1.1233140655105973, "percentage": 37.44, "elapsed_time": "4:24:58", "remaining_time": "7:22:40"} +{"current_steps": 1750, "total_steps": 4671, "loss": 0.0929, "learning_rate": 7.87476635087228e-06, "epoch": 1.123956326268465, "percentage": 37.47, "elapsed_time": "4:25:07", "remaining_time": "7:22:32"} +{"current_steps": 1751, "total_steps": 4671, "loss": 0.1135, "learning_rate": 7.871707722834241e-06, "epoch": 1.1245985870263326, "percentage": 37.49, "elapsed_time": "4:25:18", "remaining_time": "7:22:25"} +{"current_steps": 1752, "total_steps": 4671, "loss": 0.0963, "learning_rate": 7.868647490364696e-06, "epoch": 1.1252408477842004, "percentage": 37.51, "elapsed_time": "4:25:29", "remaining_time": "7:22:19"} +{"current_steps": 1753, "total_steps": 4671, "loss": 0.0693, "learning_rate": 7.865585655173409e-06, "epoch": 1.1258831085420682, "percentage": 37.53, "elapsed_time": "4:25:37", "remaining_time": "7:22:09"} +{"current_steps": 1754, "total_steps": 4671, "loss": 0.0534, "learning_rate": 7.862522218971032e-06, "epoch": 1.1265253692999357, "percentage": 37.55, "elapsed_time": "4:25:46", "remaining_time": "7:22:00"} +{"current_steps": 1755, "total_steps": 4671, "loss": 0.0683, "learning_rate": 7.859457183469119e-06, "epoch": 1.1271676300578035, "percentage": 37.57, "elapsed_time": "4:25:54", "remaining_time": "7:21:49"} +{"current_steps": 1756, "total_steps": 4671, "loss": 0.0406, "learning_rate": 7.856390550380112e-06, "epoch": 1.127809890815671, "percentage": 37.59, "elapsed_time": "4:26:03", "remaining_time": "7:21:39"} +{"current_steps": 1757, "total_steps": 4671, "loss": 0.0579, "learning_rate": 7.853322321417352e-06, "epoch": 1.1284521515735388, "percentage": 37.62, "elapsed_time": "4:26:12", "remaining_time": "7:21:30"} +{"current_steps": 1758, "total_steps": 4671, "loss": 0.0773, "learning_rate": 7.850252498295062e-06, "epoch": 1.1290944123314066, "percentage": 37.64, "elapsed_time": "4:26:21", "remaining_time": "7:21:20"} +{"current_steps": 1759, "total_steps": 4671, "loss": 0.1149, "learning_rate": 7.847181082728366e-06, "epoch": 1.1297366730892742, "percentage": 37.66, "elapsed_time": "4:26:32", "remaining_time": "7:21:14"} +{"current_steps": 1760, "total_steps": 4671, "loss": 0.0555, "learning_rate": 7.844108076433268e-06, "epoch": 1.130378933847142, "percentage": 37.68, "elapsed_time": "4:26:41", "remaining_time": "7:21:05"} +{"current_steps": 1761, "total_steps": 4671, "loss": 0.0407, "learning_rate": 7.84103348112667e-06, "epoch": 1.1310211946050097, "percentage": 37.7, "elapsed_time": "4:26:49", "remaining_time": "7:20:55"} +{"current_steps": 1762, "total_steps": 4671, "loss": 0.0641, "learning_rate": 7.837957298526355e-06, "epoch": 1.1316634553628773, "percentage": 37.72, "elapsed_time": "4:26:58", "remaining_time": "7:20:45"} +{"current_steps": 1763, "total_steps": 4671, "loss": 0.1163, "learning_rate": 7.834879530350997e-06, "epoch": 1.132305716120745, "percentage": 37.74, "elapsed_time": "4:27:07", "remaining_time": "7:20:37"} +{"current_steps": 1764, "total_steps": 4671, "loss": 0.1117, "learning_rate": 7.831800178320153e-06, "epoch": 1.1329479768786128, "percentage": 37.76, "elapsed_time": "4:27:19", "remaining_time": "7:20:32"} +{"current_steps": 1765, "total_steps": 4671, "loss": 0.0467, "learning_rate": 7.828719244154264e-06, "epoch": 1.1335902376364804, "percentage": 37.79, "elapsed_time": "4:27:28", "remaining_time": "7:20:23"} +{"current_steps": 1766, "total_steps": 4671, "loss": 0.1294, "learning_rate": 7.82563672957466e-06, "epoch": 1.1342324983943481, "percentage": 37.81, "elapsed_time": "4:27:38", "remaining_time": "7:20:16"} +{"current_steps": 1767, "total_steps": 4671, "loss": 0.0468, "learning_rate": 7.822552636303551e-06, "epoch": 1.1348747591522157, "percentage": 37.83, "elapsed_time": "4:27:45", "remaining_time": "7:20:03"} +{"current_steps": 1768, "total_steps": 4671, "loss": 0.0832, "learning_rate": 7.819466966064026e-06, "epoch": 1.1355170199100835, "percentage": 37.85, "elapsed_time": "4:27:54", "remaining_time": "7:19:53"} +{"current_steps": 1769, "total_steps": 4671, "loss": 0.089, "learning_rate": 7.81637972058006e-06, "epoch": 1.1361592806679512, "percentage": 37.87, "elapsed_time": "4:28:03", "remaining_time": "7:19:45"} +{"current_steps": 1770, "total_steps": 4671, "loss": 0.0747, "learning_rate": 7.813290901576505e-06, "epoch": 1.1368015414258188, "percentage": 37.89, "elapsed_time": "4:28:13", "remaining_time": "7:19:36"} +{"current_steps": 1771, "total_steps": 4671, "loss": 0.0483, "learning_rate": 7.810200510779096e-06, "epoch": 1.1374438021836866, "percentage": 37.91, "elapsed_time": "4:28:23", "remaining_time": "7:19:29"} +{"current_steps": 1772, "total_steps": 4671, "loss": 0.0614, "learning_rate": 7.80710854991444e-06, "epoch": 1.1380860629415543, "percentage": 37.94, "elapsed_time": "4:28:33", "remaining_time": "7:19:21"} +{"current_steps": 1773, "total_steps": 4671, "loss": 0.0697, "learning_rate": 7.804015020710028e-06, "epoch": 1.138728323699422, "percentage": 37.96, "elapsed_time": "4:28:41", "remaining_time": "7:19:10"} +{"current_steps": 1774, "total_steps": 4671, "loss": 0.1016, "learning_rate": 7.800919924894219e-06, "epoch": 1.1393705844572897, "percentage": 37.98, "elapsed_time": "4:28:51", "remaining_time": "7:19:02"} +{"current_steps": 1775, "total_steps": 4671, "loss": 0.0667, "learning_rate": 7.797823264196256e-06, "epoch": 1.1400128452151574, "percentage": 38.0, "elapsed_time": "4:28:59", "remaining_time": "7:18:52"} +{"current_steps": 1776, "total_steps": 4671, "loss": 0.0698, "learning_rate": 7.794725040346251e-06, "epoch": 1.140655105973025, "percentage": 38.02, "elapsed_time": "4:29:09", "remaining_time": "7:18:44"} +{"current_steps": 1777, "total_steps": 4671, "loss": 0.0775, "learning_rate": 7.791625255075192e-06, "epoch": 1.1412973667308928, "percentage": 38.04, "elapsed_time": "4:29:20", "remaining_time": "7:18:39"} +{"current_steps": 1778, "total_steps": 4671, "loss": 0.0733, "learning_rate": 7.788523910114936e-06, "epoch": 1.1419396274887603, "percentage": 38.06, "elapsed_time": "4:29:29", "remaining_time": "7:18:29"} +{"current_steps": 1779, "total_steps": 4671, "loss": 0.1041, "learning_rate": 7.785421007198216e-06, "epoch": 1.142581888246628, "percentage": 38.09, "elapsed_time": "4:29:39", "remaining_time": "7:18:21"} +{"current_steps": 1780, "total_steps": 4671, "loss": 0.0895, "learning_rate": 7.78231654805863e-06, "epoch": 1.1432241490044959, "percentage": 38.11, "elapsed_time": "4:29:47", "remaining_time": "7:18:11"} +{"current_steps": 1781, "total_steps": 4671, "loss": 0.0764, "learning_rate": 7.77921053443065e-06, "epoch": 1.1438664097623634, "percentage": 38.13, "elapsed_time": "4:29:56", "remaining_time": "7:18:01"} +{"current_steps": 1782, "total_steps": 4671, "loss": 0.1077, "learning_rate": 7.776102968049616e-06, "epoch": 1.1445086705202312, "percentage": 38.15, "elapsed_time": "4:30:07", "remaining_time": "7:17:55"} +{"current_steps": 1783, "total_steps": 4671, "loss": 0.0683, "learning_rate": 7.772993850651732e-06, "epoch": 1.145150931278099, "percentage": 38.17, "elapsed_time": "4:30:17", "remaining_time": "7:17:47"} +{"current_steps": 1784, "total_steps": 4671, "loss": 0.0563, "learning_rate": 7.769883183974072e-06, "epoch": 1.1457931920359665, "percentage": 38.19, "elapsed_time": "4:30:25", "remaining_time": "7:17:36"} +{"current_steps": 1785, "total_steps": 4671, "loss": 0.0528, "learning_rate": 7.766770969754575e-06, "epoch": 1.1464354527938343, "percentage": 38.21, "elapsed_time": "4:30:33", "remaining_time": "7:17:25"} +{"current_steps": 1786, "total_steps": 4671, "loss": 0.1214, "learning_rate": 7.763657209732047e-06, "epoch": 1.147077713551702, "percentage": 38.24, "elapsed_time": "4:30:40", "remaining_time": "7:17:14"} +{"current_steps": 1787, "total_steps": 4671, "loss": 0.1381, "learning_rate": 7.760541905646148e-06, "epoch": 1.1477199743095696, "percentage": 38.26, "elapsed_time": "4:30:49", "remaining_time": "7:17:04"} +{"current_steps": 1788, "total_steps": 4671, "loss": 0.0731, "learning_rate": 7.757425059237413e-06, "epoch": 1.1483622350674374, "percentage": 38.28, "elapsed_time": "4:31:01", "remaining_time": "7:16:59"} +{"current_steps": 1789, "total_steps": 4671, "loss": 0.1557, "learning_rate": 7.754306672247232e-06, "epoch": 1.149004495825305, "percentage": 38.3, "elapsed_time": "4:31:09", "remaining_time": "7:16:49"} +{"current_steps": 1790, "total_steps": 4671, "loss": 0.0374, "learning_rate": 7.751186746417855e-06, "epoch": 1.1496467565831727, "percentage": 38.32, "elapsed_time": "4:31:17", "remaining_time": "7:16:39"} +{"current_steps": 1791, "total_steps": 4671, "loss": 0.0932, "learning_rate": 7.748065283492397e-06, "epoch": 1.1502890173410405, "percentage": 38.34, "elapsed_time": "4:31:28", "remaining_time": "7:16:32"} +{"current_steps": 1792, "total_steps": 4671, "loss": 0.0374, "learning_rate": 7.744942285214825e-06, "epoch": 1.1509312780989083, "percentage": 38.36, "elapsed_time": "4:31:35", "remaining_time": "7:16:20"} +{"current_steps": 1793, "total_steps": 4671, "loss": 0.065, "learning_rate": 7.741817753329967e-06, "epoch": 1.1515735388567758, "percentage": 38.39, "elapsed_time": "4:31:42", "remaining_time": "7:16:07"} +{"current_steps": 1794, "total_steps": 4671, "loss": 0.0775, "learning_rate": 7.738691689583513e-06, "epoch": 1.1522157996146436, "percentage": 38.41, "elapsed_time": "4:31:49", "remaining_time": "7:15:55"} +{"current_steps": 1795, "total_steps": 4671, "loss": 0.088, "learning_rate": 7.735564095722002e-06, "epoch": 1.1528580603725112, "percentage": 38.43, "elapsed_time": "4:32:00", "remaining_time": "7:15:48"} +{"current_steps": 1796, "total_steps": 4671, "loss": 0.0724, "learning_rate": 7.732434973492825e-06, "epoch": 1.153500321130379, "percentage": 38.45, "elapsed_time": "4:32:09", "remaining_time": "7:15:40"} +{"current_steps": 1797, "total_steps": 4671, "loss": 0.1498, "learning_rate": 7.729304324644239e-06, "epoch": 1.1541425818882467, "percentage": 38.47, "elapsed_time": "4:32:19", "remaining_time": "7:15:32"} +{"current_steps": 1798, "total_steps": 4671, "loss": 0.0384, "learning_rate": 7.726172150925341e-06, "epoch": 1.1547848426461143, "percentage": 38.49, "elapsed_time": "4:32:28", "remaining_time": "7:15:23"} +{"current_steps": 1799, "total_steps": 4671, "loss": 0.0905, "learning_rate": 7.723038454086089e-06, "epoch": 1.155427103403982, "percentage": 38.51, "elapsed_time": "4:32:37", "remaining_time": "7:15:14"} +{"current_steps": 1800, "total_steps": 4671, "loss": 0.067, "learning_rate": 7.719903235877289e-06, "epoch": 1.1560693641618498, "percentage": 38.54, "elapsed_time": "4:32:46", "remaining_time": "7:15:04"} +{"current_steps": 1801, "total_steps": 4671, "loss": 0.0943, "learning_rate": 7.716766498050591e-06, "epoch": 1.1567116249197174, "percentage": 38.56, "elapsed_time": "4:32:54", "remaining_time": "7:14:54"} +{"current_steps": 1802, "total_steps": 4671, "loss": 0.0785, "learning_rate": 7.713628242358507e-06, "epoch": 1.1573538856775851, "percentage": 38.58, "elapsed_time": "4:33:05", "remaining_time": "7:14:47"} +{"current_steps": 1803, "total_steps": 4671, "loss": 0.0888, "learning_rate": 7.710488470554384e-06, "epoch": 1.157996146435453, "percentage": 38.6, "elapsed_time": "4:33:14", "remaining_time": "7:14:38"} +{"current_steps": 1804, "total_steps": 4671, "loss": 0.1013, "learning_rate": 7.707347184392427e-06, "epoch": 1.1586384071933205, "percentage": 38.62, "elapsed_time": "4:33:25", "remaining_time": "7:14:32"} +{"current_steps": 1805, "total_steps": 4671, "loss": 0.0605, "learning_rate": 7.704204385627674e-06, "epoch": 1.1592806679511882, "percentage": 38.64, "elapsed_time": "4:33:35", "remaining_time": "7:14:24"} +{"current_steps": 1806, "total_steps": 4671, "loss": 0.0407, "learning_rate": 7.701060076016025e-06, "epoch": 1.1599229287090558, "percentage": 38.66, "elapsed_time": "4:33:44", "remaining_time": "7:14:15"} +{"current_steps": 1807, "total_steps": 4671, "loss": 0.0693, "learning_rate": 7.697914257314208e-06, "epoch": 1.1605651894669236, "percentage": 38.69, "elapsed_time": "4:33:54", "remaining_time": "7:14:07"} +{"current_steps": 1808, "total_steps": 4671, "loss": 0.0486, "learning_rate": 7.694766931279805e-06, "epoch": 1.1612074502247913, "percentage": 38.71, "elapsed_time": "4:34:01", "remaining_time": "7:13:54"} +{"current_steps": 1809, "total_steps": 4671, "loss": 0.0882, "learning_rate": 7.691618099671235e-06, "epoch": 1.1618497109826589, "percentage": 38.73, "elapsed_time": "4:34:10", "remaining_time": "7:13:46"} +{"current_steps": 1810, "total_steps": 4671, "loss": 0.0329, "learning_rate": 7.688467764247758e-06, "epoch": 1.1624919717405267, "percentage": 38.75, "elapsed_time": "4:34:18", "remaining_time": "7:13:35"} +{"current_steps": 1811, "total_steps": 4671, "loss": 0.0648, "learning_rate": 7.685315926769476e-06, "epoch": 1.1631342324983944, "percentage": 38.77, "elapsed_time": "4:34:30", "remaining_time": "7:13:30"} +{"current_steps": 1812, "total_steps": 4671, "loss": 0.061, "learning_rate": 7.682162588997333e-06, "epoch": 1.163776493256262, "percentage": 38.79, "elapsed_time": "4:34:37", "remaining_time": "7:13:17"} +{"current_steps": 1813, "total_steps": 4671, "loss": 0.0642, "learning_rate": 7.679007752693106e-06, "epoch": 1.1644187540141298, "percentage": 38.81, "elapsed_time": "4:34:45", "remaining_time": "7:13:06"} +{"current_steps": 1814, "total_steps": 4671, "loss": 0.0623, "learning_rate": 7.67585141961941e-06, "epoch": 1.1650610147719975, "percentage": 38.84, "elapsed_time": "4:34:53", "remaining_time": "7:12:56"} +{"current_steps": 1815, "total_steps": 4671, "loss": 0.1053, "learning_rate": 7.6726935915397e-06, "epoch": 1.165703275529865, "percentage": 38.86, "elapsed_time": "4:35:03", "remaining_time": "7:12:49"} +{"current_steps": 1816, "total_steps": 4671, "loss": 0.0625, "learning_rate": 7.669534270218262e-06, "epoch": 1.1663455362877329, "percentage": 38.88, "elapsed_time": "4:35:11", "remaining_time": "7:12:38"} +{"current_steps": 1817, "total_steps": 4671, "loss": 0.0799, "learning_rate": 7.666373457420217e-06, "epoch": 1.1669877970456004, "percentage": 38.9, "elapsed_time": "4:35:20", "remaining_time": "7:12:29"} +{"current_steps": 1818, "total_steps": 4671, "loss": 0.0509, "learning_rate": 7.663211154911523e-06, "epoch": 1.1676300578034682, "percentage": 38.92, "elapsed_time": "4:35:29", "remaining_time": "7:12:20"} +{"current_steps": 1819, "total_steps": 4671, "loss": 0.0819, "learning_rate": 7.660047364458965e-06, "epoch": 1.168272318561336, "percentage": 38.94, "elapsed_time": "4:35:39", "remaining_time": "7:12:12"} +{"current_steps": 1820, "total_steps": 4671, "loss": 0.0669, "learning_rate": 7.656882087830165e-06, "epoch": 1.1689145793192035, "percentage": 38.96, "elapsed_time": "4:35:49", "remaining_time": "7:12:04"} +{"current_steps": 1821, "total_steps": 4671, "loss": 0.0614, "learning_rate": 7.65371532679357e-06, "epoch": 1.1695568400770713, "percentage": 38.99, "elapsed_time": "4:35:58", "remaining_time": "7:11:54"} +{"current_steps": 1822, "total_steps": 4671, "loss": 0.078, "learning_rate": 7.65054708311846e-06, "epoch": 1.170199100834939, "percentage": 39.01, "elapsed_time": "4:36:05", "remaining_time": "7:11:43"} +{"current_steps": 1823, "total_steps": 4671, "loss": 0.0843, "learning_rate": 7.647377358574941e-06, "epoch": 1.1708413615928066, "percentage": 39.03, "elapsed_time": "4:36:16", "remaining_time": "7:11:37"} +{"current_steps": 1824, "total_steps": 4671, "loss": 0.1038, "learning_rate": 7.644206154933948e-06, "epoch": 1.1714836223506744, "percentage": 39.05, "elapsed_time": "4:36:28", "remaining_time": "7:11:31"} +{"current_steps": 1825, "total_steps": 4671, "loss": 0.0716, "learning_rate": 7.64103347396724e-06, "epoch": 1.1721258831085422, "percentage": 39.07, "elapsed_time": "4:36:36", "remaining_time": "7:11:20"} +{"current_steps": 1826, "total_steps": 4671, "loss": 0.0675, "learning_rate": 7.637859317447408e-06, "epoch": 1.1727681438664097, "percentage": 39.09, "elapsed_time": "4:36:45", "remaining_time": "7:11:11"} +{"current_steps": 1827, "total_steps": 4671, "loss": 0.0889, "learning_rate": 7.634683687147857e-06, "epoch": 1.1734104046242775, "percentage": 39.11, "elapsed_time": "4:36:54", "remaining_time": "7:11:03"} +{"current_steps": 1828, "total_steps": 4671, "loss": 0.07, "learning_rate": 7.631506584842822e-06, "epoch": 1.174052665382145, "percentage": 39.14, "elapsed_time": "4:37:03", "remaining_time": "7:10:53"} +{"current_steps": 1829, "total_steps": 4671, "loss": 0.0945, "learning_rate": 7.6283280123073635e-06, "epoch": 1.1746949261400128, "percentage": 39.16, "elapsed_time": "4:37:11", "remaining_time": "7:10:42"} +{"current_steps": 1830, "total_steps": 4671, "loss": 0.0437, "learning_rate": 7.625147971317355e-06, "epoch": 1.1753371868978806, "percentage": 39.18, "elapsed_time": "4:37:18", "remaining_time": "7:10:31"} +{"current_steps": 1831, "total_steps": 4671, "loss": 0.0552, "learning_rate": 7.6219664636494964e-06, "epoch": 1.1759794476557484, "percentage": 39.2, "elapsed_time": "4:37:25", "remaining_time": "7:10:18"} +{"current_steps": 1832, "total_steps": 4671, "loss": 0.0904, "learning_rate": 7.618783491081304e-06, "epoch": 1.176621708413616, "percentage": 39.22, "elapsed_time": "4:37:37", "remaining_time": "7:10:13"} +{"current_steps": 1833, "total_steps": 4671, "loss": 0.1366, "learning_rate": 7.615599055391115e-06, "epoch": 1.1772639691714837, "percentage": 39.24, "elapsed_time": "4:37:47", "remaining_time": "7:10:05"} +{"current_steps": 1834, "total_steps": 4671, "loss": 0.0737, "learning_rate": 7.612413158358083e-06, "epoch": 1.1779062299293512, "percentage": 39.26, "elapsed_time": "4:37:55", "remaining_time": "7:09:55"} +{"current_steps": 1835, "total_steps": 4671, "loss": 0.0493, "learning_rate": 7.609225801762178e-06, "epoch": 1.178548490687219, "percentage": 39.28, "elapsed_time": "4:38:06", "remaining_time": "7:09:48"} +{"current_steps": 1836, "total_steps": 4671, "loss": 0.0353, "learning_rate": 7.606036987384185e-06, "epoch": 1.1791907514450868, "percentage": 39.31, "elapsed_time": "4:38:14", "remaining_time": "7:09:37"} +{"current_steps": 1837, "total_steps": 4671, "loss": 0.0675, "learning_rate": 7.602846717005705e-06, "epoch": 1.1798330122029543, "percentage": 39.33, "elapsed_time": "4:38:22", "remaining_time": "7:09:28"} +{"current_steps": 1838, "total_steps": 4671, "loss": 0.0664, "learning_rate": 7.599654992409149e-06, "epoch": 1.180475272960822, "percentage": 39.35, "elapsed_time": "4:38:32", "remaining_time": "7:09:19"} +{"current_steps": 1839, "total_steps": 4671, "loss": 0.0449, "learning_rate": 7.596461815377744e-06, "epoch": 1.1811175337186899, "percentage": 39.37, "elapsed_time": "4:38:40", "remaining_time": "7:09:08"} +{"current_steps": 1840, "total_steps": 4671, "loss": 0.0312, "learning_rate": 7.593267187695528e-06, "epoch": 1.1817597944765574, "percentage": 39.39, "elapsed_time": "4:38:49", "remaining_time": "7:09:00"} +{"current_steps": 1841, "total_steps": 4671, "loss": 0.1024, "learning_rate": 7.59007111114735e-06, "epoch": 1.1824020552344252, "percentage": 39.41, "elapsed_time": "4:38:59", "remaining_time": "7:08:52"} +{"current_steps": 1842, "total_steps": 4671, "loss": 0.0712, "learning_rate": 7.586873587518866e-06, "epoch": 1.183044315992293, "percentage": 39.43, "elapsed_time": "4:39:09", "remaining_time": "7:08:44"} +{"current_steps": 1843, "total_steps": 4671, "loss": 0.068, "learning_rate": 7.583674618596541e-06, "epoch": 1.1836865767501605, "percentage": 39.46, "elapsed_time": "4:39:18", "remaining_time": "7:08:35"} +{"current_steps": 1844, "total_steps": 4671, "loss": 0.0391, "learning_rate": 7.580474206167648e-06, "epoch": 1.1843288375080283, "percentage": 39.48, "elapsed_time": "4:39:27", "remaining_time": "7:08:25"} +{"current_steps": 1845, "total_steps": 4671, "loss": 0.0649, "learning_rate": 7.577272352020269e-06, "epoch": 1.1849710982658959, "percentage": 39.5, "elapsed_time": "4:39:35", "remaining_time": "7:08:15"} +{"current_steps": 1846, "total_steps": 4671, "loss": 0.0655, "learning_rate": 7.574069057943287e-06, "epoch": 1.1856133590237636, "percentage": 39.52, "elapsed_time": "4:39:44", "remaining_time": "7:08:05"} +{"current_steps": 1847, "total_steps": 4671, "loss": 0.1059, "learning_rate": 7.5708643257263925e-06, "epoch": 1.1862556197816314, "percentage": 39.54, "elapsed_time": "4:39:51", "remaining_time": "7:07:53"} +{"current_steps": 1848, "total_steps": 4671, "loss": 0.0765, "learning_rate": 7.56765815716008e-06, "epoch": 1.186897880539499, "percentage": 39.56, "elapsed_time": "4:40:00", "remaining_time": "7:07:44"} +{"current_steps": 1849, "total_steps": 4671, "loss": 0.0621, "learning_rate": 7.564450554035645e-06, "epoch": 1.1875401412973667, "percentage": 39.58, "elapsed_time": "4:40:10", "remaining_time": "7:07:36"} +{"current_steps": 1850, "total_steps": 4671, "loss": 0.0441, "learning_rate": 7.561241518145183e-06, "epoch": 1.1881824020552345, "percentage": 39.61, "elapsed_time": "4:40:18", "remaining_time": "7:07:25"} +{"current_steps": 1851, "total_steps": 4671, "loss": 0.0921, "learning_rate": 7.558031051281592e-06, "epoch": 1.188824662813102, "percentage": 39.63, "elapsed_time": "4:40:26", "remaining_time": "7:07:15"} +{"current_steps": 1852, "total_steps": 4671, "loss": 0.087, "learning_rate": 7.55481915523857e-06, "epoch": 1.1894669235709698, "percentage": 39.65, "elapsed_time": "4:40:34", "remaining_time": "7:07:04"} +{"current_steps": 1853, "total_steps": 4671, "loss": 0.0552, "learning_rate": 7.551605831810616e-06, "epoch": 1.1901091843288376, "percentage": 39.67, "elapsed_time": "4:40:44", "remaining_time": "7:06:56"} +{"current_steps": 1854, "total_steps": 4671, "loss": 0.1071, "learning_rate": 7.5483910827930186e-06, "epoch": 1.1907514450867052, "percentage": 39.69, "elapsed_time": "4:40:53", "remaining_time": "7:06:47"} +{"current_steps": 1855, "total_steps": 4671, "loss": 0.1188, "learning_rate": 7.545174909981868e-06, "epoch": 1.191393705844573, "percentage": 39.71, "elapsed_time": "4:41:03", "remaining_time": "7:06:39"} +{"current_steps": 1856, "total_steps": 4671, "loss": 0.1089, "learning_rate": 7.5419573151740486e-06, "epoch": 1.1920359666024405, "percentage": 39.73, "elapsed_time": "4:41:10", "remaining_time": "7:06:27"} +{"current_steps": 1857, "total_steps": 4671, "loss": 0.0502, "learning_rate": 7.538738300167244e-06, "epoch": 1.1926782273603083, "percentage": 39.76, "elapsed_time": "4:41:19", "remaining_time": "7:06:17"} +{"current_steps": 1858, "total_steps": 4671, "loss": 0.0518, "learning_rate": 7.535517866759925e-06, "epoch": 1.193320488118176, "percentage": 39.78, "elapsed_time": "4:41:28", "remaining_time": "7:06:09"} +{"current_steps": 1859, "total_steps": 4671, "loss": 0.1352, "learning_rate": 7.5322960167513545e-06, "epoch": 1.1939627488760436, "percentage": 39.8, "elapsed_time": "4:41:39", "remaining_time": "7:06:02"} +{"current_steps": 1860, "total_steps": 4671, "loss": 0.1107, "learning_rate": 7.529072751941595e-06, "epoch": 1.1946050096339114, "percentage": 39.82, "elapsed_time": "4:41:48", "remaining_time": "7:05:53"} +{"current_steps": 1861, "total_steps": 4671, "loss": 0.0729, "learning_rate": 7.52584807413149e-06, "epoch": 1.1952472703917791, "percentage": 39.84, "elapsed_time": "4:41:56", "remaining_time": "7:05:42"} +{"current_steps": 1862, "total_steps": 4671, "loss": 0.1046, "learning_rate": 7.522621985122678e-06, "epoch": 1.1958895311496467, "percentage": 39.86, "elapsed_time": "4:42:04", "remaining_time": "7:05:32"} +{"current_steps": 1863, "total_steps": 4671, "loss": 0.1421, "learning_rate": 7.519394486717583e-06, "epoch": 1.1965317919075145, "percentage": 39.88, "elapsed_time": "4:42:14", "remaining_time": "7:05:24"} +{"current_steps": 1864, "total_steps": 4671, "loss": 0.1005, "learning_rate": 7.516165580719419e-06, "epoch": 1.1971740526653822, "percentage": 39.91, "elapsed_time": "4:42:25", "remaining_time": "7:05:18"} +{"current_steps": 1865, "total_steps": 4671, "loss": 0.1264, "learning_rate": 7.512935268932185e-06, "epoch": 1.1978163134232498, "percentage": 39.93, "elapsed_time": "4:42:35", "remaining_time": "7:05:11"} +{"current_steps": 1866, "total_steps": 4671, "loss": 0.069, "learning_rate": 7.509703553160665e-06, "epoch": 1.1984585741811176, "percentage": 39.95, "elapsed_time": "4:42:43", "remaining_time": "7:04:59"} +{"current_steps": 1867, "total_steps": 4671, "loss": 0.1051, "learning_rate": 7.506470435210429e-06, "epoch": 1.1991008349389851, "percentage": 39.97, "elapsed_time": "4:42:52", "remaining_time": "7:04:50"} +{"current_steps": 1868, "total_steps": 4671, "loss": 0.0848, "learning_rate": 7.50323591688783e-06, "epoch": 1.199743095696853, "percentage": 39.99, "elapsed_time": "4:43:01", "remaining_time": "7:04:41"} +{"current_steps": 1869, "total_steps": 4671, "loss": 0.0865, "learning_rate": 7.500000000000001e-06, "epoch": 1.2003853564547207, "percentage": 40.01, "elapsed_time": "4:43:10", "remaining_time": "7:04:32"} +{"current_steps": 1870, "total_steps": 4671, "loss": 0.0947, "learning_rate": 7.496762686354859e-06, "epoch": 1.2010276172125882, "percentage": 40.03, "elapsed_time": "4:43:20", "remaining_time": "7:04:23"} +{"current_steps": 1871, "total_steps": 4671, "loss": 0.1029, "learning_rate": 7.493523977761101e-06, "epoch": 1.201669877970456, "percentage": 40.06, "elapsed_time": "4:43:28", "remaining_time": "7:04:13"} +{"current_steps": 1872, "total_steps": 4671, "loss": 0.096, "learning_rate": 7.4902838760282024e-06, "epoch": 1.2023121387283238, "percentage": 40.08, "elapsed_time": "4:43:39", "remaining_time": "7:04:06"} +{"current_steps": 1873, "total_steps": 4671, "loss": 0.1105, "learning_rate": 7.487042382966418e-06, "epoch": 1.2029543994861913, "percentage": 40.1, "elapsed_time": "4:43:50", "remaining_time": "7:04:01"} +{"current_steps": 1874, "total_steps": 4671, "loss": 0.0867, "learning_rate": 7.4837995003867795e-06, "epoch": 1.203596660244059, "percentage": 40.12, "elapsed_time": "4:43:59", "remaining_time": "7:03:52"} +{"current_steps": 1875, "total_steps": 4671, "loss": 0.0711, "learning_rate": 7.480555230101094e-06, "epoch": 1.2042389210019269, "percentage": 40.14, "elapsed_time": "4:44:07", "remaining_time": "7:03:40"} +{"current_steps": 1876, "total_steps": 4671, "loss": 0.0396, "learning_rate": 7.477309573921947e-06, "epoch": 1.2048811817597944, "percentage": 40.16, "elapsed_time": "4:44:17", "remaining_time": "7:03:33"} +{"current_steps": 1877, "total_steps": 4671, "loss": 0.0486, "learning_rate": 7.474062533662694e-06, "epoch": 1.2055234425176622, "percentage": 40.18, "elapsed_time": "4:44:25", "remaining_time": "7:03:23"} +{"current_steps": 1878, "total_steps": 4671, "loss": 0.0918, "learning_rate": 7.4708141111374656e-06, "epoch": 1.2061657032755297, "percentage": 40.21, "elapsed_time": "4:44:35", "remaining_time": "7:03:14"} +{"current_steps": 1879, "total_steps": 4671, "loss": 0.1093, "learning_rate": 7.467564308161166e-06, "epoch": 1.2068079640333975, "percentage": 40.23, "elapsed_time": "4:44:46", "remaining_time": "7:03:08"} +{"current_steps": 1880, "total_steps": 4671, "loss": 0.0495, "learning_rate": 7.46431312654947e-06, "epoch": 1.2074502247912653, "percentage": 40.25, "elapsed_time": "4:44:53", "remaining_time": "7:02:57"} +{"current_steps": 1881, "total_steps": 4671, "loss": 0.0559, "learning_rate": 7.461060568118822e-06, "epoch": 1.208092485549133, "percentage": 40.27, "elapsed_time": "4:45:03", "remaining_time": "7:02:48"} +{"current_steps": 1882, "total_steps": 4671, "loss": 0.0496, "learning_rate": 7.457806634686436e-06, "epoch": 1.2087347463070006, "percentage": 40.29, "elapsed_time": "4:45:12", "remaining_time": "7:02:40"} +{"current_steps": 1883, "total_steps": 4671, "loss": 0.0621, "learning_rate": 7.454551328070292e-06, "epoch": 1.2093770070648684, "percentage": 40.31, "elapsed_time": "4:45:23", "remaining_time": "7:02:32"} +{"current_steps": 1884, "total_steps": 4671, "loss": 0.0887, "learning_rate": 7.45129465008914e-06, "epoch": 1.210019267822736, "percentage": 40.33, "elapsed_time": "4:45:32", "remaining_time": "7:02:24"} +{"current_steps": 1885, "total_steps": 4671, "loss": 0.1358, "learning_rate": 7.4480366025624994e-06, "epoch": 1.2106615285806037, "percentage": 40.36, "elapsed_time": "4:45:41", "remaining_time": "7:02:14"} +{"current_steps": 1886, "total_steps": 4671, "loss": 0.0834, "learning_rate": 7.4447771873106474e-06, "epoch": 1.2113037893384715, "percentage": 40.38, "elapsed_time": "4:45:49", "remaining_time": "7:02:03"} +{"current_steps": 1887, "total_steps": 4671, "loss": 0.0682, "learning_rate": 7.4415164061546295e-06, "epoch": 1.211946050096339, "percentage": 40.4, "elapsed_time": "4:45:58", "remaining_time": "7:01:54"} +{"current_steps": 1888, "total_steps": 4671, "loss": 0.0776, "learning_rate": 7.4382542609162534e-06, "epoch": 1.2125883108542068, "percentage": 40.42, "elapsed_time": "4:46:06", "remaining_time": "7:01:43"} +{"current_steps": 1889, "total_steps": 4671, "loss": 0.0785, "learning_rate": 7.43499075341809e-06, "epoch": 1.2132305716120746, "percentage": 40.44, "elapsed_time": "4:46:15", "remaining_time": "7:01:34"} +{"current_steps": 1890, "total_steps": 4671, "loss": 0.051, "learning_rate": 7.43172588548347e-06, "epoch": 1.2138728323699421, "percentage": 40.46, "elapsed_time": "4:46:24", "remaining_time": "7:01:25"} +{"current_steps": 1891, "total_steps": 4671, "loss": 0.0899, "learning_rate": 7.428459658936483e-06, "epoch": 1.21451509312781, "percentage": 40.48, "elapsed_time": "4:46:33", "remaining_time": "7:01:16"} +{"current_steps": 1892, "total_steps": 4671, "loss": 0.0563, "learning_rate": 7.425192075601984e-06, "epoch": 1.2151573538856777, "percentage": 40.51, "elapsed_time": "4:46:41", "remaining_time": "7:01:05"} +{"current_steps": 1893, "total_steps": 4671, "loss": 0.0358, "learning_rate": 7.421923137305575e-06, "epoch": 1.2157996146435452, "percentage": 40.53, "elapsed_time": "4:46:51", "remaining_time": "7:00:57"} +{"current_steps": 1894, "total_steps": 4671, "loss": 0.1151, "learning_rate": 7.418652845873626e-06, "epoch": 1.216441875401413, "percentage": 40.55, "elapsed_time": "4:47:00", "remaining_time": "7:00:49"} +{"current_steps": 1895, "total_steps": 4671, "loss": 0.0395, "learning_rate": 7.415381203133258e-06, "epoch": 1.2170841361592806, "percentage": 40.57, "elapsed_time": "4:47:09", "remaining_time": "7:00:39"} +{"current_steps": 1896, "total_steps": 4671, "loss": 0.091, "learning_rate": 7.412108210912346e-06, "epoch": 1.2177263969171483, "percentage": 40.59, "elapsed_time": "4:47:20", "remaining_time": "7:00:33"} +{"current_steps": 1897, "total_steps": 4671, "loss": 0.1118, "learning_rate": 7.40883387103952e-06, "epoch": 1.2183686576750161, "percentage": 40.61, "elapsed_time": "4:47:30", "remaining_time": "7:00:25"} +{"current_steps": 1898, "total_steps": 4671, "loss": 0.075, "learning_rate": 7.405558185344165e-06, "epoch": 1.2190109184328837, "percentage": 40.63, "elapsed_time": "4:47:40", "remaining_time": "7:00:17"} +{"current_steps": 1899, "total_steps": 4671, "loss": 0.1326, "learning_rate": 7.402281155656415e-06, "epoch": 1.2196531791907514, "percentage": 40.66, "elapsed_time": "4:47:49", "remaining_time": "7:00:08"} +{"current_steps": 1900, "total_steps": 4671, "loss": 0.0555, "learning_rate": 7.399002783807157e-06, "epoch": 1.2202954399486192, "percentage": 40.68, "elapsed_time": "4:47:57", "remaining_time": "6:59:57"} +{"current_steps": 1901, "total_steps": 4671, "loss": 0.0729, "learning_rate": 7.395723071628025e-06, "epoch": 1.2209377007064868, "percentage": 40.7, "elapsed_time": "4:48:05", "remaining_time": "6:59:47"} +{"current_steps": 1902, "total_steps": 4671, "loss": 0.104, "learning_rate": 7.3924420209514045e-06, "epoch": 1.2215799614643545, "percentage": 40.72, "elapsed_time": "4:48:13", "remaining_time": "6:59:36"} +{"current_steps": 1903, "total_steps": 4671, "loss": 0.1483, "learning_rate": 7.3891596336104295e-06, "epoch": 1.2222222222222223, "percentage": 40.74, "elapsed_time": "4:48:23", "remaining_time": "6:59:28"} +{"current_steps": 1904, "total_steps": 4671, "loss": 0.0619, "learning_rate": 7.38587591143898e-06, "epoch": 1.2228644829800899, "percentage": 40.76, "elapsed_time": "4:48:32", "remaining_time": "6:59:20"} +{"current_steps": 1905, "total_steps": 4671, "loss": 0.0251, "learning_rate": 7.3825908562716775e-06, "epoch": 1.2235067437379576, "percentage": 40.78, "elapsed_time": "4:48:41", "remaining_time": "6:59:10"} +{"current_steps": 1906, "total_steps": 4671, "loss": 0.101, "learning_rate": 7.379304469943895e-06, "epoch": 1.2241490044958252, "percentage": 40.8, "elapsed_time": "4:48:49", "remaining_time": "6:58:59"} +{"current_steps": 1907, "total_steps": 4671, "loss": 0.06, "learning_rate": 7.376016754291746e-06, "epoch": 1.224791265253693, "percentage": 40.83, "elapsed_time": "4:48:57", "remaining_time": "6:58:48"} +{"current_steps": 1908, "total_steps": 4671, "loss": 0.0808, "learning_rate": 7.3727277111520864e-06, "epoch": 1.2254335260115607, "percentage": 40.85, "elapsed_time": "4:49:05", "remaining_time": "6:58:38"} +{"current_steps": 1909, "total_steps": 4671, "loss": 0.0925, "learning_rate": 7.3694373423625134e-06, "epoch": 1.2260757867694283, "percentage": 40.87, "elapsed_time": "4:49:15", "remaining_time": "6:58:30"} +{"current_steps": 1910, "total_steps": 4671, "loss": 0.0811, "learning_rate": 7.366145649761366e-06, "epoch": 1.226718047527296, "percentage": 40.89, "elapsed_time": "4:49:23", "remaining_time": "6:58:20"} +{"current_steps": 1911, "total_steps": 4671, "loss": 0.1714, "learning_rate": 7.362852635187722e-06, "epoch": 1.2273603082851638, "percentage": 40.91, "elapsed_time": "4:49:33", "remaining_time": "6:58:12"} +{"current_steps": 1912, "total_steps": 4671, "loss": 0.0759, "learning_rate": 7.359558300481401e-06, "epoch": 1.2280025690430314, "percentage": 40.93, "elapsed_time": "4:49:42", "remaining_time": "6:58:03"} +{"current_steps": 1913, "total_steps": 4671, "loss": 0.0864, "learning_rate": 7.356262647482954e-06, "epoch": 1.2286448298008992, "percentage": 40.95, "elapsed_time": "4:49:53", "remaining_time": "6:57:56"} +{"current_steps": 1914, "total_steps": 4671, "loss": 0.0861, "learning_rate": 7.352965678033675e-06, "epoch": 1.229287090558767, "percentage": 40.98, "elapsed_time": "4:50:02", "remaining_time": "6:57:46"} +{"current_steps": 1915, "total_steps": 4671, "loss": 0.0722, "learning_rate": 7.349667393975587e-06, "epoch": 1.2299293513166345, "percentage": 41.0, "elapsed_time": "4:50:10", "remaining_time": "6:57:36"} +{"current_steps": 1916, "total_steps": 4671, "loss": 0.1234, "learning_rate": 7.346367797151453e-06, "epoch": 1.2305716120745023, "percentage": 41.02, "elapsed_time": "4:50:21", "remaining_time": "6:57:30"} +{"current_steps": 1917, "total_steps": 4671, "loss": 0.0695, "learning_rate": 7.343066889404769e-06, "epoch": 1.2312138728323698, "percentage": 41.04, "elapsed_time": "4:50:30", "remaining_time": "6:57:20"} +{"current_steps": 1918, "total_steps": 4671, "loss": 0.076, "learning_rate": 7.339764672579759e-06, "epoch": 1.2318561335902376, "percentage": 41.06, "elapsed_time": "4:50:39", "remaining_time": "6:57:11"} +{"current_steps": 1919, "total_steps": 4671, "loss": 0.1128, "learning_rate": 7.336461148521381e-06, "epoch": 1.2324983943481054, "percentage": 41.08, "elapsed_time": "4:50:48", "remaining_time": "6:57:02"} +{"current_steps": 1920, "total_steps": 4671, "loss": 0.1112, "learning_rate": 7.3331563190753275e-06, "epoch": 1.2331406551059731, "percentage": 41.1, "elapsed_time": "4:50:56", "remaining_time": "6:56:52"} +{"current_steps": 1921, "total_steps": 4671, "loss": 0.0863, "learning_rate": 7.329850186088012e-06, "epoch": 1.2337829158638407, "percentage": 41.13, "elapsed_time": "4:51:07", "remaining_time": "6:56:46"} +{"current_steps": 1922, "total_steps": 4671, "loss": 0.1108, "learning_rate": 7.326542751406582e-06, "epoch": 1.2344251766217085, "percentage": 41.15, "elapsed_time": "4:51:17", "remaining_time": "6:56:37"} +{"current_steps": 1923, "total_steps": 4671, "loss": 0.0761, "learning_rate": 7.323234016878913e-06, "epoch": 1.235067437379576, "percentage": 41.17, "elapsed_time": "4:51:25", "remaining_time": "6:56:27"} +{"current_steps": 1924, "total_steps": 4671, "loss": 0.0799, "learning_rate": 7.319923984353602e-06, "epoch": 1.2357096981374438, "percentage": 41.19, "elapsed_time": "4:51:35", "remaining_time": "6:56:18"} +{"current_steps": 1925, "total_steps": 4671, "loss": 0.0948, "learning_rate": 7.316612655679975e-06, "epoch": 1.2363519588953116, "percentage": 41.21, "elapsed_time": "4:51:45", "remaining_time": "6:56:11"} +{"current_steps": 1926, "total_steps": 4671, "loss": 0.0961, "learning_rate": 7.313300032708081e-06, "epoch": 1.2369942196531791, "percentage": 41.23, "elapsed_time": "4:51:52", "remaining_time": "6:55:59"} +{"current_steps": 1927, "total_steps": 4671, "loss": 0.1765, "learning_rate": 7.309986117288692e-06, "epoch": 1.237636480411047, "percentage": 41.25, "elapsed_time": "4:52:02", "remaining_time": "6:55:51"} +{"current_steps": 1928, "total_steps": 4671, "loss": 0.0932, "learning_rate": 7.306670911273301e-06, "epoch": 1.2382787411689147, "percentage": 41.28, "elapsed_time": "4:52:10", "remaining_time": "6:55:41"} +{"current_steps": 1929, "total_steps": 4671, "loss": 0.0329, "learning_rate": 7.303354416514125e-06, "epoch": 1.2389210019267822, "percentage": 41.3, "elapsed_time": "4:52:18", "remaining_time": "6:55:30"} +{"current_steps": 1930, "total_steps": 4671, "loss": 0.036, "learning_rate": 7.300036634864101e-06, "epoch": 1.23956326268465, "percentage": 41.32, "elapsed_time": "4:52:25", "remaining_time": "6:55:18"} +{"current_steps": 1931, "total_steps": 4671, "loss": 0.0935, "learning_rate": 7.296717568176878e-06, "epoch": 1.2402055234425178, "percentage": 41.34, "elapsed_time": "4:52:36", "remaining_time": "6:55:11"} +{"current_steps": 1932, "total_steps": 4671, "loss": 0.053, "learning_rate": 7.2933972183068345e-06, "epoch": 1.2408477842003853, "percentage": 41.36, "elapsed_time": "4:52:46", "remaining_time": "6:55:03"} +{"current_steps": 1933, "total_steps": 4671, "loss": 0.0925, "learning_rate": 7.290075587109053e-06, "epoch": 1.241490044958253, "percentage": 41.38, "elapsed_time": "4:52:54", "remaining_time": "6:54:53"} +{"current_steps": 1934, "total_steps": 4671, "loss": 0.0808, "learning_rate": 7.286752676439345e-06, "epoch": 1.2421323057161207, "percentage": 41.4, "elapsed_time": "4:53:02", "remaining_time": "6:54:43"} +{"current_steps": 1935, "total_steps": 4671, "loss": 0.0614, "learning_rate": 7.283428488154227e-06, "epoch": 1.2427745664739884, "percentage": 41.43, "elapsed_time": "4:53:11", "remaining_time": "6:54:33"} +{"current_steps": 1936, "total_steps": 4671, "loss": 0.0599, "learning_rate": 7.280103024110934e-06, "epoch": 1.2434168272318562, "percentage": 41.45, "elapsed_time": "4:53:21", "remaining_time": "6:54:25"} +{"current_steps": 1937, "total_steps": 4671, "loss": 0.0322, "learning_rate": 7.276776286167411e-06, "epoch": 1.2440590879897238, "percentage": 41.47, "elapsed_time": "4:53:28", "remaining_time": "6:54:14"} +{"current_steps": 1938, "total_steps": 4671, "loss": 0.1752, "learning_rate": 7.273448276182317e-06, "epoch": 1.2447013487475915, "percentage": 41.49, "elapsed_time": "4:53:39", "remaining_time": "6:54:06"} +{"current_steps": 1939, "total_steps": 4671, "loss": 0.1125, "learning_rate": 7.2701189960150195e-06, "epoch": 1.2453436095054593, "percentage": 41.51, "elapsed_time": "4:53:47", "remaining_time": "6:53:57"} +{"current_steps": 1940, "total_steps": 4671, "loss": 0.084, "learning_rate": 7.2667884475256015e-06, "epoch": 1.2459858702633269, "percentage": 41.53, "elapsed_time": "4:53:57", "remaining_time": "6:53:48"} +{"current_steps": 1941, "total_steps": 4671, "loss": 0.1066, "learning_rate": 7.263456632574844e-06, "epoch": 1.2466281310211946, "percentage": 41.55, "elapsed_time": "4:54:06", "remaining_time": "6:53:40"} +{"current_steps": 1942, "total_steps": 4671, "loss": 0.077, "learning_rate": 7.2601235530242475e-06, "epoch": 1.2472703917790624, "percentage": 41.58, "elapsed_time": "4:54:15", "remaining_time": "6:53:29"} +{"current_steps": 1943, "total_steps": 4671, "loss": 0.0716, "learning_rate": 7.256789210736009e-06, "epoch": 1.24791265253693, "percentage": 41.6, "elapsed_time": "4:54:25", "remaining_time": "6:53:22"} +{"current_steps": 1944, "total_steps": 4671, "loss": 0.0966, "learning_rate": 7.253453607573037e-06, "epoch": 1.2485549132947977, "percentage": 41.62, "elapsed_time": "4:54:34", "remaining_time": "6:53:13"} +{"current_steps": 1945, "total_steps": 4671, "loss": 0.0689, "learning_rate": 7.250116745398945e-06, "epoch": 1.2491971740526653, "percentage": 41.64, "elapsed_time": "4:54:44", "remaining_time": "6:53:06"} +{"current_steps": 1946, "total_steps": 4671, "loss": 0.0499, "learning_rate": 7.246778626078044e-06, "epoch": 1.249839434810533, "percentage": 41.66, "elapsed_time": "4:54:54", "remaining_time": "6:52:57"} +{"current_steps": 1947, "total_steps": 4671, "loss": 0.0754, "learning_rate": 7.2434392514753525e-06, "epoch": 1.2504816955684008, "percentage": 41.68, "elapsed_time": "4:55:03", "remaining_time": "6:52:48"} +{"current_steps": 1948, "total_steps": 4671, "loss": 0.0936, "learning_rate": 7.24009862345659e-06, "epoch": 1.2511239563262684, "percentage": 41.7, "elapsed_time": "4:55:10", "remaining_time": "6:52:36"} +{"current_steps": 1949, "total_steps": 4671, "loss": 0.064, "learning_rate": 7.236756743888171e-06, "epoch": 1.2517662170841362, "percentage": 41.73, "elapsed_time": "4:55:18", "remaining_time": "6:52:25"} +{"current_steps": 1950, "total_steps": 4671, "loss": 0.0815, "learning_rate": 7.233413614637218e-06, "epoch": 1.252408477842004, "percentage": 41.75, "elapsed_time": "4:55:27", "remaining_time": "6:52:17"} +{"current_steps": 1951, "total_steps": 4671, "loss": 0.0602, "learning_rate": 7.230069237571546e-06, "epoch": 1.2530507385998715, "percentage": 41.77, "elapsed_time": "4:55:37", "remaining_time": "6:52:08"} +{"current_steps": 1952, "total_steps": 4671, "loss": 0.0732, "learning_rate": 7.226723614559668e-06, "epoch": 1.2536929993577393, "percentage": 41.79, "elapsed_time": "4:55:47", "remaining_time": "6:52:01"} +{"current_steps": 1953, "total_steps": 4671, "loss": 0.0337, "learning_rate": 7.223376747470792e-06, "epoch": 1.254335260115607, "percentage": 41.81, "elapsed_time": "4:55:55", "remaining_time": "6:51:50"} +{"current_steps": 1954, "total_steps": 4671, "loss": 0.2011, "learning_rate": 7.220028638174823e-06, "epoch": 1.2549775208734746, "percentage": 41.83, "elapsed_time": "4:56:05", "remaining_time": "6:51:42"} +{"current_steps": 1955, "total_steps": 4671, "loss": 0.0964, "learning_rate": 7.216679288542361e-06, "epoch": 1.2556197816313424, "percentage": 41.85, "elapsed_time": "4:56:15", "remaining_time": "6:51:34"} +{"current_steps": 1956, "total_steps": 4671, "loss": 0.1607, "learning_rate": 7.213328700444696e-06, "epoch": 1.25626204238921, "percentage": 41.88, "elapsed_time": "4:56:24", "remaining_time": "6:51:25"} +{"current_steps": 1957, "total_steps": 4671, "loss": 0.056, "learning_rate": 7.209976875753812e-06, "epoch": 1.2569043031470777, "percentage": 41.9, "elapsed_time": "4:56:32", "remaining_time": "6:51:15"} +{"current_steps": 1958, "total_steps": 4671, "loss": 0.0848, "learning_rate": 7.206623816342383e-06, "epoch": 1.2575465639049455, "percentage": 41.92, "elapsed_time": "4:56:42", "remaining_time": "6:51:07"} +{"current_steps": 1959, "total_steps": 4671, "loss": 0.0756, "learning_rate": 7.203269524083773e-06, "epoch": 1.2581888246628132, "percentage": 41.94, "elapsed_time": "4:56:52", "remaining_time": "6:50:59"} +{"current_steps": 1960, "total_steps": 4671, "loss": 0.1116, "learning_rate": 7.199914000852035e-06, "epoch": 1.2588310854206808, "percentage": 41.96, "elapsed_time": "4:57:04", "remaining_time": "6:50:54"} +{"current_steps": 1961, "total_steps": 4671, "loss": 0.0419, "learning_rate": 7.196557248521909e-06, "epoch": 1.2594733461785486, "percentage": 41.98, "elapsed_time": "4:57:12", "remaining_time": "6:50:43"} +{"current_steps": 1962, "total_steps": 4671, "loss": 0.1121, "learning_rate": 7.193199268968825e-06, "epoch": 1.260115606936416, "percentage": 42.0, "elapsed_time": "4:57:20", "remaining_time": "6:50:33"} +{"current_steps": 1963, "total_steps": 4671, "loss": 0.0754, "learning_rate": 7.189840064068892e-06, "epoch": 1.2607578676942839, "percentage": 42.03, "elapsed_time": "4:57:29", "remaining_time": "6:50:23"} +{"current_steps": 1964, "total_steps": 4671, "loss": 0.0921, "learning_rate": 7.186479635698911e-06, "epoch": 1.2614001284521517, "percentage": 42.05, "elapsed_time": "4:57:39", "remaining_time": "6:50:16"} +{"current_steps": 1965, "total_steps": 4671, "loss": 0.1127, "learning_rate": 7.183117985736361e-06, "epoch": 1.2620423892100192, "percentage": 42.07, "elapsed_time": "4:57:48", "remaining_time": "6:50:07"} +{"current_steps": 1966, "total_steps": 4671, "loss": 0.0615, "learning_rate": 7.1797551160594055e-06, "epoch": 1.262684649967887, "percentage": 42.09, "elapsed_time": "4:57:57", "remaining_time": "6:49:57"} +{"current_steps": 1967, "total_steps": 4671, "loss": 0.0761, "learning_rate": 7.1763910285468916e-06, "epoch": 1.2633269107257545, "percentage": 42.11, "elapsed_time": "4:58:05", "remaining_time": "6:49:46"} +{"current_steps": 1968, "total_steps": 4671, "loss": 0.0984, "learning_rate": 7.173025725078344e-06, "epoch": 1.2639691714836223, "percentage": 42.13, "elapsed_time": "4:58:12", "remaining_time": "6:49:35"} +{"current_steps": 1969, "total_steps": 4671, "loss": 0.051, "learning_rate": 7.169659207533968e-06, "epoch": 1.26461143224149, "percentage": 42.15, "elapsed_time": "4:58:22", "remaining_time": "6:49:26"} +{"current_steps": 1970, "total_steps": 4671, "loss": 0.0468, "learning_rate": 7.166291477794645e-06, "epoch": 1.2652536929993579, "percentage": 42.18, "elapsed_time": "4:58:29", "remaining_time": "6:49:14"} +{"current_steps": 1971, "total_steps": 4671, "loss": 0.0952, "learning_rate": 7.162922537741937e-06, "epoch": 1.2658959537572254, "percentage": 42.2, "elapsed_time": "4:58:39", "remaining_time": "6:49:07"} +{"current_steps": 1972, "total_steps": 4671, "loss": 0.0521, "learning_rate": 7.15955238925808e-06, "epoch": 1.2665382145150932, "percentage": 42.22, "elapsed_time": "4:58:49", "remaining_time": "6:48:59"} +{"current_steps": 1973, "total_steps": 4671, "loss": 0.066, "learning_rate": 7.1561810342259865e-06, "epoch": 1.2671804752729607, "percentage": 42.24, "elapsed_time": "4:58:58", "remaining_time": "6:48:50"} +{"current_steps": 1974, "total_steps": 4671, "loss": 0.1088, "learning_rate": 7.152808474529242e-06, "epoch": 1.2678227360308285, "percentage": 42.26, "elapsed_time": "4:59:08", "remaining_time": "6:48:42"} +{"current_steps": 1975, "total_steps": 4671, "loss": 0.0871, "learning_rate": 7.1494347120521055e-06, "epoch": 1.2684649967886963, "percentage": 42.28, "elapsed_time": "4:59:17", "remaining_time": "6:48:33"} +{"current_steps": 1976, "total_steps": 4671, "loss": 0.0876, "learning_rate": 7.146059748679508e-06, "epoch": 1.2691072575465638, "percentage": 42.3, "elapsed_time": "4:59:27", "remaining_time": "6:48:24"} +{"current_steps": 1977, "total_steps": 4671, "loss": 0.0816, "learning_rate": 7.14268358629705e-06, "epoch": 1.2697495183044316, "percentage": 42.32, "elapsed_time": "4:59:36", "remaining_time": "6:48:15"} +{"current_steps": 1978, "total_steps": 4671, "loss": 0.0816, "learning_rate": 7.139306226791006e-06, "epoch": 1.2703917790622992, "percentage": 42.35, "elapsed_time": "4:59:46", "remaining_time": "6:48:07"} +{"current_steps": 1979, "total_steps": 4671, "loss": 0.0346, "learning_rate": 7.1359276720483175e-06, "epoch": 1.271034039820167, "percentage": 42.37, "elapsed_time": "4:59:53", "remaining_time": "6:47:55"} +{"current_steps": 1980, "total_steps": 4671, "loss": 0.0505, "learning_rate": 7.1325479239565875e-06, "epoch": 1.2716763005780347, "percentage": 42.39, "elapsed_time": "5:00:01", "remaining_time": "6:47:45"} +{"current_steps": 1981, "total_steps": 4671, "loss": 0.068, "learning_rate": 7.129166984404096e-06, "epoch": 1.2723185613359025, "percentage": 42.41, "elapsed_time": "5:00:09", "remaining_time": "6:47:34"} +{"current_steps": 1982, "total_steps": 4671, "loss": 0.0565, "learning_rate": 7.12578485527978e-06, "epoch": 1.27296082209377, "percentage": 42.43, "elapsed_time": "5:00:17", "remaining_time": "6:47:25"} +{"current_steps": 1983, "total_steps": 4671, "loss": 0.0448, "learning_rate": 7.122401538473249e-06, "epoch": 1.2736030828516378, "percentage": 42.45, "elapsed_time": "5:00:26", "remaining_time": "6:47:15"} +{"current_steps": 1984, "total_steps": 4671, "loss": 0.1714, "learning_rate": 7.11901703587477e-06, "epoch": 1.2742453436095054, "percentage": 42.47, "elapsed_time": "5:00:37", "remaining_time": "6:47:09"} +{"current_steps": 1985, "total_steps": 4671, "loss": 0.0425, "learning_rate": 7.115631349375275e-06, "epoch": 1.2748876043673731, "percentage": 42.5, "elapsed_time": "5:00:47", "remaining_time": "6:47:01"} +{"current_steps": 1986, "total_steps": 4671, "loss": 0.0384, "learning_rate": 7.112244480866356e-06, "epoch": 1.275529865125241, "percentage": 42.52, "elapsed_time": "5:00:58", "remaining_time": "6:46:53"} +{"current_steps": 1987, "total_steps": 4671, "loss": 0.0743, "learning_rate": 7.108856432240268e-06, "epoch": 1.2761721258831085, "percentage": 42.54, "elapsed_time": "5:01:06", "remaining_time": "6:46:44"} +{"current_steps": 1988, "total_steps": 4671, "loss": 0.0305, "learning_rate": 7.10546720538992e-06, "epoch": 1.2768143866409762, "percentage": 42.56, "elapsed_time": "5:01:16", "remaining_time": "6:46:36"} +{"current_steps": 1989, "total_steps": 4671, "loss": 0.0925, "learning_rate": 7.102076802208887e-06, "epoch": 1.2774566473988438, "percentage": 42.58, "elapsed_time": "5:01:24", "remaining_time": "6:46:25"} +{"current_steps": 1990, "total_steps": 4671, "loss": 0.1222, "learning_rate": 7.098685224591396e-06, "epoch": 1.2780989081567116, "percentage": 42.6, "elapsed_time": "5:01:33", "remaining_time": "6:46:16"} +{"current_steps": 1991, "total_steps": 4671, "loss": 0.0674, "learning_rate": 7.095292474432332e-06, "epoch": 1.2787411689145793, "percentage": 42.62, "elapsed_time": "5:01:41", "remaining_time": "6:46:06"} +{"current_steps": 1992, "total_steps": 4671, "loss": 0.0436, "learning_rate": 7.091898553627232e-06, "epoch": 1.2793834296724471, "percentage": 42.65, "elapsed_time": "5:01:50", "remaining_time": "6:45:55"} +{"current_steps": 1993, "total_steps": 4671, "loss": 0.0873, "learning_rate": 7.0885034640722916e-06, "epoch": 1.2800256904303147, "percentage": 42.67, "elapsed_time": "5:02:00", "remaining_time": "6:45:48"} +{"current_steps": 1994, "total_steps": 4671, "loss": 0.0849, "learning_rate": 7.085107207664356e-06, "epoch": 1.2806679511881824, "percentage": 42.69, "elapsed_time": "5:02:08", "remaining_time": "6:45:38"} +{"current_steps": 1995, "total_steps": 4671, "loss": 0.152, "learning_rate": 7.081709786300925e-06, "epoch": 1.28131021194605, "percentage": 42.71, "elapsed_time": "5:02:17", "remaining_time": "6:45:28"} +{"current_steps": 1996, "total_steps": 4671, "loss": 0.0304, "learning_rate": 7.078311201880147e-06, "epoch": 1.2819524727039178, "percentage": 42.73, "elapsed_time": "5:02:27", "remaining_time": "6:45:20"} +{"current_steps": 1997, "total_steps": 4671, "loss": 0.023, "learning_rate": 7.07491145630082e-06, "epoch": 1.2825947334617855, "percentage": 42.75, "elapsed_time": "5:02:34", "remaining_time": "6:45:09"} +{"current_steps": 1998, "total_steps": 4671, "loss": 0.0726, "learning_rate": 7.071510551462395e-06, "epoch": 1.2832369942196533, "percentage": 42.77, "elapsed_time": "5:02:43", "remaining_time": "6:45:00"} +{"current_steps": 1999, "total_steps": 4671, "loss": 0.0945, "learning_rate": 7.0681084892649645e-06, "epoch": 1.2838792549775209, "percentage": 42.8, "elapsed_time": "5:02:52", "remaining_time": "6:44:50"} +{"current_steps": 2000, "total_steps": 4671, "loss": 0.0482, "learning_rate": 7.064705271609271e-06, "epoch": 1.2845215157353886, "percentage": 42.82, "elapsed_time": "5:03:01", "remaining_time": "6:44:41"} +{"current_steps": 2001, "total_steps": 4671, "loss": 0.1388, "learning_rate": 7.061300900396703e-06, "epoch": 1.2851637764932562, "percentage": 42.84, "elapsed_time": "5:03:11", "remaining_time": "6:44:32"} +{"current_steps": 2002, "total_steps": 4671, "loss": 0.1023, "learning_rate": 7.057895377529293e-06, "epoch": 1.285806037251124, "percentage": 42.86, "elapsed_time": "5:03:20", "remaining_time": "6:44:24"} +{"current_steps": 2003, "total_steps": 4671, "loss": 0.0503, "learning_rate": 7.0544887049097156e-06, "epoch": 1.2864482980089917, "percentage": 42.88, "elapsed_time": "5:03:29", "remaining_time": "6:44:15"} +{"current_steps": 2004, "total_steps": 4671, "loss": 0.0932, "learning_rate": 7.051080884441288e-06, "epoch": 1.2870905587668593, "percentage": 42.9, "elapsed_time": "5:03:39", "remaining_time": "6:44:06"} +{"current_steps": 2005, "total_steps": 4671, "loss": 0.1594, "learning_rate": 7.047671918027971e-06, "epoch": 1.287732819524727, "percentage": 42.92, "elapsed_time": "5:03:47", "remaining_time": "6:43:57"} +{"current_steps": 2006, "total_steps": 4671, "loss": 0.0539, "learning_rate": 7.044261807574364e-06, "epoch": 1.2883750802825946, "percentage": 42.95, "elapsed_time": "5:03:55", "remaining_time": "6:43:46"} +{"current_steps": 2007, "total_steps": 4671, "loss": 0.1069, "learning_rate": 7.040850554985706e-06, "epoch": 1.2890173410404624, "percentage": 42.97, "elapsed_time": "5:04:05", "remaining_time": "6:43:38"} +{"current_steps": 2008, "total_steps": 4671, "loss": 0.0379, "learning_rate": 7.0374381621678725e-06, "epoch": 1.2896596017983302, "percentage": 42.99, "elapsed_time": "5:04:15", "remaining_time": "6:43:29"} +{"current_steps": 2009, "total_steps": 4671, "loss": 0.0677, "learning_rate": 7.034024631027379e-06, "epoch": 1.290301862556198, "percentage": 43.01, "elapsed_time": "5:04:23", "remaining_time": "6:43:19"} +{"current_steps": 2010, "total_steps": 4671, "loss": 0.0904, "learning_rate": 7.030609963471372e-06, "epoch": 1.2909441233140655, "percentage": 43.03, "elapsed_time": "5:04:32", "remaining_time": "6:43:10"} +{"current_steps": 2011, "total_steps": 4671, "loss": 0.1056, "learning_rate": 7.02719416140764e-06, "epoch": 1.2915863840719333, "percentage": 43.05, "elapsed_time": "5:04:44", "remaining_time": "6:43:04"} +{"current_steps": 2012, "total_steps": 4671, "loss": 0.036, "learning_rate": 7.0237772267446e-06, "epoch": 1.2922286448298008, "percentage": 43.07, "elapsed_time": "5:04:51", "remaining_time": "6:42:53"} +{"current_steps": 2013, "total_steps": 4671, "loss": 0.1379, "learning_rate": 7.020359161391304e-06, "epoch": 1.2928709055876686, "percentage": 43.1, "elapsed_time": "5:05:01", "remaining_time": "6:42:45"} +{"current_steps": 2014, "total_steps": 4671, "loss": 0.0826, "learning_rate": 7.016939967257435e-06, "epoch": 1.2935131663455364, "percentage": 43.12, "elapsed_time": "5:05:11", "remaining_time": "6:42:37"} +{"current_steps": 2015, "total_steps": 4671, "loss": 0.0675, "learning_rate": 7.013519646253305e-06, "epoch": 1.294155427103404, "percentage": 43.14, "elapsed_time": "5:05:21", "remaining_time": "6:42:29"} +{"current_steps": 2016, "total_steps": 4671, "loss": 0.0633, "learning_rate": 7.01009820028986e-06, "epoch": 1.2947976878612717, "percentage": 43.16, "elapsed_time": "5:05:29", "remaining_time": "6:42:19"} +{"current_steps": 2017, "total_steps": 4671, "loss": 0.0815, "learning_rate": 7.00667563127867e-06, "epoch": 1.2954399486191392, "percentage": 43.18, "elapsed_time": "5:05:39", "remaining_time": "6:42:11"} +{"current_steps": 2018, "total_steps": 4671, "loss": 0.1129, "learning_rate": 7.003251941131937e-06, "epoch": 1.296082209377007, "percentage": 43.2, "elapsed_time": "5:05:49", "remaining_time": "6:42:03"} +{"current_steps": 2019, "total_steps": 4671, "loss": 0.0825, "learning_rate": 6.999827131762482e-06, "epoch": 1.2967244701348748, "percentage": 43.22, "elapsed_time": "5:06:00", "remaining_time": "6:41:56"} +{"current_steps": 2020, "total_steps": 4671, "loss": 0.0611, "learning_rate": 6.99640120508376e-06, "epoch": 1.2973667308927426, "percentage": 43.25, "elapsed_time": "5:06:08", "remaining_time": "6:41:46"} +{"current_steps": 2021, "total_steps": 4671, "loss": 0.029, "learning_rate": 6.992974163009844e-06, "epoch": 1.2980089916506101, "percentage": 43.27, "elapsed_time": "5:06:16", "remaining_time": "6:41:35"} +{"current_steps": 2022, "total_steps": 4671, "loss": 0.1052, "learning_rate": 6.989546007455435e-06, "epoch": 1.298651252408478, "percentage": 43.29, "elapsed_time": "5:06:26", "remaining_time": "6:41:27"} +{"current_steps": 2023, "total_steps": 4671, "loss": 0.0873, "learning_rate": 6.986116740335851e-06, "epoch": 1.2992935131663454, "percentage": 43.31, "elapsed_time": "5:06:34", "remaining_time": "6:41:17"} +{"current_steps": 2024, "total_steps": 4671, "loss": 0.1088, "learning_rate": 6.982686363567034e-06, "epoch": 1.2999357739242132, "percentage": 43.33, "elapsed_time": "5:06:43", "remaining_time": "6:41:08"} +{"current_steps": 2025, "total_steps": 4671, "loss": 0.1241, "learning_rate": 6.9792548790655465e-06, "epoch": 1.300578034682081, "percentage": 43.35, "elapsed_time": "5:06:55", "remaining_time": "6:41:02"} +{"current_steps": 2026, "total_steps": 4671, "loss": 0.0239, "learning_rate": 6.9758222887485685e-06, "epoch": 1.3012202954399485, "percentage": 43.37, "elapsed_time": "5:07:03", "remaining_time": "6:40:51"} +{"current_steps": 2027, "total_steps": 4671, "loss": 0.055, "learning_rate": 6.972388594533898e-06, "epoch": 1.3018625561978163, "percentage": 43.4, "elapsed_time": "5:07:10", "remaining_time": "6:40:40"} +{"current_steps": 2028, "total_steps": 4671, "loss": 0.1447, "learning_rate": 6.96895379833995e-06, "epoch": 1.3025048169556839, "percentage": 43.42, "elapsed_time": "5:07:20", "remaining_time": "6:40:32"} +{"current_steps": 2029, "total_steps": 4671, "loss": 0.0715, "learning_rate": 6.965517902085756e-06, "epoch": 1.3031470777135516, "percentage": 43.44, "elapsed_time": "5:07:28", "remaining_time": "6:40:22"} +{"current_steps": 2030, "total_steps": 4671, "loss": 0.0672, "learning_rate": 6.962080907690961e-06, "epoch": 1.3037893384714194, "percentage": 43.46, "elapsed_time": "5:07:38", "remaining_time": "6:40:14"} +{"current_steps": 2031, "total_steps": 4671, "loss": 0.0555, "learning_rate": 6.958642817075823e-06, "epoch": 1.3044315992292872, "percentage": 43.48, "elapsed_time": "5:07:46", "remaining_time": "6:40:03"} +{"current_steps": 2032, "total_steps": 4671, "loss": 0.0646, "learning_rate": 6.955203632161213e-06, "epoch": 1.3050738599871547, "percentage": 43.5, "elapsed_time": "5:07:54", "remaining_time": "6:39:53"} +{"current_steps": 2033, "total_steps": 4671, "loss": 0.1013, "learning_rate": 6.9517633548686144e-06, "epoch": 1.3057161207450225, "percentage": 43.52, "elapsed_time": "5:08:02", "remaining_time": "6:39:42"} +{"current_steps": 2034, "total_steps": 4671, "loss": 0.1523, "learning_rate": 6.948321987120122e-06, "epoch": 1.30635838150289, "percentage": 43.55, "elapsed_time": "5:08:12", "remaining_time": "6:39:34"} +{"current_steps": 2035, "total_steps": 4671, "loss": 0.0872, "learning_rate": 6.944879530838435e-06, "epoch": 1.3070006422607579, "percentage": 43.57, "elapsed_time": "5:08:23", "remaining_time": "6:39:27"} +{"current_steps": 2036, "total_steps": 4671, "loss": 0.106, "learning_rate": 6.941435987946866e-06, "epoch": 1.3076429030186256, "percentage": 43.59, "elapsed_time": "5:08:32", "remaining_time": "6:39:18"} +{"current_steps": 2037, "total_steps": 4671, "loss": 0.0515, "learning_rate": 6.937991360369331e-06, "epoch": 1.3082851637764932, "percentage": 43.61, "elapsed_time": "5:08:41", "remaining_time": "6:39:09"} +{"current_steps": 2038, "total_steps": 4671, "loss": 0.1027, "learning_rate": 6.934545650030354e-06, "epoch": 1.308927424534361, "percentage": 43.63, "elapsed_time": "5:08:51", "remaining_time": "6:39:01"} +{"current_steps": 2039, "total_steps": 4671, "loss": 0.1043, "learning_rate": 6.931098858855063e-06, "epoch": 1.3095696852922287, "percentage": 43.65, "elapsed_time": "5:09:01", "remaining_time": "6:38:53"} +{"current_steps": 2040, "total_steps": 4671, "loss": 0.1076, "learning_rate": 6.927650988769193e-06, "epoch": 1.3102119460500963, "percentage": 43.67, "elapsed_time": "5:09:11", "remaining_time": "6:38:46"} +{"current_steps": 2041, "total_steps": 4671, "loss": 0.0688, "learning_rate": 6.924202041699074e-06, "epoch": 1.310854206807964, "percentage": 43.7, "elapsed_time": "5:09:20", "remaining_time": "6:38:37"} +{"current_steps": 2042, "total_steps": 4671, "loss": 0.0638, "learning_rate": 6.9207520195716486e-06, "epoch": 1.3114964675658318, "percentage": 43.72, "elapsed_time": "5:09:30", "remaining_time": "6:38:29"} +{"current_steps": 2043, "total_steps": 4671, "loss": 0.0506, "learning_rate": 6.9173009243144485e-06, "epoch": 1.3121387283236994, "percentage": 43.74, "elapsed_time": "5:09:38", "remaining_time": "6:38:18"} +{"current_steps": 2044, "total_steps": 4671, "loss": 0.0401, "learning_rate": 6.913848757855615e-06, "epoch": 1.3127809890815672, "percentage": 43.76, "elapsed_time": "5:09:48", "remaining_time": "6:38:10"} +{"current_steps": 2045, "total_steps": 4671, "loss": 0.0761, "learning_rate": 6.9103955221238815e-06, "epoch": 1.3134232498394347, "percentage": 43.78, "elapsed_time": "5:09:55", "remaining_time": "6:37:59"} +{"current_steps": 2046, "total_steps": 4671, "loss": 0.1169, "learning_rate": 6.906941219048584e-06, "epoch": 1.3140655105973025, "percentage": 43.8, "elapsed_time": "5:10:05", "remaining_time": "6:37:50"} +{"current_steps": 2047, "total_steps": 4671, "loss": 0.1031, "learning_rate": 6.903485850559647e-06, "epoch": 1.3147077713551703, "percentage": 43.82, "elapsed_time": "5:10:13", "remaining_time": "6:37:39"} +{"current_steps": 2048, "total_steps": 4671, "loss": 0.0873, "learning_rate": 6.900029418587597e-06, "epoch": 1.315350032113038, "percentage": 43.85, "elapsed_time": "5:10:23", "remaining_time": "6:37:32"} +{"current_steps": 2049, "total_steps": 4671, "loss": 0.0849, "learning_rate": 6.896571925063554e-06, "epoch": 1.3159922928709056, "percentage": 43.87, "elapsed_time": "5:10:33", "remaining_time": "6:37:24"} +{"current_steps": 2050, "total_steps": 4671, "loss": 0.1207, "learning_rate": 6.8931133719192286e-06, "epoch": 1.3166345536287734, "percentage": 43.89, "elapsed_time": "5:10:44", "remaining_time": "6:37:17"} +{"current_steps": 2051, "total_steps": 4671, "loss": 0.1006, "learning_rate": 6.889653761086925e-06, "epoch": 1.317276814386641, "percentage": 43.91, "elapsed_time": "5:10:52", "remaining_time": "6:37:07"} +{"current_steps": 2052, "total_steps": 4671, "loss": 0.0526, "learning_rate": 6.886193094499537e-06, "epoch": 1.3179190751445087, "percentage": 43.93, "elapsed_time": "5:11:02", "remaining_time": "6:36:59"} +{"current_steps": 2053, "total_steps": 4671, "loss": 0.0309, "learning_rate": 6.882731374090551e-06, "epoch": 1.3185613359023765, "percentage": 43.95, "elapsed_time": "5:11:10", "remaining_time": "6:36:49"} +{"current_steps": 2054, "total_steps": 4671, "loss": 0.1255, "learning_rate": 6.879268601794037e-06, "epoch": 1.319203596660244, "percentage": 43.97, "elapsed_time": "5:11:18", "remaining_time": "6:36:38"} +{"current_steps": 2055, "total_steps": 4671, "loss": 0.0648, "learning_rate": 6.875804779544659e-06, "epoch": 1.3198458574181118, "percentage": 43.99, "elapsed_time": "5:11:27", "remaining_time": "6:36:29"} +{"current_steps": 2056, "total_steps": 4671, "loss": 0.1942, "learning_rate": 6.872339909277663e-06, "epoch": 1.3204881181759793, "percentage": 44.02, "elapsed_time": "5:11:36", "remaining_time": "6:36:19"} +{"current_steps": 2057, "total_steps": 4671, "loss": 0.0479, "learning_rate": 6.868873992928885e-06, "epoch": 1.321130378933847, "percentage": 44.04, "elapsed_time": "5:11:44", "remaining_time": "6:36:09"} +{"current_steps": 2058, "total_steps": 4671, "loss": 0.0593, "learning_rate": 6.8654070324347384e-06, "epoch": 1.3217726396917149, "percentage": 44.06, "elapsed_time": "5:11:52", "remaining_time": "6:35:58"} +{"current_steps": 2059, "total_steps": 4671, "loss": 0.0788, "learning_rate": 6.861939029732227e-06, "epoch": 1.3224149004495827, "percentage": 44.08, "elapsed_time": "5:12:02", "remaining_time": "6:35:51"} +{"current_steps": 2060, "total_steps": 4671, "loss": 0.1357, "learning_rate": 6.858469986758932e-06, "epoch": 1.3230571612074502, "percentage": 44.1, "elapsed_time": "5:12:12", "remaining_time": "6:35:43"} +{"current_steps": 2061, "total_steps": 4671, "loss": 0.0652, "learning_rate": 6.854999905453022e-06, "epoch": 1.323699421965318, "percentage": 44.12, "elapsed_time": "5:12:22", "remaining_time": "6:35:35"} +{"current_steps": 2062, "total_steps": 4671, "loss": 0.0476, "learning_rate": 6.851528787753237e-06, "epoch": 1.3243416827231855, "percentage": 44.14, "elapsed_time": "5:12:32", "remaining_time": "6:35:27"} +{"current_steps": 2063, "total_steps": 4671, "loss": 0.0434, "learning_rate": 6.848056635598901e-06, "epoch": 1.3249839434810533, "percentage": 44.17, "elapsed_time": "5:12:42", "remaining_time": "6:35:19"} +{"current_steps": 2064, "total_steps": 4671, "loss": 0.0656, "learning_rate": 6.844583450929918e-06, "epoch": 1.325626204238921, "percentage": 44.19, "elapsed_time": "5:12:51", "remaining_time": "6:35:10"} +{"current_steps": 2065, "total_steps": 4671, "loss": 0.166, "learning_rate": 6.841109235686765e-06, "epoch": 1.3262684649967886, "percentage": 44.21, "elapsed_time": "5:13:02", "remaining_time": "6:35:03"} +{"current_steps": 2066, "total_steps": 4671, "loss": 0.0818, "learning_rate": 6.837633991810498e-06, "epoch": 1.3269107257546564, "percentage": 44.23, "elapsed_time": "5:13:13", "remaining_time": "6:34:56"} +{"current_steps": 2067, "total_steps": 4671, "loss": 0.059, "learning_rate": 6.834157721242743e-06, "epoch": 1.327552986512524, "percentage": 44.25, "elapsed_time": "5:13:22", "remaining_time": "6:34:46"} +{"current_steps": 2068, "total_steps": 4671, "loss": 0.0723, "learning_rate": 6.830680425925703e-06, "epoch": 1.3281952472703917, "percentage": 44.27, "elapsed_time": "5:13:32", "remaining_time": "6:34:39"} +{"current_steps": 2069, "total_steps": 4671, "loss": 0.0591, "learning_rate": 6.827202107802155e-06, "epoch": 1.3288375080282595, "percentage": 44.29, "elapsed_time": "5:13:40", "remaining_time": "6:34:28"} +{"current_steps": 2070, "total_steps": 4671, "loss": 0.1048, "learning_rate": 6.823722768815446e-06, "epoch": 1.3294797687861273, "percentage": 44.32, "elapsed_time": "5:13:50", "remaining_time": "6:34:20"} +{"current_steps": 2071, "total_steps": 4671, "loss": 0.0815, "learning_rate": 6.820242410909489e-06, "epoch": 1.3301220295439948, "percentage": 44.34, "elapsed_time": "5:14:00", "remaining_time": "6:34:13"} +{"current_steps": 2072, "total_steps": 4671, "loss": 0.0607, "learning_rate": 6.816761036028774e-06, "epoch": 1.3307642903018626, "percentage": 44.36, "elapsed_time": "5:14:08", "remaining_time": "6:34:02"} +{"current_steps": 2073, "total_steps": 4671, "loss": 0.1412, "learning_rate": 6.8132786461183545e-06, "epoch": 1.3314065510597302, "percentage": 44.38, "elapsed_time": "5:14:18", "remaining_time": "6:33:54"} +{"current_steps": 2074, "total_steps": 4671, "loss": 0.1894, "learning_rate": 6.80979524312385e-06, "epoch": 1.332048811817598, "percentage": 44.4, "elapsed_time": "5:14:26", "remaining_time": "6:33:43"} +{"current_steps": 2075, "total_steps": 4671, "loss": 0.0663, "learning_rate": 6.806310828991449e-06, "epoch": 1.3326910725754657, "percentage": 44.42, "elapsed_time": "5:14:33", "remaining_time": "6:33:32"} +{"current_steps": 2076, "total_steps": 4671, "loss": 0.0529, "learning_rate": 6.802825405667906e-06, "epoch": 1.3333333333333333, "percentage": 44.44, "elapsed_time": "5:14:42", "remaining_time": "6:33:23"} +{"current_steps": 2077, "total_steps": 4671, "loss": 0.0898, "learning_rate": 6.799338975100533e-06, "epoch": 1.333975594091201, "percentage": 44.47, "elapsed_time": "5:14:52", "remaining_time": "6:33:14"} +{"current_steps": 2078, "total_steps": 4671, "loss": 0.099, "learning_rate": 6.7958515392372125e-06, "epoch": 1.3346178548490686, "percentage": 44.49, "elapsed_time": "5:15:01", "remaining_time": "6:33:06"} +{"current_steps": 2079, "total_steps": 4671, "loss": 0.0553, "learning_rate": 6.792363100026383e-06, "epoch": 1.3352601156069364, "percentage": 44.51, "elapsed_time": "5:15:09", "remaining_time": "6:32:55"} +{"current_steps": 2080, "total_steps": 4671, "loss": 0.1003, "learning_rate": 6.788873659417048e-06, "epoch": 1.3359023763648041, "percentage": 44.53, "elapsed_time": "5:15:18", "remaining_time": "6:32:46"} +{"current_steps": 2081, "total_steps": 4671, "loss": 0.0729, "learning_rate": 6.7853832193587655e-06, "epoch": 1.336544637122672, "percentage": 44.55, "elapsed_time": "5:15:28", "remaining_time": "6:32:37"} +{"current_steps": 2082, "total_steps": 4671, "loss": 0.0555, "learning_rate": 6.781891781801657e-06, "epoch": 1.3371868978805395, "percentage": 44.57, "elapsed_time": "5:15:35", "remaining_time": "6:32:26"} +{"current_steps": 2083, "total_steps": 4671, "loss": 0.098, "learning_rate": 6.778399348696397e-06, "epoch": 1.3378291586384072, "percentage": 44.59, "elapsed_time": "5:15:43", "remaining_time": "6:32:16"} +{"current_steps": 2084, "total_steps": 4671, "loss": 0.0958, "learning_rate": 6.774905921994219e-06, "epoch": 1.3384714193962748, "percentage": 44.62, "elapsed_time": "5:15:52", "remaining_time": "6:32:06"} +{"current_steps": 2085, "total_steps": 4671, "loss": 0.0622, "learning_rate": 6.771411503646912e-06, "epoch": 1.3391136801541426, "percentage": 44.64, "elapsed_time": "5:15:59", "remaining_time": "6:31:55"} +{"current_steps": 2086, "total_steps": 4671, "loss": 0.0889, "learning_rate": 6.767916095606815e-06, "epoch": 1.3397559409120103, "percentage": 44.66, "elapsed_time": "5:16:07", "remaining_time": "6:31:44"} +{"current_steps": 2087, "total_steps": 4671, "loss": 0.0634, "learning_rate": 6.764419699826823e-06, "epoch": 1.340398201669878, "percentage": 44.68, "elapsed_time": "5:16:19", "remaining_time": "6:31:39"} +{"current_steps": 2088, "total_steps": 4671, "loss": 0.1212, "learning_rate": 6.760922318260384e-06, "epoch": 1.3410404624277457, "percentage": 44.7, "elapsed_time": "5:16:29", "remaining_time": "6:31:31"} +{"current_steps": 2089, "total_steps": 4671, "loss": 0.0747, "learning_rate": 6.757423952861495e-06, "epoch": 1.3416827231856134, "percentage": 44.72, "elapsed_time": "5:16:38", "remaining_time": "6:31:21"} +{"current_steps": 2090, "total_steps": 4671, "loss": 0.1785, "learning_rate": 6.753924605584703e-06, "epoch": 1.342324983943481, "percentage": 44.74, "elapsed_time": "5:16:48", "remaining_time": "6:31:14"} +{"current_steps": 2091, "total_steps": 4671, "loss": 0.0741, "learning_rate": 6.7504242783851035e-06, "epoch": 1.3429672447013488, "percentage": 44.77, "elapsed_time": "5:16:57", "remaining_time": "6:31:04"} +{"current_steps": 2092, "total_steps": 4671, "loss": 0.1208, "learning_rate": 6.74692297321834e-06, "epoch": 1.3436095054592165, "percentage": 44.79, "elapsed_time": "5:17:05", "remaining_time": "6:30:54"} +{"current_steps": 2093, "total_steps": 4671, "loss": 0.1105, "learning_rate": 6.7434206920406e-06, "epoch": 1.344251766217084, "percentage": 44.81, "elapsed_time": "5:17:14", "remaining_time": "6:30:45"} +{"current_steps": 2094, "total_steps": 4671, "loss": 0.0796, "learning_rate": 6.739917436808621e-06, "epoch": 1.3448940269749519, "percentage": 44.83, "elapsed_time": "5:17:24", "remaining_time": "6:30:37"} +{"current_steps": 2095, "total_steps": 4671, "loss": 0.0904, "learning_rate": 6.7364132094796785e-06, "epoch": 1.3455362877328194, "percentage": 44.85, "elapsed_time": "5:17:33", "remaining_time": "6:30:27"} +{"current_steps": 2096, "total_steps": 4671, "loss": 0.0476, "learning_rate": 6.732908012011599e-06, "epoch": 1.3461785484906872, "percentage": 44.87, "elapsed_time": "5:17:42", "remaining_time": "6:30:18"} +{"current_steps": 2097, "total_steps": 4671, "loss": 0.0414, "learning_rate": 6.729401846362743e-06, "epoch": 1.346820809248555, "percentage": 44.89, "elapsed_time": "5:17:52", "remaining_time": "6:30:10"} +{"current_steps": 2098, "total_steps": 4671, "loss": 0.0787, "learning_rate": 6.725894714492016e-06, "epoch": 1.3474630700064227, "percentage": 44.92, "elapsed_time": "5:18:00", "remaining_time": "6:30:00"} +{"current_steps": 2099, "total_steps": 4671, "loss": 0.0641, "learning_rate": 6.722386618358865e-06, "epoch": 1.3481053307642903, "percentage": 44.94, "elapsed_time": "5:18:10", "remaining_time": "6:29:52"} +{"current_steps": 2100, "total_steps": 4671, "loss": 0.0369, "learning_rate": 6.71887755992327e-06, "epoch": 1.348747591522158, "percentage": 44.96, "elapsed_time": "5:18:19", "remaining_time": "6:29:43"} +{"current_steps": 2101, "total_steps": 4671, "loss": 0.0298, "learning_rate": 6.7153675411457574e-06, "epoch": 1.3493898522800256, "percentage": 44.98, "elapsed_time": "5:18:29", "remaining_time": "6:29:35"} +{"current_steps": 2102, "total_steps": 4671, "loss": 0.0853, "learning_rate": 6.71185656398738e-06, "epoch": 1.3500321130378934, "percentage": 45.0, "elapsed_time": "5:18:39", "remaining_time": "6:29:27"} +{"current_steps": 2103, "total_steps": 4671, "loss": 0.1204, "learning_rate": 6.708344630409734e-06, "epoch": 1.3506743737957612, "percentage": 45.02, "elapsed_time": "5:18:47", "remaining_time": "6:29:17"} +{"current_steps": 2104, "total_steps": 4671, "loss": 0.0444, "learning_rate": 6.704831742374944e-06, "epoch": 1.3513166345536287, "percentage": 45.04, "elapsed_time": "5:18:56", "remaining_time": "6:29:07"} +{"current_steps": 2105, "total_steps": 4671, "loss": 0.1092, "learning_rate": 6.701317901845673e-06, "epoch": 1.3519588953114965, "percentage": 45.07, "elapsed_time": "5:19:04", "remaining_time": "6:28:57"} +{"current_steps": 2106, "total_steps": 4671, "loss": 0.0574, "learning_rate": 6.697803110785115e-06, "epoch": 1.352601156069364, "percentage": 45.09, "elapsed_time": "5:19:12", "remaining_time": "6:28:47"} +{"current_steps": 2107, "total_steps": 4671, "loss": 0.0834, "learning_rate": 6.694287371156991e-06, "epoch": 1.3532434168272318, "percentage": 45.11, "elapsed_time": "5:19:21", "remaining_time": "6:28:37"} +{"current_steps": 2108, "total_steps": 4671, "loss": 0.0683, "learning_rate": 6.690770684925558e-06, "epoch": 1.3538856775850996, "percentage": 45.13, "elapsed_time": "5:19:30", "remaining_time": "6:28:28"} +{"current_steps": 2109, "total_steps": 4671, "loss": 0.0795, "learning_rate": 6.687253054055597e-06, "epoch": 1.3545279383429674, "percentage": 45.15, "elapsed_time": "5:19:39", "remaining_time": "6:28:19"} +{"current_steps": 2110, "total_steps": 4671, "loss": 0.0479, "learning_rate": 6.683734480512419e-06, "epoch": 1.355170199100835, "percentage": 45.17, "elapsed_time": "5:19:48", "remaining_time": "6:28:09"} +{"current_steps": 2111, "total_steps": 4671, "loss": 0.0739, "learning_rate": 6.680214966261862e-06, "epoch": 1.3558124598587027, "percentage": 45.19, "elapsed_time": "5:19:57", "remaining_time": "6:28:00"} +{"current_steps": 2112, "total_steps": 4671, "loss": 0.0818, "learning_rate": 6.67669451327029e-06, "epoch": 1.3564547206165702, "percentage": 45.22, "elapsed_time": "5:20:05", "remaining_time": "6:27:49"} +{"current_steps": 2113, "total_steps": 4671, "loss": 0.1249, "learning_rate": 6.673173123504586e-06, "epoch": 1.357096981374438, "percentage": 45.24, "elapsed_time": "5:20:12", "remaining_time": "6:27:38"} +{"current_steps": 2114, "total_steps": 4671, "loss": 0.0397, "learning_rate": 6.669650798932166e-06, "epoch": 1.3577392421323058, "percentage": 45.26, "elapsed_time": "5:20:21", "remaining_time": "6:27:29"} +{"current_steps": 2115, "total_steps": 4671, "loss": 0.1145, "learning_rate": 6.666127541520958e-06, "epoch": 1.3583815028901733, "percentage": 45.28, "elapsed_time": "5:20:33", "remaining_time": "6:27:23"} +{"current_steps": 2116, "total_steps": 4671, "loss": 0.1341, "learning_rate": 6.662603353239421e-06, "epoch": 1.3590237636480411, "percentage": 45.3, "elapsed_time": "5:20:43", "remaining_time": "6:27:15"} +{"current_steps": 2117, "total_steps": 4671, "loss": 0.0488, "learning_rate": 6.6590782360565265e-06, "epoch": 1.3596660244059087, "percentage": 45.32, "elapsed_time": "5:20:51", "remaining_time": "6:27:05"} +{"current_steps": 2118, "total_steps": 4671, "loss": 0.0774, "learning_rate": 6.655552191941769e-06, "epoch": 1.3603082851637764, "percentage": 45.34, "elapsed_time": "5:20:58", "remaining_time": "6:26:53"} +{"current_steps": 2119, "total_steps": 4671, "loss": 0.1254, "learning_rate": 6.65202522286516e-06, "epoch": 1.3609505459216442, "percentage": 45.37, "elapsed_time": "5:21:09", "remaining_time": "6:26:47"} +{"current_steps": 2120, "total_steps": 4671, "loss": 0.0368, "learning_rate": 6.648497330797223e-06, "epoch": 1.361592806679512, "percentage": 45.39, "elapsed_time": "5:21:16", "remaining_time": "6:26:35"} +{"current_steps": 2121, "total_steps": 4671, "loss": 0.1027, "learning_rate": 6.644968517709008e-06, "epoch": 1.3622350674373795, "percentage": 45.41, "elapsed_time": "5:21:25", "remaining_time": "6:26:25"} +{"current_steps": 2122, "total_steps": 4671, "loss": 0.0806, "learning_rate": 6.641438785572071e-06, "epoch": 1.3628773281952473, "percentage": 45.43, "elapsed_time": "5:21:33", "remaining_time": "6:26:15"} +{"current_steps": 2123, "total_steps": 4671, "loss": 0.0669, "learning_rate": 6.637908136358482e-06, "epoch": 1.3635195889531149, "percentage": 45.45, "elapsed_time": "5:21:42", "remaining_time": "6:26:07"} +{"current_steps": 2124, "total_steps": 4671, "loss": 0.072, "learning_rate": 6.634376572040826e-06, "epoch": 1.3641618497109826, "percentage": 45.47, "elapsed_time": "5:21:50", "remaining_time": "6:25:56"} +{"current_steps": 2125, "total_steps": 4671, "loss": 0.0658, "learning_rate": 6.630844094592199e-06, "epoch": 1.3648041104688504, "percentage": 45.49, "elapsed_time": "5:21:58", "remaining_time": "6:25:46"} +{"current_steps": 2126, "total_steps": 4671, "loss": 0.1007, "learning_rate": 6.627310705986204e-06, "epoch": 1.365446371226718, "percentage": 45.51, "elapsed_time": "5:22:09", "remaining_time": "6:25:38"} +{"current_steps": 2127, "total_steps": 4671, "loss": 0.0533, "learning_rate": 6.623776408196959e-06, "epoch": 1.3660886319845857, "percentage": 45.54, "elapsed_time": "5:22:18", "remaining_time": "6:25:29"} +{"current_steps": 2128, "total_steps": 4671, "loss": 0.1338, "learning_rate": 6.620241203199086e-06, "epoch": 1.3667308927424535, "percentage": 45.56, "elapsed_time": "5:22:26", "remaining_time": "6:25:19"} +{"current_steps": 2129, "total_steps": 4671, "loss": 0.0452, "learning_rate": 6.616705092967712e-06, "epoch": 1.367373153500321, "percentage": 45.58, "elapsed_time": "5:22:37", "remaining_time": "6:25:12"} +{"current_steps": 2130, "total_steps": 4671, "loss": 0.0677, "learning_rate": 6.613168079478473e-06, "epoch": 1.3680154142581888, "percentage": 45.6, "elapsed_time": "5:22:46", "remaining_time": "6:25:03"} +{"current_steps": 2131, "total_steps": 4671, "loss": 0.1121, "learning_rate": 6.6096301647075105e-06, "epoch": 1.3686576750160566, "percentage": 45.62, "elapsed_time": "5:22:55", "remaining_time": "6:24:54"} +{"current_steps": 2132, "total_steps": 4671, "loss": 0.1306, "learning_rate": 6.606091350631465e-06, "epoch": 1.3692999357739242, "percentage": 45.64, "elapsed_time": "5:23:06", "remaining_time": "6:24:46"} +{"current_steps": 2133, "total_steps": 4671, "loss": 0.0501, "learning_rate": 6.602551639227486e-06, "epoch": 1.369942196531792, "percentage": 45.66, "elapsed_time": "5:23:15", "remaining_time": "6:24:38"} +{"current_steps": 2134, "total_steps": 4671, "loss": 0.0291, "learning_rate": 6.599011032473217e-06, "epoch": 1.3705844572896595, "percentage": 45.69, "elapsed_time": "5:23:25", "remaining_time": "6:24:29"} +{"current_steps": 2135, "total_steps": 4671, "loss": 0.0786, "learning_rate": 6.5954695323468064e-06, "epoch": 1.3712267180475273, "percentage": 45.71, "elapsed_time": "5:23:33", "remaining_time": "6:24:19"} +{"current_steps": 2136, "total_steps": 4671, "loss": 0.0957, "learning_rate": 6.5919271408269025e-06, "epoch": 1.371868978805395, "percentage": 45.73, "elapsed_time": "5:23:45", "remaining_time": "6:24:13"} +{"current_steps": 2137, "total_steps": 4671, "loss": 0.1001, "learning_rate": 6.588383859892646e-06, "epoch": 1.3725112395632628, "percentage": 45.75, "elapsed_time": "5:23:55", "remaining_time": "6:24:06"} +{"current_steps": 2138, "total_steps": 4671, "loss": 0.0883, "learning_rate": 6.584839691523683e-06, "epoch": 1.3731535003211304, "percentage": 45.77, "elapsed_time": "5:24:03", "remaining_time": "6:23:56"} +{"current_steps": 2139, "total_steps": 4671, "loss": 0.0612, "learning_rate": 6.581294637700149e-06, "epoch": 1.3737957610789981, "percentage": 45.79, "elapsed_time": "5:24:12", "remaining_time": "6:23:46"} +{"current_steps": 2140, "total_steps": 4671, "loss": 0.0919, "learning_rate": 6.577748700402674e-06, "epoch": 1.3744380218368657, "percentage": 45.81, "elapsed_time": "5:24:20", "remaining_time": "6:23:35"} +{"current_steps": 2141, "total_steps": 4671, "loss": 0.0964, "learning_rate": 6.574201881612385e-06, "epoch": 1.3750802825947335, "percentage": 45.84, "elapsed_time": "5:24:29", "remaining_time": "6:23:26"} +{"current_steps": 2142, "total_steps": 4671, "loss": 0.0539, "learning_rate": 6.570654183310901e-06, "epoch": 1.3757225433526012, "percentage": 45.86, "elapsed_time": "5:24:36", "remaining_time": "6:23:15"} +{"current_steps": 2143, "total_steps": 4671, "loss": 0.1787, "learning_rate": 6.5671056074803286e-06, "epoch": 1.3763648041104688, "percentage": 45.88, "elapsed_time": "5:24:47", "remaining_time": "6:23:07"} +{"current_steps": 2144, "total_steps": 4671, "loss": 0.0632, "learning_rate": 6.56355615610327e-06, "epoch": 1.3770070648683366, "percentage": 45.9, "elapsed_time": "5:24:55", "remaining_time": "6:22:58"} +{"current_steps": 2145, "total_steps": 4671, "loss": 0.0363, "learning_rate": 6.5600058311628145e-06, "epoch": 1.3776493256262041, "percentage": 45.92, "elapsed_time": "5:25:04", "remaining_time": "6:22:49"} +{"current_steps": 2146, "total_steps": 4671, "loss": 0.0568, "learning_rate": 6.556454634642537e-06, "epoch": 1.378291586384072, "percentage": 45.94, "elapsed_time": "5:25:13", "remaining_time": "6:22:39"} +{"current_steps": 2147, "total_steps": 4671, "loss": 0.1178, "learning_rate": 6.5529025685265025e-06, "epoch": 1.3789338471419397, "percentage": 45.96, "elapsed_time": "5:25:23", "remaining_time": "6:22:31"} +{"current_steps": 2148, "total_steps": 4671, "loss": 0.0915, "learning_rate": 6.54934963479926e-06, "epoch": 1.3795761078998074, "percentage": 45.99, "elapsed_time": "5:25:32", "remaining_time": "6:22:22"} +{"current_steps": 2149, "total_steps": 4671, "loss": 0.1105, "learning_rate": 6.5457958354458454e-06, "epoch": 1.380218368657675, "percentage": 46.01, "elapsed_time": "5:25:41", "remaining_time": "6:22:13"} +{"current_steps": 2150, "total_steps": 4671, "loss": 0.0777, "learning_rate": 6.542241172451774e-06, "epoch": 1.3808606294155428, "percentage": 46.03, "elapsed_time": "5:25:50", "remaining_time": "6:22:03"} +{"current_steps": 2151, "total_steps": 4671, "loss": 0.0856, "learning_rate": 6.538685647803049e-06, "epoch": 1.3815028901734103, "percentage": 46.05, "elapsed_time": "5:25:59", "remaining_time": "6:21:55"} +{"current_steps": 2152, "total_steps": 4671, "loss": 0.1173, "learning_rate": 6.535129263486154e-06, "epoch": 1.382145150931278, "percentage": 46.07, "elapsed_time": "5:26:09", "remaining_time": "6:21:46"} +{"current_steps": 2153, "total_steps": 4671, "loss": 0.1073, "learning_rate": 6.531572021488047e-06, "epoch": 1.3827874116891459, "percentage": 46.09, "elapsed_time": "5:26:18", "remaining_time": "6:21:37"} +{"current_steps": 2154, "total_steps": 4671, "loss": 0.0789, "learning_rate": 6.52801392379617e-06, "epoch": 1.3834296724470134, "percentage": 46.11, "elapsed_time": "5:26:28", "remaining_time": "6:21:29"} +{"current_steps": 2155, "total_steps": 4671, "loss": 0.1039, "learning_rate": 6.5244549723984465e-06, "epoch": 1.3840719332048812, "percentage": 46.14, "elapsed_time": "5:26:37", "remaining_time": "6:21:20"} +{"current_steps": 2156, "total_steps": 4671, "loss": 0.0426, "learning_rate": 6.520895169283271e-06, "epoch": 1.3847141939627488, "percentage": 46.16, "elapsed_time": "5:26:45", "remaining_time": "6:21:10"} +{"current_steps": 2157, "total_steps": 4671, "loss": 0.0841, "learning_rate": 6.517334516439514e-06, "epoch": 1.3853564547206165, "percentage": 46.18, "elapsed_time": "5:26:55", "remaining_time": "6:21:02"} +{"current_steps": 2158, "total_steps": 4671, "loss": 0.0592, "learning_rate": 6.513773015856525e-06, "epoch": 1.3859987154784843, "percentage": 46.2, "elapsed_time": "5:27:04", "remaining_time": "6:20:52"} +{"current_steps": 2159, "total_steps": 4671, "loss": 0.1072, "learning_rate": 6.510210669524124e-06, "epoch": 1.386640976236352, "percentage": 46.22, "elapsed_time": "5:27:15", "remaining_time": "6:20:46"} +{"current_steps": 2160, "total_steps": 4671, "loss": 0.0575, "learning_rate": 6.506647479432604e-06, "epoch": 1.3872832369942196, "percentage": 46.24, "elapsed_time": "5:27:24", "remaining_time": "6:20:36"} +{"current_steps": 2161, "total_steps": 4671, "loss": 0.0657, "learning_rate": 6.503083447572731e-06, "epoch": 1.3879254977520874, "percentage": 46.26, "elapsed_time": "5:27:33", "remaining_time": "6:20:27"} +{"current_steps": 2162, "total_steps": 4671, "loss": 0.0352, "learning_rate": 6.499518575935738e-06, "epoch": 1.388567758509955, "percentage": 46.29, "elapsed_time": "5:27:42", "remaining_time": "6:20:17"} +{"current_steps": 2163, "total_steps": 4671, "loss": 0.0547, "learning_rate": 6.495952866513332e-06, "epoch": 1.3892100192678227, "percentage": 46.31, "elapsed_time": "5:27:49", "remaining_time": "6:20:06"} +{"current_steps": 2164, "total_steps": 4671, "loss": 0.0714, "learning_rate": 6.492386321297681e-06, "epoch": 1.3898522800256905, "percentage": 46.33, "elapsed_time": "5:27:56", "remaining_time": "6:19:55"} +{"current_steps": 2165, "total_steps": 4671, "loss": 0.0732, "learning_rate": 6.4888189422814275e-06, "epoch": 1.390494540783558, "percentage": 46.35, "elapsed_time": "5:28:05", "remaining_time": "6:19:46"} +{"current_steps": 2166, "total_steps": 4671, "loss": 0.0988, "learning_rate": 6.485250731457677e-06, "epoch": 1.3911368015414258, "percentage": 46.37, "elapsed_time": "5:28:15", "remaining_time": "6:19:37"} +{"current_steps": 2167, "total_steps": 4671, "loss": 0.0467, "learning_rate": 6.481681690819999e-06, "epoch": 1.3917790622992934, "percentage": 46.39, "elapsed_time": "5:28:26", "remaining_time": "6:19:31"} +{"current_steps": 2168, "total_steps": 4671, "loss": 0.0791, "learning_rate": 6.478111822362425e-06, "epoch": 1.3924213230571612, "percentage": 46.41, "elapsed_time": "5:28:37", "remaining_time": "6:19:23"} +{"current_steps": 2169, "total_steps": 4671, "loss": 0.1063, "learning_rate": 6.474541128079452e-06, "epoch": 1.393063583815029, "percentage": 46.44, "elapsed_time": "5:28:46", "remaining_time": "6:19:14"} +{"current_steps": 2170, "total_steps": 4671, "loss": 0.069, "learning_rate": 6.4709696099660366e-06, "epoch": 1.3937058445728967, "percentage": 46.46, "elapsed_time": "5:28:54", "remaining_time": "6:19:04"} +{"current_steps": 2171, "total_steps": 4671, "loss": 0.0764, "learning_rate": 6.467397270017599e-06, "epoch": 1.3943481053307643, "percentage": 46.48, "elapsed_time": "5:29:01", "remaining_time": "6:18:53"} +{"current_steps": 2172, "total_steps": 4671, "loss": 0.0426, "learning_rate": 6.463824110230015e-06, "epoch": 1.394990366088632, "percentage": 46.5, "elapsed_time": "5:29:12", "remaining_time": "6:18:46"} +{"current_steps": 2173, "total_steps": 4671, "loss": 0.057, "learning_rate": 6.460250132599617e-06, "epoch": 1.3956326268464996, "percentage": 46.52, "elapsed_time": "5:29:20", "remaining_time": "6:18:35"} +{"current_steps": 2174, "total_steps": 4671, "loss": 0.0552, "learning_rate": 6.456675339123198e-06, "epoch": 1.3962748876043674, "percentage": 46.54, "elapsed_time": "5:29:30", "remaining_time": "6:18:27"} +{"current_steps": 2175, "total_steps": 4671, "loss": 0.0543, "learning_rate": 6.453099731798007e-06, "epoch": 1.3969171483622351, "percentage": 46.56, "elapsed_time": "5:29:39", "remaining_time": "6:18:18"} +{"current_steps": 2176, "total_steps": 4671, "loss": 0.0611, "learning_rate": 6.4495233126217464e-06, "epoch": 1.3975594091201027, "percentage": 46.59, "elapsed_time": "5:29:49", "remaining_time": "6:18:10"} +{"current_steps": 2177, "total_steps": 4671, "loss": 0.0904, "learning_rate": 6.445946083592569e-06, "epoch": 1.3982016698779705, "percentage": 46.61, "elapsed_time": "5:29:59", "remaining_time": "6:18:02"} +{"current_steps": 2178, "total_steps": 4671, "loss": 0.0963, "learning_rate": 6.442368046709087e-06, "epoch": 1.3988439306358382, "percentage": 46.63, "elapsed_time": "5:30:10", "remaining_time": "6:17:56"} +{"current_steps": 2179, "total_steps": 4671, "loss": 0.1391, "learning_rate": 6.438789203970357e-06, "epoch": 1.3994861913937058, "percentage": 46.65, "elapsed_time": "5:30:20", "remaining_time": "6:17:47"} +{"current_steps": 2180, "total_steps": 4671, "loss": 0.0605, "learning_rate": 6.435209557375891e-06, "epoch": 1.4001284521515736, "percentage": 46.67, "elapsed_time": "5:30:27", "remaining_time": "6:17:35"} +{"current_steps": 2181, "total_steps": 4671, "loss": 0.0803, "learning_rate": 6.431629108925646e-06, "epoch": 1.4007707129094413, "percentage": 46.69, "elapsed_time": "5:30:36", "remaining_time": "6:17:26"} +{"current_steps": 2182, "total_steps": 4671, "loss": 0.1242, "learning_rate": 6.4280478606200295e-06, "epoch": 1.4014129736673089, "percentage": 46.71, "elapsed_time": "5:30:45", "remaining_time": "6:17:18"} +{"current_steps": 2183, "total_steps": 4671, "loss": 0.0888, "learning_rate": 6.424465814459898e-06, "epoch": 1.4020552344251767, "percentage": 46.74, "elapsed_time": "5:30:56", "remaining_time": "6:17:10"} +{"current_steps": 2184, "total_steps": 4671, "loss": 0.1122, "learning_rate": 6.4208829724465484e-06, "epoch": 1.4026974951830442, "percentage": 46.76, "elapsed_time": "5:31:04", "remaining_time": "6:17:00"} +{"current_steps": 2185, "total_steps": 4671, "loss": 0.0484, "learning_rate": 6.417299336581725e-06, "epoch": 1.403339755940912, "percentage": 46.78, "elapsed_time": "5:31:15", "remaining_time": "6:16:53"} +{"current_steps": 2186, "total_steps": 4671, "loss": 0.048, "learning_rate": 6.413714908867616e-06, "epoch": 1.4039820166987798, "percentage": 46.8, "elapsed_time": "5:31:24", "remaining_time": "6:16:43"} +{"current_steps": 2187, "total_steps": 4671, "loss": 0.0859, "learning_rate": 6.410129691306855e-06, "epoch": 1.4046242774566475, "percentage": 46.82, "elapsed_time": "5:31:34", "remaining_time": "6:16:35"} +{"current_steps": 2188, "total_steps": 4671, "loss": 0.0825, "learning_rate": 6.406543685902508e-06, "epoch": 1.405266538214515, "percentage": 46.84, "elapsed_time": "5:31:44", "remaining_time": "6:16:27"} +{"current_steps": 2189, "total_steps": 4671, "loss": 0.1103, "learning_rate": 6.40295689465809e-06, "epoch": 1.4059087989723829, "percentage": 46.86, "elapsed_time": "5:31:54", "remaining_time": "6:16:20"} +{"current_steps": 2190, "total_steps": 4671, "loss": 0.0835, "learning_rate": 6.3993693195775505e-06, "epoch": 1.4065510597302504, "percentage": 46.89, "elapsed_time": "5:32:04", "remaining_time": "6:16:11"} +{"current_steps": 2191, "total_steps": 4671, "loss": 0.0491, "learning_rate": 6.395780962665281e-06, "epoch": 1.4071933204881182, "percentage": 46.91, "elapsed_time": "5:32:12", "remaining_time": "6:16:01"} +{"current_steps": 2192, "total_steps": 4671, "loss": 0.0915, "learning_rate": 6.392191825926102e-06, "epoch": 1.407835581245986, "percentage": 46.93, "elapsed_time": "5:32:22", "remaining_time": "6:15:53"} +{"current_steps": 2193, "total_steps": 4671, "loss": 0.0507, "learning_rate": 6.388601911365279e-06, "epoch": 1.4084778420038535, "percentage": 46.95, "elapsed_time": "5:32:30", "remaining_time": "6:15:43"} +{"current_steps": 2194, "total_steps": 4671, "loss": 0.0826, "learning_rate": 6.385011220988506e-06, "epoch": 1.4091201027617213, "percentage": 46.97, "elapsed_time": "5:32:40", "remaining_time": "6:15:34"} +{"current_steps": 2195, "total_steps": 4671, "loss": 0.0504, "learning_rate": 6.3814197568019146e-06, "epoch": 1.4097623635195888, "percentage": 46.99, "elapsed_time": "5:32:47", "remaining_time": "6:15:24"} +{"current_steps": 2196, "total_steps": 4671, "loss": 0.0902, "learning_rate": 6.377827520812061e-06, "epoch": 1.4104046242774566, "percentage": 47.01, "elapsed_time": "5:32:58", "remaining_time": "6:15:16"} +{"current_steps": 2197, "total_steps": 4671, "loss": 0.0979, "learning_rate": 6.374234515025942e-06, "epoch": 1.4110468850353244, "percentage": 47.03, "elapsed_time": "5:33:08", "remaining_time": "6:15:08"} +{"current_steps": 2198, "total_steps": 4671, "loss": 0.0915, "learning_rate": 6.37064074145098e-06, "epoch": 1.4116891457931922, "percentage": 47.06, "elapsed_time": "5:33:18", "remaining_time": "6:15:01"} +{"current_steps": 2199, "total_steps": 4671, "loss": 0.0949, "learning_rate": 6.367046202095026e-06, "epoch": 1.4123314065510597, "percentage": 47.08, "elapsed_time": "5:33:29", "remaining_time": "6:14:53"} +{"current_steps": 2200, "total_steps": 4671, "loss": 0.0542, "learning_rate": 6.363450898966361e-06, "epoch": 1.4129736673089275, "percentage": 47.1, "elapsed_time": "5:33:36", "remaining_time": "6:14:42"} +{"current_steps": 2201, "total_steps": 4671, "loss": 0.0346, "learning_rate": 6.3598548340736895e-06, "epoch": 1.413615928066795, "percentage": 47.12, "elapsed_time": "5:33:44", "remaining_time": "6:14:32"} +{"current_steps": 2202, "total_steps": 4671, "loss": 0.1421, "learning_rate": 6.356258009426145e-06, "epoch": 1.4142581888246628, "percentage": 47.14, "elapsed_time": "5:33:53", "remaining_time": "6:14:23"} +{"current_steps": 2203, "total_steps": 4671, "loss": 0.114, "learning_rate": 6.352660427033284e-06, "epoch": 1.4149004495825306, "percentage": 47.16, "elapsed_time": "5:34:03", "remaining_time": "6:14:14"} +{"current_steps": 2204, "total_steps": 4671, "loss": 0.0948, "learning_rate": 6.349062088905085e-06, "epoch": 1.4155427103403981, "percentage": 47.18, "elapsed_time": "5:34:11", "remaining_time": "6:14:04"} +{"current_steps": 2205, "total_steps": 4671, "loss": 0.0889, "learning_rate": 6.34546299705195e-06, "epoch": 1.416184971098266, "percentage": 47.21, "elapsed_time": "5:34:21", "remaining_time": "6:13:55"} +{"current_steps": 2206, "total_steps": 4671, "loss": 0.0652, "learning_rate": 6.3418631534847034e-06, "epoch": 1.4168272318561335, "percentage": 47.23, "elapsed_time": "5:34:29", "remaining_time": "6:13:46"} +{"current_steps": 2207, "total_steps": 4671, "loss": 0.0474, "learning_rate": 6.338262560214589e-06, "epoch": 1.4174694926140012, "percentage": 47.25, "elapsed_time": "5:34:37", "remaining_time": "6:13:35"} +{"current_steps": 2208, "total_steps": 4671, "loss": 0.0916, "learning_rate": 6.334661219253267e-06, "epoch": 1.418111753371869, "percentage": 47.27, "elapsed_time": "5:34:46", "remaining_time": "6:13:26"} +{"current_steps": 2209, "total_steps": 4671, "loss": 0.0548, "learning_rate": 6.3310591326128154e-06, "epoch": 1.4187540141297368, "percentage": 47.29, "elapsed_time": "5:34:53", "remaining_time": "6:13:15"} +{"current_steps": 2210, "total_steps": 4671, "loss": 0.0797, "learning_rate": 6.327456302305734e-06, "epoch": 1.4193962748876043, "percentage": 47.31, "elapsed_time": "5:35:02", "remaining_time": "6:13:05"} +{"current_steps": 2211, "total_steps": 4671, "loss": 0.1033, "learning_rate": 6.323852730344936e-06, "epoch": 1.420038535645472, "percentage": 47.33, "elapsed_time": "5:35:11", "remaining_time": "6:12:56"} +{"current_steps": 2212, "total_steps": 4671, "loss": 0.0466, "learning_rate": 6.320248418743744e-06, "epoch": 1.4206807964033397, "percentage": 47.36, "elapsed_time": "5:35:21", "remaining_time": "6:12:48"} +{"current_steps": 2213, "total_steps": 4671, "loss": 0.0778, "learning_rate": 6.316643369515898e-06, "epoch": 1.4213230571612074, "percentage": 47.38, "elapsed_time": "5:35:30", "remaining_time": "6:12:38"} +{"current_steps": 2214, "total_steps": 4671, "loss": 0.0594, "learning_rate": 6.31303758467555e-06, "epoch": 1.4219653179190752, "percentage": 47.4, "elapsed_time": "5:35:39", "remaining_time": "6:12:29"} +{"current_steps": 2215, "total_steps": 4671, "loss": 0.1611, "learning_rate": 6.3094310662372615e-06, "epoch": 1.4226075786769428, "percentage": 47.42, "elapsed_time": "5:35:49", "remaining_time": "6:12:21"} +{"current_steps": 2216, "total_steps": 4671, "loss": 0.0485, "learning_rate": 6.305823816216008e-06, "epoch": 1.4232498394348105, "percentage": 47.44, "elapsed_time": "5:35:57", "remaining_time": "6:12:11"} +{"current_steps": 2217, "total_steps": 4671, "loss": 0.0526, "learning_rate": 6.302215836627167e-06, "epoch": 1.423892100192678, "percentage": 47.46, "elapsed_time": "5:36:06", "remaining_time": "6:12:02"} +{"current_steps": 2218, "total_steps": 4671, "loss": 0.0669, "learning_rate": 6.298607129486531e-06, "epoch": 1.4245343609505459, "percentage": 47.48, "elapsed_time": "5:36:14", "remaining_time": "6:11:52"} +{"current_steps": 2219, "total_steps": 4671, "loss": 0.0801, "learning_rate": 6.29499769681029e-06, "epoch": 1.4251766217084136, "percentage": 47.51, "elapsed_time": "5:36:24", "remaining_time": "6:11:44"} +{"current_steps": 2220, "total_steps": 4671, "loss": 0.0851, "learning_rate": 6.291387540615051e-06, "epoch": 1.4258188824662814, "percentage": 47.53, "elapsed_time": "5:36:35", "remaining_time": "6:11:36"} +{"current_steps": 2221, "total_steps": 4671, "loss": 0.0534, "learning_rate": 6.287776662917813e-06, "epoch": 1.426461143224149, "percentage": 47.55, "elapsed_time": "5:36:45", "remaining_time": "6:11:28"} +{"current_steps": 2222, "total_steps": 4671, "loss": 0.0258, "learning_rate": 6.284165065735988e-06, "epoch": 1.4271034039820167, "percentage": 47.57, "elapsed_time": "5:36:53", "remaining_time": "6:11:18"} +{"current_steps": 2223, "total_steps": 4671, "loss": 0.071, "learning_rate": 6.280552751087384e-06, "epoch": 1.4277456647398843, "percentage": 47.59, "elapsed_time": "5:37:01", "remaining_time": "6:11:08"} +{"current_steps": 2224, "total_steps": 4671, "loss": 0.0632, "learning_rate": 6.276939720990213e-06, "epoch": 1.428387925497752, "percentage": 47.61, "elapsed_time": "5:37:09", "remaining_time": "6:10:58"} +{"current_steps": 2225, "total_steps": 4671, "loss": 0.0678, "learning_rate": 6.2733259774630825e-06, "epoch": 1.4290301862556198, "percentage": 47.63, "elapsed_time": "5:37:17", "remaining_time": "6:10:48"} +{"current_steps": 2226, "total_steps": 4671, "loss": 0.1088, "learning_rate": 6.269711522525006e-06, "epoch": 1.4296724470134876, "percentage": 47.66, "elapsed_time": "5:37:28", "remaining_time": "6:10:40"} +{"current_steps": 2227, "total_steps": 4671, "loss": 0.0499, "learning_rate": 6.266096358195386e-06, "epoch": 1.4303147077713552, "percentage": 47.68, "elapsed_time": "5:37:38", "remaining_time": "6:10:32"} +{"current_steps": 2228, "total_steps": 4671, "loss": 0.0526, "learning_rate": 6.262480486494029e-06, "epoch": 1.430956968529223, "percentage": 47.7, "elapsed_time": "5:37:47", "remaining_time": "6:10:22"} +{"current_steps": 2229, "total_steps": 4671, "loss": 0.0625, "learning_rate": 6.2588639094411294e-06, "epoch": 1.4315992292870905, "percentage": 47.72, "elapsed_time": "5:37:54", "remaining_time": "6:10:11"} +{"current_steps": 2230, "total_steps": 4671, "loss": 0.0812, "learning_rate": 6.255246629057282e-06, "epoch": 1.4322414900449583, "percentage": 47.74, "elapsed_time": "5:38:03", "remaining_time": "6:10:02"} +{"current_steps": 2231, "total_steps": 4671, "loss": 0.0674, "learning_rate": 6.251628647363471e-06, "epoch": 1.432883750802826, "percentage": 47.76, "elapsed_time": "5:38:11", "remaining_time": "6:09:52"} +{"current_steps": 2232, "total_steps": 4671, "loss": 0.0906, "learning_rate": 6.248009966381074e-06, "epoch": 1.4335260115606936, "percentage": 47.78, "elapsed_time": "5:38:19", "remaining_time": "6:09:42"} +{"current_steps": 2233, "total_steps": 4671, "loss": 0.0618, "learning_rate": 6.244390588131858e-06, "epoch": 1.4341682723185614, "percentage": 47.81, "elapsed_time": "5:38:28", "remaining_time": "6:09:33"} +{"current_steps": 2234, "total_steps": 4671, "loss": 0.0687, "learning_rate": 6.240770514637982e-06, "epoch": 1.434810533076429, "percentage": 47.83, "elapsed_time": "5:38:39", "remaining_time": "6:09:25"} +{"current_steps": 2235, "total_steps": 4671, "loss": 0.0782, "learning_rate": 6.237149747921988e-06, "epoch": 1.4354527938342967, "percentage": 47.85, "elapsed_time": "5:38:48", "remaining_time": "6:09:16"} +{"current_steps": 2236, "total_steps": 4671, "loss": 0.0799, "learning_rate": 6.233528290006811e-06, "epoch": 1.4360950545921645, "percentage": 47.87, "elapsed_time": "5:38:56", "remaining_time": "6:09:06"} +{"current_steps": 2237, "total_steps": 4671, "loss": 0.0726, "learning_rate": 6.2299061429157696e-06, "epoch": 1.4367373153500322, "percentage": 47.89, "elapsed_time": "5:39:05", "remaining_time": "6:08:56"} +{"current_steps": 2238, "total_steps": 4671, "loss": 0.0604, "learning_rate": 6.2262833086725704e-06, "epoch": 1.4373795761078998, "percentage": 47.91, "elapsed_time": "5:39:14", "remaining_time": "6:08:48"} +{"current_steps": 2239, "total_steps": 4671, "loss": 0.039, "learning_rate": 6.222659789301298e-06, "epoch": 1.4380218368657676, "percentage": 47.93, "elapsed_time": "5:39:22", "remaining_time": "6:08:37"} +{"current_steps": 2240, "total_steps": 4671, "loss": 0.0678, "learning_rate": 6.2190355868264265e-06, "epoch": 1.4386640976236351, "percentage": 47.96, "elapsed_time": "5:39:32", "remaining_time": "6:08:29"} +{"current_steps": 2241, "total_steps": 4671, "loss": 0.0617, "learning_rate": 6.215410703272805e-06, "epoch": 1.439306358381503, "percentage": 47.98, "elapsed_time": "5:39:40", "remaining_time": "6:08:19"} +{"current_steps": 2242, "total_steps": 4671, "loss": 0.0879, "learning_rate": 6.211785140665669e-06, "epoch": 1.4399486191393707, "percentage": 48.0, "elapsed_time": "5:39:49", "remaining_time": "6:08:10"} +{"current_steps": 2243, "total_steps": 4671, "loss": 0.041, "learning_rate": 6.208158901030631e-06, "epoch": 1.4405908798972382, "percentage": 48.02, "elapsed_time": "5:39:57", "remaining_time": "6:07:59"} +{"current_steps": 2244, "total_steps": 4671, "loss": 0.1114, "learning_rate": 6.204531986393679e-06, "epoch": 1.441233140655106, "percentage": 48.04, "elapsed_time": "5:40:07", "remaining_time": "6:07:52"} +{"current_steps": 2245, "total_steps": 4671, "loss": 0.1224, "learning_rate": 6.200904398781185e-06, "epoch": 1.4418754014129735, "percentage": 48.06, "elapsed_time": "5:40:17", "remaining_time": "6:07:43"} +{"current_steps": 2246, "total_steps": 4671, "loss": 0.1226, "learning_rate": 6.19727614021989e-06, "epoch": 1.4425176621708413, "percentage": 48.08, "elapsed_time": "5:40:26", "remaining_time": "6:07:34"} +{"current_steps": 2247, "total_steps": 4671, "loss": 0.0933, "learning_rate": 6.193647212736912e-06, "epoch": 1.443159922928709, "percentage": 48.11, "elapsed_time": "5:40:35", "remaining_time": "6:07:24"} +{"current_steps": 2248, "total_steps": 4671, "loss": 0.0551, "learning_rate": 6.190017618359746e-06, "epoch": 1.4438021836865769, "percentage": 48.13, "elapsed_time": "5:40:45", "remaining_time": "6:07:17"} +{"current_steps": 2249, "total_steps": 4671, "loss": 0.036, "learning_rate": 6.186387359116255e-06, "epoch": 1.4444444444444444, "percentage": 48.15, "elapsed_time": "5:40:53", "remaining_time": "6:07:06"} +{"current_steps": 2250, "total_steps": 4671, "loss": 0.0522, "learning_rate": 6.182756437034677e-06, "epoch": 1.4450867052023122, "percentage": 48.17, "elapsed_time": "5:41:01", "remaining_time": "6:06:56"} +{"current_steps": 2251, "total_steps": 4671, "loss": 0.0483, "learning_rate": 6.179124854143617e-06, "epoch": 1.4457289659601797, "percentage": 48.19, "elapsed_time": "5:41:10", "remaining_time": "6:06:47"} +{"current_steps": 2252, "total_steps": 4671, "loss": 0.1058, "learning_rate": 6.175492612472053e-06, "epoch": 1.4463712267180475, "percentage": 48.21, "elapsed_time": "5:41:18", "remaining_time": "6:06:37"} +{"current_steps": 2253, "total_steps": 4671, "loss": 0.0896, "learning_rate": 6.171859714049326e-06, "epoch": 1.4470134874759153, "percentage": 48.23, "elapsed_time": "5:41:29", "remaining_time": "6:06:29"} +{"current_steps": 2254, "total_steps": 4671, "loss": 0.0822, "learning_rate": 6.168226160905151e-06, "epoch": 1.4476557482337828, "percentage": 48.26, "elapsed_time": "5:41:37", "remaining_time": "6:06:20"} +{"current_steps": 2255, "total_steps": 4671, "loss": 0.0791, "learning_rate": 6.164591955069601e-06, "epoch": 1.4482980089916506, "percentage": 48.28, "elapsed_time": "5:41:45", "remaining_time": "6:06:09"} +{"current_steps": 2256, "total_steps": 4671, "loss": 0.0997, "learning_rate": 6.160957098573119e-06, "epoch": 1.4489402697495182, "percentage": 48.3, "elapsed_time": "5:41:54", "remaining_time": "6:06:00"} +{"current_steps": 2257, "total_steps": 4671, "loss": 0.0775, "learning_rate": 6.157321593446511e-06, "epoch": 1.449582530507386, "percentage": 48.32, "elapsed_time": "5:42:04", "remaining_time": "6:05:52"} +{"current_steps": 2258, "total_steps": 4671, "loss": 0.0984, "learning_rate": 6.153685441720944e-06, "epoch": 1.4502247912652537, "percentage": 48.34, "elapsed_time": "5:42:13", "remaining_time": "6:05:43"} +{"current_steps": 2259, "total_steps": 4671, "loss": 0.072, "learning_rate": 6.150048645427944e-06, "epoch": 1.4508670520231215, "percentage": 48.36, "elapsed_time": "5:42:23", "remaining_time": "6:05:35"} +{"current_steps": 2260, "total_steps": 4671, "loss": 0.0571, "learning_rate": 6.146411206599403e-06, "epoch": 1.451509312780989, "percentage": 48.38, "elapsed_time": "5:42:32", "remaining_time": "6:05:25"} +{"current_steps": 2261, "total_steps": 4671, "loss": 0.0983, "learning_rate": 6.142773127267567e-06, "epoch": 1.4521515735388568, "percentage": 48.41, "elapsed_time": "5:42:43", "remaining_time": "6:05:18"} +{"current_steps": 2262, "total_steps": 4671, "loss": 0.0799, "learning_rate": 6.139134409465044e-06, "epoch": 1.4527938342967244, "percentage": 48.43, "elapsed_time": "5:42:53", "remaining_time": "6:05:10"} +{"current_steps": 2263, "total_steps": 4671, "loss": 0.0415, "learning_rate": 6.135495055224793e-06, "epoch": 1.4534360950545921, "percentage": 48.45, "elapsed_time": "5:43:01", "remaining_time": "6:05:00"} +{"current_steps": 2264, "total_steps": 4671, "loss": 0.0436, "learning_rate": 6.131855066580131e-06, "epoch": 1.45407835581246, "percentage": 48.47, "elapsed_time": "5:43:08", "remaining_time": "6:04:49"} +{"current_steps": 2265, "total_steps": 4671, "loss": 0.0829, "learning_rate": 6.128214445564735e-06, "epoch": 1.4547206165703275, "percentage": 48.49, "elapsed_time": "5:43:15", "remaining_time": "6:04:37"} +{"current_steps": 2266, "total_steps": 4671, "loss": 0.0683, "learning_rate": 6.124573194212629e-06, "epoch": 1.4553628773281952, "percentage": 48.51, "elapsed_time": "5:43:25", "remaining_time": "6:04:29"} +{"current_steps": 2267, "total_steps": 4671, "loss": 0.0725, "learning_rate": 6.120931314558187e-06, "epoch": 1.456005138086063, "percentage": 48.53, "elapsed_time": "5:43:34", "remaining_time": "6:04:19"} +{"current_steps": 2268, "total_steps": 4671, "loss": 0.0655, "learning_rate": 6.117288808636141e-06, "epoch": 1.4566473988439306, "percentage": 48.55, "elapsed_time": "5:43:41", "remaining_time": "6:04:09"} +{"current_steps": 2269, "total_steps": 4671, "loss": 0.0397, "learning_rate": 6.113645678481571e-06, "epoch": 1.4572896596017983, "percentage": 48.58, "elapsed_time": "5:43:50", "remaining_time": "6:04:00"} +{"current_steps": 2270, "total_steps": 4671, "loss": 0.0617, "learning_rate": 6.110001926129903e-06, "epoch": 1.4579319203596661, "percentage": 48.6, "elapsed_time": "5:43:59", "remaining_time": "6:03:50"} +{"current_steps": 2271, "total_steps": 4671, "loss": 0.0743, "learning_rate": 6.10635755361691e-06, "epoch": 1.4585741811175337, "percentage": 48.62, "elapsed_time": "5:44:06", "remaining_time": "6:03:39"} +{"current_steps": 2272, "total_steps": 4671, "loss": 0.0829, "learning_rate": 6.102712562978717e-06, "epoch": 1.4592164418754014, "percentage": 48.64, "elapsed_time": "5:44:14", "remaining_time": "6:03:29"} +{"current_steps": 2273, "total_steps": 4671, "loss": 0.0844, "learning_rate": 6.0990669562517905e-06, "epoch": 1.459858702633269, "percentage": 48.66, "elapsed_time": "5:44:22", "remaining_time": "6:03:19"} +{"current_steps": 2274, "total_steps": 4671, "loss": 0.0615, "learning_rate": 6.095420735472939e-06, "epoch": 1.4605009633911368, "percentage": 48.68, "elapsed_time": "5:44:32", "remaining_time": "6:03:10"} +{"current_steps": 2275, "total_steps": 4671, "loss": 0.0943, "learning_rate": 6.091773902679317e-06, "epoch": 1.4611432241490045, "percentage": 48.7, "elapsed_time": "5:44:41", "remaining_time": "6:03:01"} +{"current_steps": 2276, "total_steps": 4671, "loss": 0.0853, "learning_rate": 6.088126459908423e-06, "epoch": 1.4617854849068723, "percentage": 48.73, "elapsed_time": "5:44:49", "remaining_time": "6:02:51"} +{"current_steps": 2277, "total_steps": 4671, "loss": 0.0637, "learning_rate": 6.0844784091980955e-06, "epoch": 1.4624277456647399, "percentage": 48.75, "elapsed_time": "5:44:59", "remaining_time": "6:02:42"} +{"current_steps": 2278, "total_steps": 4671, "loss": 0.1036, "learning_rate": 6.080829752586507e-06, "epoch": 1.4630700064226076, "percentage": 48.77, "elapsed_time": "5:45:08", "remaining_time": "6:02:34"} +{"current_steps": 2279, "total_steps": 4671, "loss": 0.0875, "learning_rate": 6.077180492112173e-06, "epoch": 1.4637122671804752, "percentage": 48.79, "elapsed_time": "5:45:17", "remaining_time": "6:02:24"} +{"current_steps": 2280, "total_steps": 4671, "loss": 0.0679, "learning_rate": 6.073530629813947e-06, "epoch": 1.464354527938343, "percentage": 48.81, "elapsed_time": "5:45:26", "remaining_time": "6:02:15"} +{"current_steps": 2281, "total_steps": 4671, "loss": 0.1168, "learning_rate": 6.069880167731019e-06, "epoch": 1.4649967886962107, "percentage": 48.83, "elapsed_time": "5:45:36", "remaining_time": "6:02:07"} +{"current_steps": 2282, "total_steps": 4671, "loss": 0.0464, "learning_rate": 6.066229107902912e-06, "epoch": 1.4656390494540783, "percentage": 48.85, "elapsed_time": "5:45:45", "remaining_time": "6:01:58"} +{"current_steps": 2283, "total_steps": 4671, "loss": 0.0536, "learning_rate": 6.062577452369483e-06, "epoch": 1.466281310211946, "percentage": 48.88, "elapsed_time": "5:45:53", "remaining_time": "6:01:48"} +{"current_steps": 2284, "total_steps": 4671, "loss": 0.0486, "learning_rate": 6.0589252031709225e-06, "epoch": 1.4669235709698136, "percentage": 48.9, "elapsed_time": "5:46:03", "remaining_time": "6:01:39"} +{"current_steps": 2285, "total_steps": 4671, "loss": 0.1135, "learning_rate": 6.055272362347754e-06, "epoch": 1.4675658317276814, "percentage": 48.92, "elapsed_time": "5:46:14", "remaining_time": "6:01:32"} +{"current_steps": 2286, "total_steps": 4671, "loss": 0.0876, "learning_rate": 6.05161893194083e-06, "epoch": 1.4682080924855492, "percentage": 48.94, "elapsed_time": "5:46:24", "remaining_time": "6:01:24"} +{"current_steps": 2287, "total_steps": 4671, "loss": 0.0549, "learning_rate": 6.047964913991333e-06, "epoch": 1.468850353243417, "percentage": 48.96, "elapsed_time": "5:46:32", "remaining_time": "6:01:14"} +{"current_steps": 2288, "total_steps": 4671, "loss": 0.0714, "learning_rate": 6.0443103105407715e-06, "epoch": 1.4694926140012845, "percentage": 48.98, "elapsed_time": "5:46:40", "remaining_time": "6:01:04"} +{"current_steps": 2289, "total_steps": 4671, "loss": 0.0866, "learning_rate": 6.0406551236309874e-06, "epoch": 1.4701348747591523, "percentage": 49.0, "elapsed_time": "5:46:52", "remaining_time": "6:00:58"} +{"current_steps": 2290, "total_steps": 4671, "loss": 0.0903, "learning_rate": 6.036999355304141e-06, "epoch": 1.4707771355170198, "percentage": 49.03, "elapsed_time": "5:47:01", "remaining_time": "6:00:48"} +{"current_steps": 2291, "total_steps": 4671, "loss": 0.0822, "learning_rate": 6.03334300760272e-06, "epoch": 1.4714193962748876, "percentage": 49.05, "elapsed_time": "5:47:11", "remaining_time": "6:00:40"} +{"current_steps": 2292, "total_steps": 4671, "loss": 0.1022, "learning_rate": 6.029686082569537e-06, "epoch": 1.4720616570327554, "percentage": 49.07, "elapsed_time": "5:47:20", "remaining_time": "6:00:31"} +{"current_steps": 2293, "total_steps": 4671, "loss": 0.0472, "learning_rate": 6.02602858224773e-06, "epoch": 1.472703917790623, "percentage": 49.09, "elapsed_time": "5:47:28", "remaining_time": "6:00:21"} +{"current_steps": 2294, "total_steps": 4671, "loss": 0.0799, "learning_rate": 6.022370508680753e-06, "epoch": 1.4733461785484907, "percentage": 49.11, "elapsed_time": "5:47:38", "remaining_time": "6:00:12"} +{"current_steps": 2295, "total_steps": 4671, "loss": 0.0376, "learning_rate": 6.018711863912381e-06, "epoch": 1.4739884393063583, "percentage": 49.13, "elapsed_time": "5:47:46", "remaining_time": "6:00:02"} +{"current_steps": 2296, "total_steps": 4671, "loss": 0.0438, "learning_rate": 6.01505264998671e-06, "epoch": 1.474630700064226, "percentage": 49.15, "elapsed_time": "5:47:53", "remaining_time": "5:59:51"} +{"current_steps": 2297, "total_steps": 4671, "loss": 0.0549, "learning_rate": 6.011392868948156e-06, "epoch": 1.4752729608220938, "percentage": 49.18, "elapsed_time": "5:48:01", "remaining_time": "5:59:41"} +{"current_steps": 2298, "total_steps": 4671, "loss": 0.1234, "learning_rate": 6.007732522841448e-06, "epoch": 1.4759152215799616, "percentage": 49.2, "elapsed_time": "5:48:10", "remaining_time": "5:59:32"} +{"current_steps": 2299, "total_steps": 4671, "loss": 0.0497, "learning_rate": 6.00407161371163e-06, "epoch": 1.4765574823378291, "percentage": 49.22, "elapsed_time": "5:48:20", "remaining_time": "5:59:23"} +{"current_steps": 2300, "total_steps": 4671, "loss": 0.1207, "learning_rate": 6.000410143604064e-06, "epoch": 1.477199743095697, "percentage": 49.24, "elapsed_time": "5:48:29", "remaining_time": "5:59:14"} +{"current_steps": 2301, "total_steps": 4671, "loss": 0.0717, "learning_rate": 5.996748114564427e-06, "epoch": 1.4778420038535645, "percentage": 49.26, "elapsed_time": "5:48:36", "remaining_time": "5:59:03"} +{"current_steps": 2302, "total_steps": 4671, "loss": 0.0948, "learning_rate": 5.9930855286387e-06, "epoch": 1.4784842646114322, "percentage": 49.28, "elapsed_time": "5:48:44", "remaining_time": "5:58:53"} +{"current_steps": 2303, "total_steps": 4671, "loss": 0.1781, "learning_rate": 5.989422387873185e-06, "epoch": 1.4791265253693, "percentage": 49.3, "elapsed_time": "5:48:53", "remaining_time": "5:58:43"} +{"current_steps": 2304, "total_steps": 4671, "loss": 0.0442, "learning_rate": 5.985758694314486e-06, "epoch": 1.4797687861271676, "percentage": 49.33, "elapsed_time": "5:49:00", "remaining_time": "5:58:33"} +{"current_steps": 2305, "total_steps": 4671, "loss": 0.0728, "learning_rate": 5.982094450009524e-06, "epoch": 1.4804110468850353, "percentage": 49.35, "elapsed_time": "5:49:10", "remaining_time": "5:58:25"} +{"current_steps": 2306, "total_steps": 4671, "loss": 0.0467, "learning_rate": 5.978429657005518e-06, "epoch": 1.4810533076429029, "percentage": 49.37, "elapsed_time": "5:49:17", "remaining_time": "5:58:14"} +{"current_steps": 2307, "total_steps": 4671, "loss": 0.0736, "learning_rate": 5.97476431735e-06, "epoch": 1.4816955684007707, "percentage": 49.39, "elapsed_time": "5:49:28", "remaining_time": "5:58:06"} +{"current_steps": 2308, "total_steps": 4671, "loss": 0.1357, "learning_rate": 5.971098433090807e-06, "epoch": 1.4823378291586384, "percentage": 49.41, "elapsed_time": "5:49:37", "remaining_time": "5:57:57"} +{"current_steps": 2309, "total_steps": 4671, "loss": 0.1351, "learning_rate": 5.9674320062760795e-06, "epoch": 1.4829800899165062, "percentage": 49.43, "elapsed_time": "5:49:48", "remaining_time": "5:57:50"} +{"current_steps": 2310, "total_steps": 4671, "loss": 0.0347, "learning_rate": 5.96376503895426e-06, "epoch": 1.4836223506743738, "percentage": 49.45, "elapsed_time": "5:49:55", "remaining_time": "5:57:39"} +{"current_steps": 2311, "total_steps": 4671, "loss": 0.0483, "learning_rate": 5.960097533174094e-06, "epoch": 1.4842646114322415, "percentage": 49.48, "elapsed_time": "5:50:02", "remaining_time": "5:57:28"} +{"current_steps": 2312, "total_steps": 4671, "loss": 0.2127, "learning_rate": 5.956429490984628e-06, "epoch": 1.484906872190109, "percentage": 49.5, "elapsed_time": "5:50:14", "remaining_time": "5:57:21"} +{"current_steps": 2313, "total_steps": 4671, "loss": 0.069, "learning_rate": 5.9527609144352075e-06, "epoch": 1.4855491329479769, "percentage": 49.52, "elapsed_time": "5:50:23", "remaining_time": "5:57:12"} +{"current_steps": 2314, "total_steps": 4671, "loss": 0.0511, "learning_rate": 5.949091805575477e-06, "epoch": 1.4861913937058446, "percentage": 49.54, "elapsed_time": "5:50:32", "remaining_time": "5:57:03"} +{"current_steps": 2315, "total_steps": 4671, "loss": 0.0503, "learning_rate": 5.945422166455378e-06, "epoch": 1.4868336544637122, "percentage": 49.56, "elapsed_time": "5:50:42", "remaining_time": "5:56:55"} +{"current_steps": 2316, "total_steps": 4671, "loss": 0.0567, "learning_rate": 5.94175199912515e-06, "epoch": 1.48747591522158, "percentage": 49.58, "elapsed_time": "5:50:50", "remaining_time": "5:56:45"} +{"current_steps": 2317, "total_steps": 4671, "loss": 0.0724, "learning_rate": 5.938081305635326e-06, "epoch": 1.4881181759794477, "percentage": 49.6, "elapsed_time": "5:50:59", "remaining_time": "5:56:35"} +{"current_steps": 2318, "total_steps": 4671, "loss": 0.1016, "learning_rate": 5.934410088036732e-06, "epoch": 1.4887604367373153, "percentage": 49.63, "elapsed_time": "5:51:08", "remaining_time": "5:56:26"} +{"current_steps": 2319, "total_steps": 4671, "loss": 0.0804, "learning_rate": 5.930738348380486e-06, "epoch": 1.489402697495183, "percentage": 49.65, "elapsed_time": "5:51:17", "remaining_time": "5:56:17"} +{"current_steps": 2320, "total_steps": 4671, "loss": 0.0468, "learning_rate": 5.927066088718005e-06, "epoch": 1.4900449582530508, "percentage": 49.67, "elapsed_time": "5:51:25", "remaining_time": "5:56:06"} +{"current_steps": 2321, "total_steps": 4671, "loss": 0.1092, "learning_rate": 5.923393311100987e-06, "epoch": 1.4906872190109184, "percentage": 49.69, "elapsed_time": "5:51:35", "remaining_time": "5:55:58"} +{"current_steps": 2322, "total_steps": 4671, "loss": 0.0573, "learning_rate": 5.9197200175814275e-06, "epoch": 1.4913294797687862, "percentage": 49.71, "elapsed_time": "5:51:43", "remaining_time": "5:55:48"} +{"current_steps": 2323, "total_steps": 4671, "loss": 0.0864, "learning_rate": 5.916046210211601e-06, "epoch": 1.4919717405266537, "percentage": 49.73, "elapsed_time": "5:51:51", "remaining_time": "5:55:39"} +{"current_steps": 2324, "total_steps": 4671, "loss": 0.1314, "learning_rate": 5.912371891044079e-06, "epoch": 1.4926140012845215, "percentage": 49.75, "elapsed_time": "5:52:03", "remaining_time": "5:55:32"} +{"current_steps": 2325, "total_steps": 4671, "loss": 0.048, "learning_rate": 5.9086970621317115e-06, "epoch": 1.4932562620423893, "percentage": 49.78, "elapsed_time": "5:52:10", "remaining_time": "5:55:20"} +{"current_steps": 2326, "total_steps": 4671, "loss": 0.1089, "learning_rate": 5.905021725527637e-06, "epoch": 1.493898522800257, "percentage": 49.8, "elapsed_time": "5:52:19", "remaining_time": "5:55:12"} +{"current_steps": 2327, "total_steps": 4671, "loss": 0.0414, "learning_rate": 5.901345883285278e-06, "epoch": 1.4945407835581246, "percentage": 49.82, "elapsed_time": "5:52:26", "remaining_time": "5:55:01"} +{"current_steps": 2328, "total_steps": 4671, "loss": 0.1625, "learning_rate": 5.897669537458339e-06, "epoch": 1.4951830443159924, "percentage": 49.84, "elapsed_time": "5:52:37", "remaining_time": "5:54:54"} +{"current_steps": 2329, "total_steps": 4671, "loss": 0.088, "learning_rate": 5.893992690100803e-06, "epoch": 1.49582530507386, "percentage": 49.86, "elapsed_time": "5:52:46", "remaining_time": "5:54:44"} +{"current_steps": 2330, "total_steps": 4671, "loss": 0.0718, "learning_rate": 5.8903153432669336e-06, "epoch": 1.4964675658317277, "percentage": 49.88, "elapsed_time": "5:52:55", "remaining_time": "5:54:35"} +{"current_steps": 2331, "total_steps": 4671, "loss": 0.0662, "learning_rate": 5.8866374990112785e-06, "epoch": 1.4971098265895955, "percentage": 49.9, "elapsed_time": "5:53:03", "remaining_time": "5:54:25"} +{"current_steps": 2332, "total_steps": 4671, "loss": 0.0612, "learning_rate": 5.882959159388661e-06, "epoch": 1.497752087347463, "percentage": 49.93, "elapsed_time": "5:53:11", "remaining_time": "5:54:15"} +{"current_steps": 2333, "total_steps": 4671, "loss": 0.0522, "learning_rate": 5.879280326454178e-06, "epoch": 1.4983943481053308, "percentage": 49.95, "elapsed_time": "5:53:21", "remaining_time": "5:54:07"} +{"current_steps": 2334, "total_steps": 4671, "loss": 0.0811, "learning_rate": 5.875601002263203e-06, "epoch": 1.4990366088631983, "percentage": 49.97, "elapsed_time": "5:53:29", "remaining_time": "5:53:56"} +{"current_steps": 2335, "total_steps": 4671, "loss": 0.0675, "learning_rate": 5.871921188871387e-06, "epoch": 1.4996788696210661, "percentage": 49.99, "elapsed_time": "5:53:38", "remaining_time": "5:53:47"} +{"current_steps": 2336, "total_steps": 4671, "loss": 0.0756, "learning_rate": 5.8682408883346535e-06, "epoch": 1.5003211303789339, "percentage": 50.01, "elapsed_time": "5:53:47", "remaining_time": "5:53:38"} +{"current_steps": 2337, "total_steps": 4671, "loss": 0.0842, "learning_rate": 5.864560102709194e-06, "epoch": 1.5009633911368017, "percentage": 50.03, "elapsed_time": "5:53:57", "remaining_time": "5:53:29"} +{"current_steps": 2338, "total_steps": 4671, "loss": 0.0993, "learning_rate": 5.860878834051478e-06, "epoch": 1.5016056518946692, "percentage": 50.05, "elapsed_time": "5:54:06", "remaining_time": "5:53:21"} +{"current_steps": 2339, "total_steps": 4671, "loss": 0.0704, "learning_rate": 5.857197084418238e-06, "epoch": 1.5022479126525368, "percentage": 50.07, "elapsed_time": "5:54:16", "remaining_time": "5:53:12"} +{"current_steps": 2340, "total_steps": 4671, "loss": 0.147, "learning_rate": 5.853514855866481e-06, "epoch": 1.5028901734104045, "percentage": 50.1, "elapsed_time": "5:54:25", "remaining_time": "5:53:03"} +{"current_steps": 2341, "total_steps": 4671, "loss": 0.1534, "learning_rate": 5.849832150453475e-06, "epoch": 1.5035324341682723, "percentage": 50.12, "elapsed_time": "5:54:33", "remaining_time": "5:52:53"} +{"current_steps": 2342, "total_steps": 4671, "loss": 0.0551, "learning_rate": 5.846148970236762e-06, "epoch": 1.50417469492614, "percentage": 50.14, "elapsed_time": "5:54:41", "remaining_time": "5:52:43"} +{"current_steps": 2343, "total_steps": 4671, "loss": 0.0717, "learning_rate": 5.842465317274144e-06, "epoch": 1.5048169556840079, "percentage": 50.16, "elapsed_time": "5:54:51", "remaining_time": "5:52:34"} +{"current_steps": 2344, "total_steps": 4671, "loss": 0.0632, "learning_rate": 5.8387811936236904e-06, "epoch": 1.5054592164418754, "percentage": 50.18, "elapsed_time": "5:55:01", "remaining_time": "5:52:27"} +{"current_steps": 2345, "total_steps": 4671, "loss": 0.1162, "learning_rate": 5.8350966013437295e-06, "epoch": 1.506101477199743, "percentage": 50.2, "elapsed_time": "5:55:11", "remaining_time": "5:52:18"} +{"current_steps": 2346, "total_steps": 4671, "loss": 0.0848, "learning_rate": 5.831411542492854e-06, "epoch": 1.5067437379576107, "percentage": 50.22, "elapsed_time": "5:55:18", "remaining_time": "5:52:07"} +{"current_steps": 2347, "total_steps": 4671, "loss": 0.0851, "learning_rate": 5.827726019129918e-06, "epoch": 1.5073859987154785, "percentage": 50.25, "elapsed_time": "5:55:26", "remaining_time": "5:51:57"} +{"current_steps": 2348, "total_steps": 4671, "loss": 0.0571, "learning_rate": 5.824040033314034e-06, "epoch": 1.5080282594733463, "percentage": 50.27, "elapsed_time": "5:55:35", "remaining_time": "5:51:47"} +{"current_steps": 2349, "total_steps": 4671, "loss": 0.1072, "learning_rate": 5.8203535871045735e-06, "epoch": 1.5086705202312138, "percentage": 50.29, "elapsed_time": "5:55:44", "remaining_time": "5:51:39"} +{"current_steps": 2350, "total_steps": 4671, "loss": 0.1114, "learning_rate": 5.8166666825611625e-06, "epoch": 1.5093127809890816, "percentage": 50.31, "elapsed_time": "5:55:53", "remaining_time": "5:51:29"} +{"current_steps": 2351, "total_steps": 4671, "loss": 0.0958, "learning_rate": 5.812979321743689e-06, "epoch": 1.5099550417469492, "percentage": 50.33, "elapsed_time": "5:56:01", "remaining_time": "5:51:20"} +{"current_steps": 2352, "total_steps": 4671, "loss": 0.0701, "learning_rate": 5.809291506712289e-06, "epoch": 1.510597302504817, "percentage": 50.35, "elapsed_time": "5:56:09", "remaining_time": "5:51:09"} +{"current_steps": 2353, "total_steps": 4671, "loss": 0.0616, "learning_rate": 5.805603239527358e-06, "epoch": 1.5112395632626847, "percentage": 50.37, "elapsed_time": "5:56:17", "remaining_time": "5:50:59"} +{"current_steps": 2354, "total_steps": 4671, "loss": 0.0835, "learning_rate": 5.8019145222495395e-06, "epoch": 1.5118818240205525, "percentage": 50.4, "elapsed_time": "5:56:27", "remaining_time": "5:50:51"} +{"current_steps": 2355, "total_steps": 4671, "loss": 0.0544, "learning_rate": 5.798225356939733e-06, "epoch": 1.51252408477842, "percentage": 50.42, "elapsed_time": "5:56:34", "remaining_time": "5:50:39"} +{"current_steps": 2356, "total_steps": 4671, "loss": 0.0762, "learning_rate": 5.7945357456590845e-06, "epoch": 1.5131663455362876, "percentage": 50.44, "elapsed_time": "5:56:45", "remaining_time": "5:50:33"} +{"current_steps": 2357, "total_steps": 4671, "loss": 0.0525, "learning_rate": 5.79084569046899e-06, "epoch": 1.5138086062941554, "percentage": 50.46, "elapsed_time": "5:56:53", "remaining_time": "5:50:22"} +{"current_steps": 2358, "total_steps": 4671, "loss": 0.0928, "learning_rate": 5.787155193431095e-06, "epoch": 1.5144508670520231, "percentage": 50.48, "elapsed_time": "5:57:02", "remaining_time": "5:50:13"} +{"current_steps": 2359, "total_steps": 4671, "loss": 0.0929, "learning_rate": 5.783464256607289e-06, "epoch": 1.515093127809891, "percentage": 50.5, "elapsed_time": "5:57:11", "remaining_time": "5:50:04"} +{"current_steps": 2360, "total_steps": 4671, "loss": 0.0612, "learning_rate": 5.779772882059716e-06, "epoch": 1.5157353885677585, "percentage": 50.52, "elapsed_time": "5:57:18", "remaining_time": "5:49:53"} +{"current_steps": 2361, "total_steps": 4671, "loss": 0.0511, "learning_rate": 5.776081071850749e-06, "epoch": 1.5163776493256262, "percentage": 50.55, "elapsed_time": "5:57:27", "remaining_time": "5:49:44"} +{"current_steps": 2362, "total_steps": 4671, "loss": 0.0665, "learning_rate": 5.772388828043017e-06, "epoch": 1.5170199100834938, "percentage": 50.57, "elapsed_time": "5:57:38", "remaining_time": "5:49:37"} +{"current_steps": 2363, "total_steps": 4671, "loss": 0.1115, "learning_rate": 5.768696152699389e-06, "epoch": 1.5176621708413616, "percentage": 50.59, "elapsed_time": "5:57:45", "remaining_time": "5:49:26"} +{"current_steps": 2364, "total_steps": 4671, "loss": 0.0905, "learning_rate": 5.765003047882971e-06, "epoch": 1.5183044315992293, "percentage": 50.61, "elapsed_time": "5:57:57", "remaining_time": "5:49:19"} +{"current_steps": 2365, "total_steps": 4671, "loss": 0.1414, "learning_rate": 5.761309515657113e-06, "epoch": 1.5189466923570971, "percentage": 50.63, "elapsed_time": "5:58:06", "remaining_time": "5:49:10"} +{"current_steps": 2366, "total_steps": 4671, "loss": 0.0621, "learning_rate": 5.757615558085401e-06, "epoch": 1.5195889531149647, "percentage": 50.65, "elapsed_time": "5:58:15", "remaining_time": "5:49:01"} +{"current_steps": 2367, "total_steps": 4671, "loss": 0.0383, "learning_rate": 5.75392117723166e-06, "epoch": 1.5202312138728322, "percentage": 50.67, "elapsed_time": "5:58:24", "remaining_time": "5:48:52"} +{"current_steps": 2368, "total_steps": 4671, "loss": 0.1381, "learning_rate": 5.750226375159954e-06, "epoch": 1.5208734746307, "percentage": 50.7, "elapsed_time": "5:58:35", "remaining_time": "5:48:44"} +{"current_steps": 2369, "total_steps": 4671, "loss": 0.0305, "learning_rate": 5.746531153934576e-06, "epoch": 1.5215157353885678, "percentage": 50.72, "elapsed_time": "5:58:44", "remaining_time": "5:48:36"} +{"current_steps": 2370, "total_steps": 4671, "loss": 0.1469, "learning_rate": 5.74283551562006e-06, "epoch": 1.5221579961464355, "percentage": 50.74, "elapsed_time": "5:58:53", "remaining_time": "5:48:26"} +{"current_steps": 2371, "total_steps": 4671, "loss": 0.0192, "learning_rate": 5.739139462281167e-06, "epoch": 1.522800256904303, "percentage": 50.76, "elapsed_time": "5:59:02", "remaining_time": "5:48:16"} +{"current_steps": 2372, "total_steps": 4671, "loss": 0.0316, "learning_rate": 5.735442995982896e-06, "epoch": 1.5234425176621709, "percentage": 50.78, "elapsed_time": "5:59:09", "remaining_time": "5:48:05"} +{"current_steps": 2373, "total_steps": 4671, "loss": 0.047, "learning_rate": 5.731746118790471e-06, "epoch": 1.5240847784200384, "percentage": 50.8, "elapsed_time": "5:59:18", "remaining_time": "5:47:56"} +{"current_steps": 2374, "total_steps": 4671, "loss": 0.0725, "learning_rate": 5.7280488327693475e-06, "epoch": 1.5247270391779062, "percentage": 50.82, "elapsed_time": "5:59:26", "remaining_time": "5:47:47"} +{"current_steps": 2375, "total_steps": 4671, "loss": 0.106, "learning_rate": 5.7243511399852125e-06, "epoch": 1.525369299935774, "percentage": 50.85, "elapsed_time": "5:59:37", "remaining_time": "5:47:39"} +{"current_steps": 2376, "total_steps": 4671, "loss": 0.0526, "learning_rate": 5.7206530425039785e-06, "epoch": 1.5260115606936417, "percentage": 50.87, "elapsed_time": "5:59:46", "remaining_time": "5:47:30"} +{"current_steps": 2377, "total_steps": 4671, "loss": 0.0453, "learning_rate": 5.716954542391779e-06, "epoch": 1.5266538214515093, "percentage": 50.89, "elapsed_time": "5:59:56", "remaining_time": "5:47:22"} +{"current_steps": 2378, "total_steps": 4671, "loss": 0.0563, "learning_rate": 5.713255641714981e-06, "epoch": 1.5272960822093768, "percentage": 50.91, "elapsed_time": "6:00:06", "remaining_time": "5:47:13"} +{"current_steps": 2379, "total_steps": 4671, "loss": 0.0521, "learning_rate": 5.7095563425401704e-06, "epoch": 1.5279383429672446, "percentage": 50.93, "elapsed_time": "6:00:15", "remaining_time": "5:47:05"} +{"current_steps": 2380, "total_steps": 4671, "loss": 0.1538, "learning_rate": 5.705856646934154e-06, "epoch": 1.5285806037251124, "percentage": 50.95, "elapsed_time": "6:00:25", "remaining_time": "5:46:57"} +{"current_steps": 2381, "total_steps": 4671, "loss": 0.0967, "learning_rate": 5.702156556963965e-06, "epoch": 1.5292228644829802, "percentage": 50.97, "elapsed_time": "6:00:35", "remaining_time": "5:46:48"} +{"current_steps": 2382, "total_steps": 4671, "loss": 0.0697, "learning_rate": 5.6984560746968534e-06, "epoch": 1.529865125240848, "percentage": 51.0, "elapsed_time": "6:00:46", "remaining_time": "5:46:41"} +{"current_steps": 2383, "total_steps": 4671, "loss": 0.0497, "learning_rate": 5.69475520220029e-06, "epoch": 1.5305073859987155, "percentage": 51.02, "elapsed_time": "6:00:54", "remaining_time": "5:46:31"} +{"current_steps": 2384, "total_steps": 4671, "loss": 0.0279, "learning_rate": 5.691053941541963e-06, "epoch": 1.531149646756583, "percentage": 51.04, "elapsed_time": "6:01:04", "remaining_time": "5:46:22"} +{"current_steps": 2385, "total_steps": 4671, "loss": 0.0361, "learning_rate": 5.687352294789776e-06, "epoch": 1.5317919075144508, "percentage": 51.06, "elapsed_time": "6:01:13", "remaining_time": "5:46:13"} +{"current_steps": 2386, "total_steps": 4671, "loss": 0.089, "learning_rate": 5.683650264011853e-06, "epoch": 1.5324341682723186, "percentage": 51.08, "elapsed_time": "6:01:22", "remaining_time": "5:46:04"} +{"current_steps": 2387, "total_steps": 4671, "loss": 0.0997, "learning_rate": 5.679947851276528e-06, "epoch": 1.5330764290301864, "percentage": 51.1, "elapsed_time": "6:01:31", "remaining_time": "5:45:55"} +{"current_steps": 2388, "total_steps": 4671, "loss": 0.0628, "learning_rate": 5.676245058652349e-06, "epoch": 1.533718689788054, "percentage": 51.12, "elapsed_time": "6:01:41", "remaining_time": "5:45:46"} +{"current_steps": 2389, "total_steps": 4671, "loss": 0.0709, "learning_rate": 5.672541888208076e-06, "epoch": 1.5343609505459217, "percentage": 51.15, "elapsed_time": "6:01:50", "remaining_time": "5:45:37"} +{"current_steps": 2390, "total_steps": 4671, "loss": 0.1374, "learning_rate": 5.6688383420126845e-06, "epoch": 1.5350032113037893, "percentage": 51.17, "elapsed_time": "6:01:59", "remaining_time": "5:45:28"} +{"current_steps": 2391, "total_steps": 4671, "loss": 0.0631, "learning_rate": 5.665134422135354e-06, "epoch": 1.535645472061657, "percentage": 51.19, "elapsed_time": "6:02:09", "remaining_time": "5:45:20"} +{"current_steps": 2392, "total_steps": 4671, "loss": 0.1021, "learning_rate": 5.661430130645478e-06, "epoch": 1.5362877328195248, "percentage": 51.21, "elapsed_time": "6:02:17", "remaining_time": "5:45:10"} +{"current_steps": 2393, "total_steps": 4671, "loss": 0.0324, "learning_rate": 5.657725469612651e-06, "epoch": 1.5369299935773926, "percentage": 51.23, "elapsed_time": "6:02:25", "remaining_time": "5:45:00"} +{"current_steps": 2394, "total_steps": 4671, "loss": 0.1145, "learning_rate": 5.654020441106682e-06, "epoch": 1.5375722543352601, "percentage": 51.25, "elapsed_time": "6:02:35", "remaining_time": "5:44:52"} +{"current_steps": 2395, "total_steps": 4671, "loss": 0.0689, "learning_rate": 5.650315047197579e-06, "epoch": 1.5382145150931277, "percentage": 51.27, "elapsed_time": "6:02:45", "remaining_time": "5:44:43"} +{"current_steps": 2396, "total_steps": 4671, "loss": 0.0511, "learning_rate": 5.646609289955556e-06, "epoch": 1.5388567758509955, "percentage": 51.3, "elapsed_time": "6:02:53", "remaining_time": "5:44:34"} +{"current_steps": 2397, "total_steps": 4671, "loss": 0.0568, "learning_rate": 5.642903171451031e-06, "epoch": 1.5394990366088632, "percentage": 51.32, "elapsed_time": "6:03:01", "remaining_time": "5:44:23"} +{"current_steps": 2398, "total_steps": 4671, "loss": 0.0796, "learning_rate": 5.639196693754624e-06, "epoch": 1.540141297366731, "percentage": 51.34, "elapsed_time": "6:03:10", "remaining_time": "5:44:14"} +{"current_steps": 2399, "total_steps": 4671, "loss": 0.0676, "learning_rate": 5.6354898589371555e-06, "epoch": 1.5407835581245986, "percentage": 51.36, "elapsed_time": "6:03:20", "remaining_time": "5:44:06"} +{"current_steps": 2400, "total_steps": 4671, "loss": 0.0744, "learning_rate": 5.631782669069643e-06, "epoch": 1.5414258188824663, "percentage": 51.38, "elapsed_time": "6:03:29", "remaining_time": "5:43:57"} +{"current_steps": 2401, "total_steps": 4671, "loss": 0.098, "learning_rate": 5.628075126223306e-06, "epoch": 1.5420680796403339, "percentage": 51.4, "elapsed_time": "6:03:40", "remaining_time": "5:43:49"} +{"current_steps": 2402, "total_steps": 4671, "loss": 0.0585, "learning_rate": 5.6243672324695566e-06, "epoch": 1.5427103403982017, "percentage": 51.42, "elapsed_time": "6:03:49", "remaining_time": "5:43:40"} +{"current_steps": 2403, "total_steps": 4671, "loss": 0.0598, "learning_rate": 5.620658989880011e-06, "epoch": 1.5433526011560694, "percentage": 51.45, "elapsed_time": "6:03:59", "remaining_time": "5:43:32"} +{"current_steps": 2404, "total_steps": 4671, "loss": 0.0505, "learning_rate": 5.616950400526471e-06, "epoch": 1.5439948619139372, "percentage": 51.47, "elapsed_time": "6:04:09", "remaining_time": "5:43:24"} +{"current_steps": 2405, "total_steps": 4671, "loss": 0.0621, "learning_rate": 5.613241466480936e-06, "epoch": 1.5446371226718048, "percentage": 51.49, "elapsed_time": "6:04:19", "remaining_time": "5:43:16"} +{"current_steps": 2406, "total_steps": 4671, "loss": 0.0298, "learning_rate": 5.609532189815602e-06, "epoch": 1.5452793834296723, "percentage": 51.51, "elapsed_time": "6:04:27", "remaining_time": "5:43:05"} +{"current_steps": 2407, "total_steps": 4671, "loss": 0.0743, "learning_rate": 5.60582257260285e-06, "epoch": 1.54592164418754, "percentage": 51.53, "elapsed_time": "6:04:35", "remaining_time": "5:42:56"} +{"current_steps": 2408, "total_steps": 4671, "loss": 0.0493, "learning_rate": 5.602112616915254e-06, "epoch": 1.5465639049454079, "percentage": 51.55, "elapsed_time": "6:04:45", "remaining_time": "5:42:47"} +{"current_steps": 2409, "total_steps": 4671, "loss": 0.117, "learning_rate": 5.5984023248255785e-06, "epoch": 1.5472061657032756, "percentage": 51.57, "elapsed_time": "6:04:53", "remaining_time": "5:42:37"} +{"current_steps": 2410, "total_steps": 4671, "loss": 0.0657, "learning_rate": 5.594691698406773e-06, "epoch": 1.5478484264611432, "percentage": 51.59, "elapsed_time": "6:05:02", "remaining_time": "5:42:28"} +{"current_steps": 2411, "total_steps": 4671, "loss": 0.0977, "learning_rate": 5.590980739731977e-06, "epoch": 1.548490687219011, "percentage": 51.62, "elapsed_time": "6:05:10", "remaining_time": "5:42:17"} +{"current_steps": 2412, "total_steps": 4671, "loss": 0.0979, "learning_rate": 5.587269450874513e-06, "epoch": 1.5491329479768785, "percentage": 51.64, "elapsed_time": "6:05:18", "remaining_time": "5:42:08"} +{"current_steps": 2413, "total_steps": 4671, "loss": 0.0453, "learning_rate": 5.583557833907886e-06, "epoch": 1.5497752087347463, "percentage": 51.66, "elapsed_time": "6:05:28", "remaining_time": "5:41:59"} +{"current_steps": 2414, "total_steps": 4671, "loss": 0.1839, "learning_rate": 5.579845890905793e-06, "epoch": 1.550417469492614, "percentage": 51.68, "elapsed_time": "6:05:39", "remaining_time": "5:41:52"} +{"current_steps": 2415, "total_steps": 4671, "loss": 0.1179, "learning_rate": 5.576133623942105e-06, "epoch": 1.5510597302504818, "percentage": 51.7, "elapsed_time": "6:05:50", "remaining_time": "5:41:45"} +{"current_steps": 2416, "total_steps": 4671, "loss": 0.0645, "learning_rate": 5.572421035090874e-06, "epoch": 1.5517019910083494, "percentage": 51.72, "elapsed_time": "6:05:59", "remaining_time": "5:41:35"} +{"current_steps": 2417, "total_steps": 4671, "loss": 0.0978, "learning_rate": 5.5687081264263386e-06, "epoch": 1.552344251766217, "percentage": 51.74, "elapsed_time": "6:06:08", "remaining_time": "5:41:27"} +{"current_steps": 2418, "total_steps": 4671, "loss": 0.0996, "learning_rate": 5.564994900022909e-06, "epoch": 1.5529865125240847, "percentage": 51.77, "elapsed_time": "6:06:17", "remaining_time": "5:41:18"} +{"current_steps": 2419, "total_steps": 4671, "loss": 0.1079, "learning_rate": 5.561281357955174e-06, "epoch": 1.5536287732819525, "percentage": 51.79, "elapsed_time": "6:06:26", "remaining_time": "5:41:08"} +{"current_steps": 2420, "total_steps": 4671, "loss": 0.0703, "learning_rate": 5.557567502297904e-06, "epoch": 1.5542710340398203, "percentage": 51.81, "elapsed_time": "6:06:34", "remaining_time": "5:40:58"} +{"current_steps": 2421, "total_steps": 4671, "loss": 0.1306, "learning_rate": 5.5538533351260395e-06, "epoch": 1.5549132947976878, "percentage": 51.83, "elapsed_time": "6:06:42", "remaining_time": "5:40:48"} +{"current_steps": 2422, "total_steps": 4671, "loss": 0.0695, "learning_rate": 5.550138858514695e-06, "epoch": 1.5555555555555556, "percentage": 51.85, "elapsed_time": "6:06:51", "remaining_time": "5:40:39"} +{"current_steps": 2423, "total_steps": 4671, "loss": 0.0366, "learning_rate": 5.5464240745391626e-06, "epoch": 1.5561978163134231, "percentage": 51.87, "elapsed_time": "6:06:59", "remaining_time": "5:40:29"} +{"current_steps": 2424, "total_steps": 4671, "loss": 0.0772, "learning_rate": 5.542708985274901e-06, "epoch": 1.556840077071291, "percentage": 51.89, "elapsed_time": "6:07:08", "remaining_time": "5:40:19"} +{"current_steps": 2425, "total_steps": 4671, "loss": 0.0964, "learning_rate": 5.538993592797543e-06, "epoch": 1.5574823378291587, "percentage": 51.92, "elapsed_time": "6:07:17", "remaining_time": "5:40:10"} +{"current_steps": 2426, "total_steps": 4671, "loss": 0.1041, "learning_rate": 5.535277899182887e-06, "epoch": 1.5581245985870265, "percentage": 51.94, "elapsed_time": "6:07:25", "remaining_time": "5:40:00"} +{"current_steps": 2427, "total_steps": 4671, "loss": 0.0379, "learning_rate": 5.531561906506904e-06, "epoch": 1.558766859344894, "percentage": 51.96, "elapsed_time": "6:07:33", "remaining_time": "5:39:50"} +{"current_steps": 2428, "total_steps": 4671, "loss": 0.1327, "learning_rate": 5.527845616845727e-06, "epoch": 1.5594091201027616, "percentage": 51.98, "elapsed_time": "6:07:43", "remaining_time": "5:39:42"} +{"current_steps": 2429, "total_steps": 4671, "loss": 0.1128, "learning_rate": 5.524129032275661e-06, "epoch": 1.5600513808606293, "percentage": 52.0, "elapsed_time": "6:07:51", "remaining_time": "5:39:31"} +{"current_steps": 2430, "total_steps": 4671, "loss": 0.0602, "learning_rate": 5.52041215487317e-06, "epoch": 1.560693641618497, "percentage": 52.02, "elapsed_time": "6:07:58", "remaining_time": "5:39:21"} +{"current_steps": 2431, "total_steps": 4671, "loss": 0.1306, "learning_rate": 5.516694986714888e-06, "epoch": 1.5613359023763649, "percentage": 52.04, "elapsed_time": "6:08:09", "remaining_time": "5:39:13"} +{"current_steps": 2432, "total_steps": 4671, "loss": 0.0747, "learning_rate": 5.512977529877605e-06, "epoch": 1.5619781631342327, "percentage": 52.07, "elapsed_time": "6:08:16", "remaining_time": "5:39:03"} +{"current_steps": 2433, "total_steps": 4671, "loss": 0.0355, "learning_rate": 5.509259786438275e-06, "epoch": 1.5626204238921002, "percentage": 52.09, "elapsed_time": "6:08:27", "remaining_time": "5:38:55"} +{"current_steps": 2434, "total_steps": 4671, "loss": 0.0451, "learning_rate": 5.5055417584740125e-06, "epoch": 1.5632626846499678, "percentage": 52.11, "elapsed_time": "6:08:34", "remaining_time": "5:38:44"} +{"current_steps": 2435, "total_steps": 4671, "loss": 0.0598, "learning_rate": 5.501823448062092e-06, "epoch": 1.5639049454078355, "percentage": 52.13, "elapsed_time": "6:08:42", "remaining_time": "5:38:34"} +{"current_steps": 2436, "total_steps": 4671, "loss": 0.0738, "learning_rate": 5.498104857279941e-06, "epoch": 1.5645472061657033, "percentage": 52.15, "elapsed_time": "6:08:52", "remaining_time": "5:38:26"} +{"current_steps": 2437, "total_steps": 4671, "loss": 0.1402, "learning_rate": 5.494385988205151e-06, "epoch": 1.565189466923571, "percentage": 52.17, "elapsed_time": "6:09:01", "remaining_time": "5:38:17"} +{"current_steps": 2438, "total_steps": 4671, "loss": 0.1067, "learning_rate": 5.490666842915463e-06, "epoch": 1.5658317276814386, "percentage": 52.19, "elapsed_time": "6:09:09", "remaining_time": "5:38:07"} +{"current_steps": 2439, "total_steps": 4671, "loss": 0.0254, "learning_rate": 5.486947423488774e-06, "epoch": 1.5664739884393064, "percentage": 52.22, "elapsed_time": "6:09:16", "remaining_time": "5:37:56"} +{"current_steps": 2440, "total_steps": 4671, "loss": 0.1058, "learning_rate": 5.4832277320031345e-06, "epoch": 1.567116249197174, "percentage": 52.24, "elapsed_time": "6:09:25", "remaining_time": "5:37:46"} +{"current_steps": 2441, "total_steps": 4671, "loss": 0.0509, "learning_rate": 5.4795077705367485e-06, "epoch": 1.5677585099550417, "percentage": 52.26, "elapsed_time": "6:09:33", "remaining_time": "5:37:36"} +{"current_steps": 2442, "total_steps": 4671, "loss": 0.0608, "learning_rate": 5.47578754116797e-06, "epoch": 1.5684007707129095, "percentage": 52.28, "elapsed_time": "6:09:42", "remaining_time": "5:37:27"} +{"current_steps": 2443, "total_steps": 4671, "loss": 0.0903, "learning_rate": 5.472067045975298e-06, "epoch": 1.5690430314707773, "percentage": 52.3, "elapsed_time": "6:09:53", "remaining_time": "5:37:20"} +{"current_steps": 2444, "total_steps": 4671, "loss": 0.1046, "learning_rate": 5.4683462870373886e-06, "epoch": 1.5696852922286448, "percentage": 52.32, "elapsed_time": "6:10:00", "remaining_time": "5:37:09"} +{"current_steps": 2445, "total_steps": 4671, "loss": 0.0554, "learning_rate": 5.464625266433036e-06, "epoch": 1.5703275529865124, "percentage": 52.34, "elapsed_time": "6:10:09", "remaining_time": "5:37:00"} +{"current_steps": 2446, "total_steps": 4671, "loss": 0.0512, "learning_rate": 5.4609039862411905e-06, "epoch": 1.5709698137443802, "percentage": 52.37, "elapsed_time": "6:10:18", "remaining_time": "5:36:51"} +{"current_steps": 2447, "total_steps": 4671, "loss": 0.1244, "learning_rate": 5.457182448540939e-06, "epoch": 1.571612074502248, "percentage": 52.39, "elapsed_time": "6:10:29", "remaining_time": "5:36:43"} +{"current_steps": 2448, "total_steps": 4671, "loss": 0.2424, "learning_rate": 5.453460655411515e-06, "epoch": 1.5722543352601157, "percentage": 52.41, "elapsed_time": "6:10:40", "remaining_time": "5:36:36"} +{"current_steps": 2449, "total_steps": 4671, "loss": 0.1519, "learning_rate": 5.449738608932297e-06, "epoch": 1.5728965960179833, "percentage": 52.43, "elapsed_time": "6:10:50", "remaining_time": "5:36:27"} +{"current_steps": 2450, "total_steps": 4671, "loss": 0.063, "learning_rate": 5.446016311182804e-06, "epoch": 1.573538856775851, "percentage": 52.45, "elapsed_time": "6:10:59", "remaining_time": "5:36:18"} +{"current_steps": 2451, "total_steps": 4671, "loss": 0.0614, "learning_rate": 5.442293764242691e-06, "epoch": 1.5741811175337186, "percentage": 52.47, "elapsed_time": "6:11:08", "remaining_time": "5:36:10"} +{"current_steps": 2452, "total_steps": 4671, "loss": 0.1019, "learning_rate": 5.438570970191759e-06, "epoch": 1.5748233782915864, "percentage": 52.49, "elapsed_time": "6:11:17", "remaining_time": "5:36:00"} +{"current_steps": 2453, "total_steps": 4671, "loss": 0.0496, "learning_rate": 5.4348479311099436e-06, "epoch": 1.5754656390494541, "percentage": 52.52, "elapsed_time": "6:11:26", "remaining_time": "5:35:51"} +{"current_steps": 2454, "total_steps": 4671, "loss": 0.0642, "learning_rate": 5.4311246490773175e-06, "epoch": 1.576107899807322, "percentage": 52.54, "elapsed_time": "6:11:37", "remaining_time": "5:35:43"} +{"current_steps": 2455, "total_steps": 4671, "loss": 0.054, "learning_rate": 5.427401126174089e-06, "epoch": 1.5767501605651895, "percentage": 52.56, "elapsed_time": "6:11:45", "remaining_time": "5:35:33"} +{"current_steps": 2456, "total_steps": 4671, "loss": 0.1389, "learning_rate": 5.4236773644806e-06, "epoch": 1.577392421323057, "percentage": 52.58, "elapsed_time": "6:11:53", "remaining_time": "5:35:23"} +{"current_steps": 2457, "total_steps": 4671, "loss": 0.0363, "learning_rate": 5.4199533660773276e-06, "epoch": 1.5780346820809248, "percentage": 52.6, "elapsed_time": "6:12:00", "remaining_time": "5:35:12"} +{"current_steps": 2458, "total_steps": 4671, "loss": 0.0797, "learning_rate": 5.416229133044882e-06, "epoch": 1.5786769428387926, "percentage": 52.62, "elapsed_time": "6:12:09", "remaining_time": "5:35:03"} +{"current_steps": 2459, "total_steps": 4671, "loss": 0.0836, "learning_rate": 5.4125046674640025e-06, "epoch": 1.5793192035966603, "percentage": 52.64, "elapsed_time": "6:12:18", "remaining_time": "5:34:54"} +{"current_steps": 2460, "total_steps": 4671, "loss": 0.0534, "learning_rate": 5.408779971415559e-06, "epoch": 1.579961464354528, "percentage": 52.67, "elapsed_time": "6:12:26", "remaining_time": "5:34:44"} +{"current_steps": 2461, "total_steps": 4671, "loss": 0.0689, "learning_rate": 5.405055046980548e-06, "epoch": 1.5806037251123957, "percentage": 52.69, "elapsed_time": "6:12:35", "remaining_time": "5:34:35"} +{"current_steps": 2462, "total_steps": 4671, "loss": 0.1103, "learning_rate": 5.4013298962400986e-06, "epoch": 1.5812459858702632, "percentage": 52.71, "elapsed_time": "6:12:45", "remaining_time": "5:34:27"} +{"current_steps": 2463, "total_steps": 4671, "loss": 0.0659, "learning_rate": 5.397604521275462e-06, "epoch": 1.581888246628131, "percentage": 52.73, "elapsed_time": "6:12:55", "remaining_time": "5:34:19"} +{"current_steps": 2464, "total_steps": 4671, "loss": 0.0865, "learning_rate": 5.393878924168017e-06, "epoch": 1.5825305073859988, "percentage": 52.75, "elapsed_time": "6:13:03", "remaining_time": "5:34:08"} +{"current_steps": 2465, "total_steps": 4671, "loss": 0.059, "learning_rate": 5.390153106999264e-06, "epoch": 1.5831727681438665, "percentage": 52.77, "elapsed_time": "6:13:11", "remaining_time": "5:33:58"} +{"current_steps": 2466, "total_steps": 4671, "loss": 0.0644, "learning_rate": 5.3864270718508305e-06, "epoch": 1.583815028901734, "percentage": 52.79, "elapsed_time": "6:13:21", "remaining_time": "5:33:50"} +{"current_steps": 2467, "total_steps": 4671, "loss": 0.0556, "learning_rate": 5.38270082080446e-06, "epoch": 1.5844572896596016, "percentage": 52.82, "elapsed_time": "6:13:30", "remaining_time": "5:33:41"} +{"current_steps": 2468, "total_steps": 4671, "loss": 0.1402, "learning_rate": 5.378974355942021e-06, "epoch": 1.5850995504174694, "percentage": 52.84, "elapsed_time": "6:13:41", "remaining_time": "5:33:33"} +{"current_steps": 2469, "total_steps": 4671, "loss": 0.0655, "learning_rate": 5.375247679345501e-06, "epoch": 1.5857418111753372, "percentage": 52.86, "elapsed_time": "6:13:51", "remaining_time": "5:33:25"} +{"current_steps": 2470, "total_steps": 4671, "loss": 0.02, "learning_rate": 5.371520793097007e-06, "epoch": 1.586384071933205, "percentage": 52.88, "elapsed_time": "6:13:59", "remaining_time": "5:33:15"} +{"current_steps": 2471, "total_steps": 4671, "loss": 0.04, "learning_rate": 5.3677936992787575e-06, "epoch": 1.5870263326910727, "percentage": 52.9, "elapsed_time": "6:14:08", "remaining_time": "5:33:06"} +{"current_steps": 2472, "total_steps": 4671, "loss": 0.1118, "learning_rate": 5.364066399973092e-06, "epoch": 1.5876685934489403, "percentage": 52.92, "elapsed_time": "6:14:19", "remaining_time": "5:32:58"} +{"current_steps": 2473, "total_steps": 4671, "loss": 0.0797, "learning_rate": 5.360338897262465e-06, "epoch": 1.5883108542068078, "percentage": 52.94, "elapsed_time": "6:14:28", "remaining_time": "5:32:50"} +{"current_steps": 2474, "total_steps": 4671, "loss": 0.0367, "learning_rate": 5.356611193229441e-06, "epoch": 1.5889531149646756, "percentage": 52.97, "elapsed_time": "6:14:38", "remaining_time": "5:32:41"} +{"current_steps": 2475, "total_steps": 4671, "loss": 0.0527, "learning_rate": 5.352883289956701e-06, "epoch": 1.5895953757225434, "percentage": 52.99, "elapsed_time": "6:14:47", "remaining_time": "5:32:32"} +{"current_steps": 2476, "total_steps": 4671, "loss": 0.1476, "learning_rate": 5.349155189527034e-06, "epoch": 1.5902376364804112, "percentage": 53.01, "elapsed_time": "6:14:57", "remaining_time": "5:32:24"} +{"current_steps": 2477, "total_steps": 4671, "loss": 0.0603, "learning_rate": 5.345426894023341e-06, "epoch": 1.5908798972382787, "percentage": 53.03, "elapsed_time": "6:15:07", "remaining_time": "5:32:16"} +{"current_steps": 2478, "total_steps": 4671, "loss": 0.085, "learning_rate": 5.341698405528633e-06, "epoch": 1.5915221579961463, "percentage": 53.05, "elapsed_time": "6:15:17", "remaining_time": "5:32:07"} +{"current_steps": 2479, "total_steps": 4671, "loss": 0.0745, "learning_rate": 5.337969726126026e-06, "epoch": 1.592164418754014, "percentage": 53.07, "elapsed_time": "6:15:28", "remaining_time": "5:32:00"} +{"current_steps": 2480, "total_steps": 4671, "loss": 0.0624, "learning_rate": 5.3342408578987434e-06, "epoch": 1.5928066795118818, "percentage": 53.09, "elapsed_time": "6:15:37", "remaining_time": "5:31:50"} +{"current_steps": 2481, "total_steps": 4671, "loss": 0.0599, "learning_rate": 5.330511802930117e-06, "epoch": 1.5934489402697496, "percentage": 53.11, "elapsed_time": "6:15:44", "remaining_time": "5:31:40"} +{"current_steps": 2482, "total_steps": 4671, "loss": 0.1166, "learning_rate": 5.32678256330358e-06, "epoch": 1.5940912010276174, "percentage": 53.14, "elapsed_time": "6:15:54", "remaining_time": "5:31:32"} +{"current_steps": 2483, "total_steps": 4671, "loss": 0.1081, "learning_rate": 5.323053141102667e-06, "epoch": 1.594733461785485, "percentage": 53.16, "elapsed_time": "6:16:03", "remaining_time": "5:31:23"} +{"current_steps": 2484, "total_steps": 4671, "loss": 0.0537, "learning_rate": 5.319323538411021e-06, "epoch": 1.5953757225433525, "percentage": 53.18, "elapsed_time": "6:16:13", "remaining_time": "5:31:14"} +{"current_steps": 2485, "total_steps": 4671, "loss": 0.0533, "learning_rate": 5.315593757312379e-06, "epoch": 1.5960179833012202, "percentage": 53.2, "elapsed_time": "6:16:22", "remaining_time": "5:31:05"} +{"current_steps": 2486, "total_steps": 4671, "loss": 0.0466, "learning_rate": 5.311863799890582e-06, "epoch": 1.596660244059088, "percentage": 53.22, "elapsed_time": "6:16:31", "remaining_time": "5:30:55"} +{"current_steps": 2487, "total_steps": 4671, "loss": 0.026, "learning_rate": 5.308133668229568e-06, "epoch": 1.5973025048169558, "percentage": 53.24, "elapsed_time": "6:16:39", "remaining_time": "5:30:45"} +{"current_steps": 2488, "total_steps": 4671, "loss": 0.1015, "learning_rate": 5.304403364413372e-06, "epoch": 1.5979447655748233, "percentage": 53.26, "elapsed_time": "6:16:47", "remaining_time": "5:30:35"} +{"current_steps": 2489, "total_steps": 4671, "loss": 0.1, "learning_rate": 5.300672890526125e-06, "epoch": 1.5985870263326911, "percentage": 53.29, "elapsed_time": "6:16:58", "remaining_time": "5:30:28"} +{"current_steps": 2490, "total_steps": 4671, "loss": 0.0639, "learning_rate": 5.296942248652055e-06, "epoch": 1.5992292870905587, "percentage": 53.31, "elapsed_time": "6:17:06", "remaining_time": "5:30:19"} +{"current_steps": 2491, "total_steps": 4671, "loss": 0.0818, "learning_rate": 5.293211440875482e-06, "epoch": 1.5998715478484264, "percentage": 53.33, "elapsed_time": "6:17:15", "remaining_time": "5:30:09"} +{"current_steps": 2492, "total_steps": 4671, "loss": 0.1167, "learning_rate": 5.28948046928082e-06, "epoch": 1.6005138086062942, "percentage": 53.35, "elapsed_time": "6:17:24", "remaining_time": "5:30:00"} +{"current_steps": 2493, "total_steps": 4671, "loss": 0.0854, "learning_rate": 5.285749335952573e-06, "epoch": 1.601156069364162, "percentage": 53.37, "elapsed_time": "6:17:35", "remaining_time": "5:29:53"} +{"current_steps": 2494, "total_steps": 4671, "loss": 0.1463, "learning_rate": 5.282018042975337e-06, "epoch": 1.6017983301220295, "percentage": 53.39, "elapsed_time": "6:17:43", "remaining_time": "5:29:43"} +{"current_steps": 2495, "total_steps": 4671, "loss": 0.0543, "learning_rate": 5.278286592433793e-06, "epoch": 1.602440590879897, "percentage": 53.41, "elapsed_time": "6:17:53", "remaining_time": "5:29:34"} +{"current_steps": 2496, "total_steps": 4671, "loss": 0.0605, "learning_rate": 5.274554986412716e-06, "epoch": 1.6030828516377649, "percentage": 53.44, "elapsed_time": "6:18:02", "remaining_time": "5:29:25"} +{"current_steps": 2497, "total_steps": 4671, "loss": 0.073, "learning_rate": 5.270823226996967e-06, "epoch": 1.6037251123956326, "percentage": 53.46, "elapsed_time": "6:18:13", "remaining_time": "5:29:17"} +{"current_steps": 2498, "total_steps": 4671, "loss": 0.0522, "learning_rate": 5.267091316271489e-06, "epoch": 1.6043673731535004, "percentage": 53.48, "elapsed_time": "6:18:24", "remaining_time": "5:29:10"} +{"current_steps": 2499, "total_steps": 4671, "loss": 0.0683, "learning_rate": 5.26335925632131e-06, "epoch": 1.605009633911368, "percentage": 53.5, "elapsed_time": "6:18:33", "remaining_time": "5:29:01"} +{"current_steps": 2500, "total_steps": 4671, "loss": 0.0978, "learning_rate": 5.259627049231544e-06, "epoch": 1.6056518946692357, "percentage": 53.52, "elapsed_time": "6:18:41", "remaining_time": "5:28:51"} +{"current_steps": 2501, "total_steps": 4671, "loss": 0.0752, "learning_rate": 5.2558946970873855e-06, "epoch": 1.6062941554271033, "percentage": 53.54, "elapsed_time": "6:18:50", "remaining_time": "5:28:41"} +{"current_steps": 2502, "total_steps": 4671, "loss": 0.0564, "learning_rate": 5.252162201974112e-06, "epoch": 1.606936416184971, "percentage": 53.56, "elapsed_time": "6:18:56", "remaining_time": "5:28:30"} +{"current_steps": 2503, "total_steps": 4671, "loss": 0.0752, "learning_rate": 5.2484295659770805e-06, "epoch": 1.6075786769428388, "percentage": 53.59, "elapsed_time": "6:19:06", "remaining_time": "5:28:22"} +{"current_steps": 2504, "total_steps": 4671, "loss": 0.0579, "learning_rate": 5.2446967911817214e-06, "epoch": 1.6082209377007066, "percentage": 53.61, "elapsed_time": "6:19:14", "remaining_time": "5:28:12"} +{"current_steps": 2505, "total_steps": 4671, "loss": 0.0704, "learning_rate": 5.240963879673551e-06, "epoch": 1.6088631984585742, "percentage": 53.63, "elapsed_time": "6:19:22", "remaining_time": "5:28:02"} +{"current_steps": 2506, "total_steps": 4671, "loss": 0.057, "learning_rate": 5.237230833538154e-06, "epoch": 1.6095054592164417, "percentage": 53.65, "elapsed_time": "6:19:30", "remaining_time": "5:27:52"} +{"current_steps": 2507, "total_steps": 4671, "loss": 0.0786, "learning_rate": 5.233497654861197e-06, "epoch": 1.6101477199743095, "percentage": 53.67, "elapsed_time": "6:19:39", "remaining_time": "5:27:43"} +{"current_steps": 2508, "total_steps": 4671, "loss": 0.072, "learning_rate": 5.229764345728419e-06, "epoch": 1.6107899807321773, "percentage": 53.69, "elapsed_time": "6:19:49", "remaining_time": "5:27:34"} +{"current_steps": 2509, "total_steps": 4671, "loss": 0.0644, "learning_rate": 5.226030908225628e-06, "epoch": 1.611432241490045, "percentage": 53.71, "elapsed_time": "6:19:56", "remaining_time": "5:27:23"} +{"current_steps": 2510, "total_steps": 4671, "loss": 0.1167, "learning_rate": 5.222297344438707e-06, "epoch": 1.6120745022479126, "percentage": 53.74, "elapsed_time": "6:20:07", "remaining_time": "5:27:15"} +{"current_steps": 2511, "total_steps": 4671, "loss": 0.0616, "learning_rate": 5.218563656453609e-06, "epoch": 1.6127167630057804, "percentage": 53.76, "elapsed_time": "6:20:17", "remaining_time": "5:27:07"} +{"current_steps": 2512, "total_steps": 4671, "loss": 0.1376, "learning_rate": 5.2148298463563574e-06, "epoch": 1.613359023763648, "percentage": 53.78, "elapsed_time": "6:20:26", "remaining_time": "5:26:58"} +{"current_steps": 2513, "total_steps": 4671, "loss": 0.0856, "learning_rate": 5.2110959162330425e-06, "epoch": 1.6140012845215157, "percentage": 53.8, "elapsed_time": "6:20:36", "remaining_time": "5:26:50"} +{"current_steps": 2514, "total_steps": 4671, "loss": 0.0998, "learning_rate": 5.207361868169821e-06, "epoch": 1.6146435452793835, "percentage": 53.82, "elapsed_time": "6:20:44", "remaining_time": "5:26:40"} +{"current_steps": 2515, "total_steps": 4671, "loss": 0.0916, "learning_rate": 5.203627704252918e-06, "epoch": 1.6152858060372512, "percentage": 53.84, "elapsed_time": "6:20:53", "remaining_time": "5:26:31"} +{"current_steps": 2516, "total_steps": 4671, "loss": 0.1118, "learning_rate": 5.1998934265686205e-06, "epoch": 1.6159280667951188, "percentage": 53.86, "elapsed_time": "6:21:02", "remaining_time": "5:26:22"} +{"current_steps": 2517, "total_steps": 4671, "loss": 0.1639, "learning_rate": 5.196159037203281e-06, "epoch": 1.6165703275529864, "percentage": 53.89, "elapsed_time": "6:21:10", "remaining_time": "5:26:12"} +{"current_steps": 2518, "total_steps": 4671, "loss": 0.0451, "learning_rate": 5.192424538243314e-06, "epoch": 1.6172125883108541, "percentage": 53.91, "elapsed_time": "6:21:19", "remaining_time": "5:26:02"} +{"current_steps": 2519, "total_steps": 4671, "loss": 0.1335, "learning_rate": 5.1886899317751935e-06, "epoch": 1.617854849068722, "percentage": 53.93, "elapsed_time": "6:21:27", "remaining_time": "5:25:53"} +{"current_steps": 2520, "total_steps": 4671, "loss": 0.0909, "learning_rate": 5.184955219885457e-06, "epoch": 1.6184971098265897, "percentage": 53.95, "elapsed_time": "6:21:35", "remaining_time": "5:25:42"} +{"current_steps": 2521, "total_steps": 4671, "loss": 0.0457, "learning_rate": 5.181220404660699e-06, "epoch": 1.6191393705844574, "percentage": 53.97, "elapsed_time": "6:21:44", "remaining_time": "5:25:33"} +{"current_steps": 2522, "total_steps": 4671, "loss": 0.0384, "learning_rate": 5.177485488187569e-06, "epoch": 1.619781631342325, "percentage": 53.99, "elapsed_time": "6:21:53", "remaining_time": "5:25:24"} +{"current_steps": 2523, "total_steps": 4671, "loss": 0.0884, "learning_rate": 5.173750472552777e-06, "epoch": 1.6204238921001926, "percentage": 54.01, "elapsed_time": "6:22:04", "remaining_time": "5:25:16"} +{"current_steps": 2524, "total_steps": 4671, "loss": 0.086, "learning_rate": 5.17001535984309e-06, "epoch": 1.6210661528580603, "percentage": 54.04, "elapsed_time": "6:22:11", "remaining_time": "5:25:06"} +{"current_steps": 2525, "total_steps": 4671, "loss": 0.1368, "learning_rate": 5.166280152145325e-06, "epoch": 1.621708413615928, "percentage": 54.06, "elapsed_time": "6:22:20", "remaining_time": "5:24:56"} +{"current_steps": 2526, "total_steps": 4671, "loss": 0.0715, "learning_rate": 5.162544851546349e-06, "epoch": 1.6223506743737959, "percentage": 54.08, "elapsed_time": "6:22:27", "remaining_time": "5:24:46"} +{"current_steps": 2527, "total_steps": 4671, "loss": 0.1469, "learning_rate": 5.158809460133091e-06, "epoch": 1.6229929351316634, "percentage": 54.1, "elapsed_time": "6:22:36", "remaining_time": "5:24:37"} +{"current_steps": 2528, "total_steps": 4671, "loss": 0.0466, "learning_rate": 5.155073979992523e-06, "epoch": 1.6236351958895312, "percentage": 54.12, "elapsed_time": "6:22:45", "remaining_time": "5:24:28"} +{"current_steps": 2529, "total_steps": 4671, "loss": 0.0918, "learning_rate": 5.15133841321167e-06, "epoch": 1.6242774566473988, "percentage": 54.14, "elapsed_time": "6:22:53", "remaining_time": "5:24:17"} +{"current_steps": 2530, "total_steps": 4671, "loss": 0.0488, "learning_rate": 5.1476027618776005e-06, "epoch": 1.6249197174052665, "percentage": 54.16, "elapsed_time": "6:23:01", "remaining_time": "5:24:08"} +{"current_steps": 2531, "total_steps": 4671, "loss": 0.0802, "learning_rate": 5.143867028077437e-06, "epoch": 1.6255619781631343, "percentage": 54.19, "elapsed_time": "6:23:11", "remaining_time": "5:23:59"} +{"current_steps": 2532, "total_steps": 4671, "loss": 0.0794, "learning_rate": 5.140131213898345e-06, "epoch": 1.626204238921002, "percentage": 54.21, "elapsed_time": "6:23:19", "remaining_time": "5:23:49"} +{"current_steps": 2533, "total_steps": 4671, "loss": 0.0828, "learning_rate": 5.136395321427534e-06, "epoch": 1.6268464996788696, "percentage": 54.23, "elapsed_time": "6:23:29", "remaining_time": "5:23:41"} +{"current_steps": 2534, "total_steps": 4671, "loss": 0.1191, "learning_rate": 5.132659352752256e-06, "epoch": 1.6274887604367372, "percentage": 54.25, "elapsed_time": "6:23:38", "remaining_time": "5:23:32"} +{"current_steps": 2535, "total_steps": 4671, "loss": 0.042, "learning_rate": 5.12892330995981e-06, "epoch": 1.628131021194605, "percentage": 54.27, "elapsed_time": "6:23:48", "remaining_time": "5:23:24"} +{"current_steps": 2536, "total_steps": 4671, "loss": 0.1166, "learning_rate": 5.125187195137534e-06, "epoch": 1.6287732819524727, "percentage": 54.29, "elapsed_time": "6:23:57", "remaining_time": "5:23:14"} +{"current_steps": 2537, "total_steps": 4671, "loss": 0.0809, "learning_rate": 5.121451010372808e-06, "epoch": 1.6294155427103405, "percentage": 54.31, "elapsed_time": "6:24:07", "remaining_time": "5:23:06"} +{"current_steps": 2538, "total_steps": 4671, "loss": 0.0593, "learning_rate": 5.117714757753045e-06, "epoch": 1.630057803468208, "percentage": 54.34, "elapsed_time": "6:24:15", "remaining_time": "5:22:56"} +{"current_steps": 2539, "total_steps": 4671, "loss": 0.0538, "learning_rate": 5.113978439365703e-06, "epoch": 1.6307000642260758, "percentage": 54.36, "elapsed_time": "6:24:24", "remaining_time": "5:22:47"} +{"current_steps": 2540, "total_steps": 4671, "loss": 0.0763, "learning_rate": 5.110242057298273e-06, "epoch": 1.6313423249839434, "percentage": 54.38, "elapsed_time": "6:24:35", "remaining_time": "5:22:39"} +{"current_steps": 2541, "total_steps": 4671, "loss": 0.0302, "learning_rate": 5.106505613638284e-06, "epoch": 1.6319845857418112, "percentage": 54.4, "elapsed_time": "6:24:44", "remaining_time": "5:22:30"} +{"current_steps": 2542, "total_steps": 4671, "loss": 0.0761, "learning_rate": 5.102769110473297e-06, "epoch": 1.632626846499679, "percentage": 54.42, "elapsed_time": "6:24:53", "remaining_time": "5:22:21"} +{"current_steps": 2543, "total_steps": 4671, "loss": 0.0718, "learning_rate": 5.099032549890907e-06, "epoch": 1.6332691072575467, "percentage": 54.44, "elapsed_time": "6:25:02", "remaining_time": "5:22:12"} +{"current_steps": 2544, "total_steps": 4671, "loss": 0.0822, "learning_rate": 5.095295933978742e-06, "epoch": 1.6339113680154143, "percentage": 54.46, "elapsed_time": "6:25:13", "remaining_time": "5:22:04"} +{"current_steps": 2545, "total_steps": 4671, "loss": 0.0548, "learning_rate": 5.09155926482446e-06, "epoch": 1.6345536287732818, "percentage": 54.49, "elapsed_time": "6:25:22", "remaining_time": "5:21:55"} +{"current_steps": 2546, "total_steps": 4671, "loss": 0.1117, "learning_rate": 5.0878225445157485e-06, "epoch": 1.6351958895311496, "percentage": 54.51, "elapsed_time": "6:25:30", "remaining_time": "5:21:45"} +{"current_steps": 2547, "total_steps": 4671, "loss": 0.1202, "learning_rate": 5.084085775140324e-06, "epoch": 1.6358381502890174, "percentage": 54.53, "elapsed_time": "6:25:39", "remaining_time": "5:21:36"} +{"current_steps": 2548, "total_steps": 4671, "loss": 0.0549, "learning_rate": 5.0803489587859325e-06, "epoch": 1.6364804110468851, "percentage": 54.55, "elapsed_time": "6:25:48", "remaining_time": "5:21:27"} +{"current_steps": 2549, "total_steps": 4671, "loss": 0.0579, "learning_rate": 5.076612097540341e-06, "epoch": 1.6371226718047527, "percentage": 54.57, "elapsed_time": "6:25:56", "remaining_time": "5:21:17"} +{"current_steps": 2550, "total_steps": 4671, "loss": 0.1256, "learning_rate": 5.072875193491348e-06, "epoch": 1.6377649325626205, "percentage": 54.59, "elapsed_time": "6:26:06", "remaining_time": "5:21:08"} +{"current_steps": 2551, "total_steps": 4671, "loss": 0.0632, "learning_rate": 5.06913824872677e-06, "epoch": 1.638407193320488, "percentage": 54.61, "elapsed_time": "6:26:15", "remaining_time": "5:21:00"} +{"current_steps": 2552, "total_steps": 4671, "loss": 0.0965, "learning_rate": 5.065401265334451e-06, "epoch": 1.6390494540783558, "percentage": 54.63, "elapsed_time": "6:26:23", "remaining_time": "5:20:50"} +{"current_steps": 2553, "total_steps": 4671, "loss": 0.1204, "learning_rate": 5.061664245402253e-06, "epoch": 1.6396917148362236, "percentage": 54.66, "elapsed_time": "6:26:32", "remaining_time": "5:20:40"} +{"current_steps": 2554, "total_steps": 4671, "loss": 0.0243, "learning_rate": 5.057927191018062e-06, "epoch": 1.6403339755940913, "percentage": 54.68, "elapsed_time": "6:26:40", "remaining_time": "5:20:30"} +{"current_steps": 2555, "total_steps": 4671, "loss": 0.0446, "learning_rate": 5.054190104269779e-06, "epoch": 1.6409762363519589, "percentage": 54.7, "elapsed_time": "6:26:51", "remaining_time": "5:20:23"} +{"current_steps": 2556, "total_steps": 4671, "loss": 0.0757, "learning_rate": 5.050452987245325e-06, "epoch": 1.6416184971098264, "percentage": 54.72, "elapsed_time": "6:27:01", "remaining_time": "5:20:14"} +{"current_steps": 2557, "total_steps": 4671, "loss": 0.0516, "learning_rate": 5.046715842032641e-06, "epoch": 1.6422607578676942, "percentage": 54.74, "elapsed_time": "6:27:09", "remaining_time": "5:20:05"} +{"current_steps": 2558, "total_steps": 4671, "loss": 0.0623, "learning_rate": 5.04297867071968e-06, "epoch": 1.642903018625562, "percentage": 54.76, "elapsed_time": "6:27:20", "remaining_time": "5:19:57"} +{"current_steps": 2559, "total_steps": 4671, "loss": 0.0581, "learning_rate": 5.039241475394409e-06, "epoch": 1.6435452793834298, "percentage": 54.78, "elapsed_time": "6:27:30", "remaining_time": "5:19:49"} +{"current_steps": 2560, "total_steps": 4671, "loss": 0.0667, "learning_rate": 5.035504258144811e-06, "epoch": 1.6441875401412975, "percentage": 54.81, "elapsed_time": "6:27:39", "remaining_time": "5:19:39"} +{"current_steps": 2561, "total_steps": 4671, "loss": 0.0757, "learning_rate": 5.03176702105888e-06, "epoch": 1.644829800899165, "percentage": 54.83, "elapsed_time": "6:27:48", "remaining_time": "5:19:30"} +{"current_steps": 2562, "total_steps": 4671, "loss": 0.1125, "learning_rate": 5.02802976622462e-06, "epoch": 1.6454720616570326, "percentage": 54.85, "elapsed_time": "6:27:57", "remaining_time": "5:19:21"} +{"current_steps": 2563, "total_steps": 4671, "loss": 0.0742, "learning_rate": 5.02429249573005e-06, "epoch": 1.6461143224149004, "percentage": 54.87, "elapsed_time": "6:28:06", "remaining_time": "5:19:12"} +{"current_steps": 2564, "total_steps": 4671, "loss": 0.063, "learning_rate": 5.020555211663191e-06, "epoch": 1.6467565831727682, "percentage": 54.89, "elapsed_time": "6:28:13", "remaining_time": "5:19:01"} +{"current_steps": 2565, "total_steps": 4671, "loss": 0.0373, "learning_rate": 5.016817916112075e-06, "epoch": 1.647398843930636, "percentage": 54.91, "elapsed_time": "6:28:22", "remaining_time": "5:18:52"} +{"current_steps": 2566, "total_steps": 4671, "loss": 0.0757, "learning_rate": 5.01308061116474e-06, "epoch": 1.6480411046885035, "percentage": 54.93, "elapsed_time": "6:28:32", "remaining_time": "5:18:44"} +{"current_steps": 2567, "total_steps": 4671, "loss": 0.077, "learning_rate": 5.0093432989092295e-06, "epoch": 1.648683365446371, "percentage": 54.96, "elapsed_time": "6:28:41", "remaining_time": "5:18:35"} +{"current_steps": 2568, "total_steps": 4671, "loss": 0.0871, "learning_rate": 5.00560598143359e-06, "epoch": 1.6493256262042388, "percentage": 54.98, "elapsed_time": "6:28:51", "remaining_time": "5:18:27"} +{"current_steps": 2569, "total_steps": 4671, "loss": 0.0732, "learning_rate": 5.001868660825873e-06, "epoch": 1.6499678869621066, "percentage": 55.0, "elapsed_time": "6:28:59", "remaining_time": "5:18:16"} +{"current_steps": 2570, "total_steps": 4671, "loss": 0.1546, "learning_rate": 4.9981313391741296e-06, "epoch": 1.6506101477199744, "percentage": 55.02, "elapsed_time": "6:29:08", "remaining_time": "5:18:07"} +{"current_steps": 2571, "total_steps": 4671, "loss": 0.1899, "learning_rate": 4.994394018566413e-06, "epoch": 1.6512524084778422, "percentage": 55.04, "elapsed_time": "6:29:18", "remaining_time": "5:17:58"} +{"current_steps": 2572, "total_steps": 4671, "loss": 0.0456, "learning_rate": 4.990656701090772e-06, "epoch": 1.6518946692357097, "percentage": 55.06, "elapsed_time": "6:29:27", "remaining_time": "5:17:49"} +{"current_steps": 2573, "total_steps": 4671, "loss": 0.0917, "learning_rate": 4.986919388835261e-06, "epoch": 1.6525369299935773, "percentage": 55.08, "elapsed_time": "6:29:36", "remaining_time": "5:17:40"} +{"current_steps": 2574, "total_steps": 4671, "loss": 0.1376, "learning_rate": 4.9831820838879255e-06, "epoch": 1.653179190751445, "percentage": 55.11, "elapsed_time": "6:29:47", "remaining_time": "5:17:33"} +{"current_steps": 2575, "total_steps": 4671, "loss": 0.0777, "learning_rate": 4.9794447883368095e-06, "epoch": 1.6538214515093128, "percentage": 55.13, "elapsed_time": "6:29:57", "remaining_time": "5:17:25"} +{"current_steps": 2576, "total_steps": 4671, "loss": 0.0613, "learning_rate": 4.97570750426995e-06, "epoch": 1.6544637122671806, "percentage": 55.15, "elapsed_time": "6:30:05", "remaining_time": "5:17:15"} +{"current_steps": 2577, "total_steps": 4671, "loss": 0.0732, "learning_rate": 4.97197023377538e-06, "epoch": 1.6551059730250481, "percentage": 55.17, "elapsed_time": "6:30:14", "remaining_time": "5:17:06"} +{"current_steps": 2578, "total_steps": 4671, "loss": 0.0383, "learning_rate": 4.968232978941122e-06, "epoch": 1.655748233782916, "percentage": 55.19, "elapsed_time": "6:30:23", "remaining_time": "5:16:56"} +{"current_steps": 2579, "total_steps": 4671, "loss": 0.064, "learning_rate": 4.964495741855192e-06, "epoch": 1.6563904945407835, "percentage": 55.21, "elapsed_time": "6:30:31", "remaining_time": "5:16:46"} +{"current_steps": 2580, "total_steps": 4671, "loss": 0.058, "learning_rate": 4.960758524605594e-06, "epoch": 1.6570327552986512, "percentage": 55.23, "elapsed_time": "6:30:40", "remaining_time": "5:16:37"} +{"current_steps": 2581, "total_steps": 4671, "loss": 0.0989, "learning_rate": 4.957021329280322e-06, "epoch": 1.657675016056519, "percentage": 55.26, "elapsed_time": "6:30:48", "remaining_time": "5:16:28"} +{"current_steps": 2582, "total_steps": 4671, "loss": 0.1052, "learning_rate": 4.9532841579673604e-06, "epoch": 1.6583172768143868, "percentage": 55.28, "elapsed_time": "6:30:56", "remaining_time": "5:16:17"} +{"current_steps": 2583, "total_steps": 4671, "loss": 0.0393, "learning_rate": 4.949547012754676e-06, "epoch": 1.6589595375722543, "percentage": 55.3, "elapsed_time": "6:31:06", "remaining_time": "5:16:09"} +{"current_steps": 2584, "total_steps": 4671, "loss": 0.0988, "learning_rate": 4.945809895730223e-06, "epoch": 1.659601798330122, "percentage": 55.32, "elapsed_time": "6:31:17", "remaining_time": "5:16:01"} +{"current_steps": 2585, "total_steps": 4671, "loss": 0.0795, "learning_rate": 4.942072808981939e-06, "epoch": 1.6602440590879897, "percentage": 55.34, "elapsed_time": "6:31:27", "remaining_time": "5:15:53"} +{"current_steps": 2586, "total_steps": 4671, "loss": 0.0808, "learning_rate": 4.938335754597749e-06, "epoch": 1.6608863198458574, "percentage": 55.36, "elapsed_time": "6:31:38", "remaining_time": "5:15:46"} +{"current_steps": 2587, "total_steps": 4671, "loss": 0.0583, "learning_rate": 4.934598734665552e-06, "epoch": 1.6615285806037252, "percentage": 55.38, "elapsed_time": "6:31:48", "remaining_time": "5:15:37"} +{"current_steps": 2588, "total_steps": 4671, "loss": 0.1103, "learning_rate": 4.930861751273233e-06, "epoch": 1.6621708413615928, "percentage": 55.41, "elapsed_time": "6:31:59", "remaining_time": "5:15:29"} +{"current_steps": 2589, "total_steps": 4671, "loss": 0.0444, "learning_rate": 4.9271248065086545e-06, "epoch": 1.6628131021194605, "percentage": 55.43, "elapsed_time": "6:32:06", "remaining_time": "5:15:19"} +{"current_steps": 2590, "total_steps": 4671, "loss": 0.0708, "learning_rate": 4.92338790245966e-06, "epoch": 1.663455362877328, "percentage": 55.45, "elapsed_time": "6:32:15", "remaining_time": "5:15:09"} +{"current_steps": 2591, "total_steps": 4671, "loss": 0.0677, "learning_rate": 4.919651041214069e-06, "epoch": 1.6640976236351959, "percentage": 55.47, "elapsed_time": "6:32:23", "remaining_time": "5:15:00"} +{"current_steps": 2592, "total_steps": 4671, "loss": 0.0888, "learning_rate": 4.915914224859677e-06, "epoch": 1.6647398843930636, "percentage": 55.49, "elapsed_time": "6:32:32", "remaining_time": "5:14:50"} +{"current_steps": 2593, "total_steps": 4671, "loss": 0.1128, "learning_rate": 4.912177455484252e-06, "epoch": 1.6653821451509314, "percentage": 55.51, "elapsed_time": "6:32:41", "remaining_time": "5:14:41"} +{"current_steps": 2594, "total_steps": 4671, "loss": 0.0915, "learning_rate": 4.908440735175543e-06, "epoch": 1.666024405908799, "percentage": 55.53, "elapsed_time": "6:32:50", "remaining_time": "5:14:32"} +{"current_steps": 2595, "total_steps": 4671, "loss": 0.1128, "learning_rate": 4.9047040660212605e-06, "epoch": 1.6666666666666665, "percentage": 55.56, "elapsed_time": "6:33:00", "remaining_time": "5:14:24"} +{"current_steps": 2596, "total_steps": 4671, "loss": 0.0624, "learning_rate": 4.900967450109095e-06, "epoch": 1.6673089274245343, "percentage": 55.58, "elapsed_time": "6:33:10", "remaining_time": "5:14:15"} +{"current_steps": 2597, "total_steps": 4671, "loss": 0.1171, "learning_rate": 4.897230889526705e-06, "epoch": 1.667951188182402, "percentage": 55.6, "elapsed_time": "6:33:20", "remaining_time": "5:14:07"} +{"current_steps": 2598, "total_steps": 4671, "loss": 0.0624, "learning_rate": 4.893494386361717e-06, "epoch": 1.6685934489402698, "percentage": 55.62, "elapsed_time": "6:33:28", "remaining_time": "5:13:58"} +{"current_steps": 2599, "total_steps": 4671, "loss": 0.0578, "learning_rate": 4.889757942701728e-06, "epoch": 1.6692357096981374, "percentage": 55.64, "elapsed_time": "6:33:37", "remaining_time": "5:13:48"} +{"current_steps": 2600, "total_steps": 4671, "loss": 0.0851, "learning_rate": 4.886021560634298e-06, "epoch": 1.6698779704560052, "percentage": 55.66, "elapsed_time": "6:33:44", "remaining_time": "5:13:38"} +{"current_steps": 2601, "total_steps": 4671, "loss": 0.0351, "learning_rate": 4.882285242246958e-06, "epoch": 1.6705202312138727, "percentage": 55.68, "elapsed_time": "6:33:52", "remaining_time": "5:13:28"} +{"current_steps": 2602, "total_steps": 4671, "loss": 0.1636, "learning_rate": 4.8785489896271946e-06, "epoch": 1.6711624919717405, "percentage": 55.71, "elapsed_time": "6:34:03", "remaining_time": "5:13:20"} +{"current_steps": 2603, "total_steps": 4671, "loss": 0.0972, "learning_rate": 4.8748128048624665e-06, "epoch": 1.6718047527296083, "percentage": 55.73, "elapsed_time": "6:34:12", "remaining_time": "5:13:10"} +{"current_steps": 2604, "total_steps": 4671, "loss": 0.085, "learning_rate": 4.8710766900401915e-06, "epoch": 1.672447013487476, "percentage": 55.75, "elapsed_time": "6:34:21", "remaining_time": "5:13:02"} +{"current_steps": 2605, "total_steps": 4671, "loss": 0.0938, "learning_rate": 4.867340647247746e-06, "epoch": 1.6730892742453436, "percentage": 55.77, "elapsed_time": "6:34:33", "remaining_time": "5:12:55"} +{"current_steps": 2606, "total_steps": 4671, "loss": 0.1158, "learning_rate": 4.863604678572468e-06, "epoch": 1.6737315350032111, "percentage": 55.79, "elapsed_time": "6:34:43", "remaining_time": "5:12:46"} +{"current_steps": 2607, "total_steps": 4671, "loss": 0.0638, "learning_rate": 4.859868786101656e-06, "epoch": 1.674373795761079, "percentage": 55.81, "elapsed_time": "6:34:52", "remaining_time": "5:12:37"} +{"current_steps": 2608, "total_steps": 4671, "loss": 0.0853, "learning_rate": 4.856132971922563e-06, "epoch": 1.6750160565189467, "percentage": 55.83, "elapsed_time": "6:35:00", "remaining_time": "5:12:27"} +{"current_steps": 2609, "total_steps": 4671, "loss": 0.0417, "learning_rate": 4.852397238122401e-06, "epoch": 1.6756583172768145, "percentage": 55.86, "elapsed_time": "6:35:08", "remaining_time": "5:12:18"} +{"current_steps": 2610, "total_steps": 4671, "loss": 0.0711, "learning_rate": 4.848661586788334e-06, "epoch": 1.6763005780346822, "percentage": 55.88, "elapsed_time": "6:35:17", "remaining_time": "5:12:08"} +{"current_steps": 2611, "total_steps": 4671, "loss": 0.0507, "learning_rate": 4.8449260200074775e-06, "epoch": 1.6769428387925498, "percentage": 55.9, "elapsed_time": "6:35:26", "remaining_time": "5:11:59"} +{"current_steps": 2612, "total_steps": 4671, "loss": 0.0804, "learning_rate": 4.8411905398669094e-06, "epoch": 1.6775850995504173, "percentage": 55.92, "elapsed_time": "6:35:34", "remaining_time": "5:11:49"} +{"current_steps": 2613, "total_steps": 4671, "loss": 0.0513, "learning_rate": 4.8374551484536516e-06, "epoch": 1.6782273603082851, "percentage": 55.94, "elapsed_time": "6:35:44", "remaining_time": "5:11:40"} +{"current_steps": 2614, "total_steps": 4671, "loss": 0.0739, "learning_rate": 4.833719847854677e-06, "epoch": 1.678869621066153, "percentage": 55.96, "elapsed_time": "6:35:52", "remaining_time": "5:11:30"} +{"current_steps": 2615, "total_steps": 4671, "loss": 0.1775, "learning_rate": 4.829984640156911e-06, "epoch": 1.6795118818240207, "percentage": 55.98, "elapsed_time": "6:36:02", "remaining_time": "5:11:22"} +{"current_steps": 2616, "total_steps": 4671, "loss": 0.063, "learning_rate": 4.826249527447223e-06, "epoch": 1.6801541425818882, "percentage": 56.01, "elapsed_time": "6:36:12", "remaining_time": "5:11:14"} +{"current_steps": 2617, "total_steps": 4671, "loss": 0.0832, "learning_rate": 4.822514511812433e-06, "epoch": 1.680796403339756, "percentage": 56.03, "elapsed_time": "6:36:21", "remaining_time": "5:11:05"} +{"current_steps": 2618, "total_steps": 4671, "loss": 0.0966, "learning_rate": 4.818779595339304e-06, "epoch": 1.6814386640976235, "percentage": 56.05, "elapsed_time": "6:36:32", "remaining_time": "5:10:57"} +{"current_steps": 2619, "total_steps": 4671, "loss": 0.0675, "learning_rate": 4.815044780114544e-06, "epoch": 1.6820809248554913, "percentage": 56.07, "elapsed_time": "6:36:42", "remaining_time": "5:10:49"} +{"current_steps": 2620, "total_steps": 4671, "loss": 0.0864, "learning_rate": 4.811310068224808e-06, "epoch": 1.682723185613359, "percentage": 56.09, "elapsed_time": "6:36:51", "remaining_time": "5:10:39"} +{"current_steps": 2621, "total_steps": 4671, "loss": 0.1109, "learning_rate": 4.807575461756689e-06, "epoch": 1.6833654463712269, "percentage": 56.11, "elapsed_time": "6:37:01", "remaining_time": "5:10:32"} +{"current_steps": 2622, "total_steps": 4671, "loss": 0.1074, "learning_rate": 4.803840962796721e-06, "epoch": 1.6840077071290944, "percentage": 56.13, "elapsed_time": "6:37:12", "remaining_time": "5:10:24"} +{"current_steps": 2623, "total_steps": 4671, "loss": 0.1263, "learning_rate": 4.80010657343138e-06, "epoch": 1.684649967886962, "percentage": 56.15, "elapsed_time": "6:37:23", "remaining_time": "5:10:16"} +{"current_steps": 2624, "total_steps": 4671, "loss": 0.0871, "learning_rate": 4.7963722957470826e-06, "epoch": 1.6852922286448297, "percentage": 56.18, "elapsed_time": "6:37:33", "remaining_time": "5:10:08"} +{"current_steps": 2625, "total_steps": 4671, "loss": 0.0867, "learning_rate": 4.792638131830181e-06, "epoch": 1.6859344894026975, "percentage": 56.2, "elapsed_time": "6:37:43", "remaining_time": "5:09:59"} +{"current_steps": 2626, "total_steps": 4671, "loss": 0.0694, "learning_rate": 4.78890408376696e-06, "epoch": 1.6865767501605653, "percentage": 56.22, "elapsed_time": "6:37:55", "remaining_time": "5:09:53"} +{"current_steps": 2627, "total_steps": 4671, "loss": 0.0421, "learning_rate": 4.785170153643643e-06, "epoch": 1.6872190109184328, "percentage": 56.24, "elapsed_time": "6:38:04", "remaining_time": "5:09:43"} +{"current_steps": 2628, "total_steps": 4671, "loss": 0.0713, "learning_rate": 4.781436343546392e-06, "epoch": 1.6878612716763006, "percentage": 56.26, "elapsed_time": "6:38:13", "remaining_time": "5:09:35"} +{"current_steps": 2629, "total_steps": 4671, "loss": 0.043, "learning_rate": 4.777702655561294e-06, "epoch": 1.6885035324341682, "percentage": 56.28, "elapsed_time": "6:38:21", "remaining_time": "5:09:24"} +{"current_steps": 2630, "total_steps": 4671, "loss": 0.1019, "learning_rate": 4.773969091774374e-06, "epoch": 1.689145793192036, "percentage": 56.3, "elapsed_time": "6:38:32", "remaining_time": "5:09:16"} +{"current_steps": 2631, "total_steps": 4671, "loss": 0.1005, "learning_rate": 4.770235654271582e-06, "epoch": 1.6897880539499037, "percentage": 56.33, "elapsed_time": "6:38:42", "remaining_time": "5:09:08"} +{"current_steps": 2632, "total_steps": 4671, "loss": 0.1487, "learning_rate": 4.766502345138803e-06, "epoch": 1.6904303147077715, "percentage": 56.35, "elapsed_time": "6:38:52", "remaining_time": "5:09:00"} +{"current_steps": 2633, "total_steps": 4671, "loss": 0.0545, "learning_rate": 4.762769166461848e-06, "epoch": 1.691072575465639, "percentage": 56.37, "elapsed_time": "6:38:59", "remaining_time": "5:08:50"} +{"current_steps": 2634, "total_steps": 4671, "loss": 0.0852, "learning_rate": 4.759036120326452e-06, "epoch": 1.6917148362235066, "percentage": 56.39, "elapsed_time": "6:39:09", "remaining_time": "5:08:41"} +{"current_steps": 2635, "total_steps": 4671, "loss": 0.0563, "learning_rate": 4.75530320881828e-06, "epoch": 1.6923570969813744, "percentage": 56.41, "elapsed_time": "6:39:18", "remaining_time": "5:08:31"} +{"current_steps": 2636, "total_steps": 4671, "loss": 0.0956, "learning_rate": 4.751570434022922e-06, "epoch": 1.6929993577392421, "percentage": 56.43, "elapsed_time": "6:39:28", "remaining_time": "5:08:23"} +{"current_steps": 2637, "total_steps": 4671, "loss": 0.0342, "learning_rate": 4.7478377980258885e-06, "epoch": 1.69364161849711, "percentage": 56.45, "elapsed_time": "6:39:35", "remaining_time": "5:08:12"} +{"current_steps": 2638, "total_steps": 4671, "loss": 0.0617, "learning_rate": 4.744105302912615e-06, "epoch": 1.6942838792549775, "percentage": 56.48, "elapsed_time": "6:39:44", "remaining_time": "5:08:04"} +{"current_steps": 2639, "total_steps": 4671, "loss": 0.0616, "learning_rate": 4.740372950768458e-06, "epoch": 1.6949261400128453, "percentage": 56.5, "elapsed_time": "6:39:53", "remaining_time": "5:07:54"} +{"current_steps": 2640, "total_steps": 4671, "loss": 0.0815, "learning_rate": 4.736640743678691e-06, "epoch": 1.6955684007707128, "percentage": 56.52, "elapsed_time": "6:40:03", "remaining_time": "5:07:46"} +{"current_steps": 2641, "total_steps": 4671, "loss": 0.0393, "learning_rate": 4.732908683728515e-06, "epoch": 1.6962106615285806, "percentage": 56.54, "elapsed_time": "6:40:15", "remaining_time": "5:07:39"} +{"current_steps": 2642, "total_steps": 4671, "loss": 0.0372, "learning_rate": 4.729176773003035e-06, "epoch": 1.6968529222864484, "percentage": 56.56, "elapsed_time": "6:40:23", "remaining_time": "5:07:29"} +{"current_steps": 2643, "total_steps": 4671, "loss": 0.052, "learning_rate": 4.725445013587285e-06, "epoch": 1.6974951830443161, "percentage": 56.58, "elapsed_time": "6:40:33", "remaining_time": "5:07:20"} +{"current_steps": 2644, "total_steps": 4671, "loss": 0.068, "learning_rate": 4.721713407566208e-06, "epoch": 1.6981374438021837, "percentage": 56.6, "elapsed_time": "6:40:44", "remaining_time": "5:07:13"} +{"current_steps": 2645, "total_steps": 4671, "loss": 0.0355, "learning_rate": 4.717981957024665e-06, "epoch": 1.6987797045600512, "percentage": 56.63, "elapsed_time": "6:40:51", "remaining_time": "5:07:03"} +{"current_steps": 2646, "total_steps": 4671, "loss": 0.0644, "learning_rate": 4.714250664047428e-06, "epoch": 1.699421965317919, "percentage": 56.65, "elapsed_time": "6:41:00", "remaining_time": "5:06:53"} +{"current_steps": 2647, "total_steps": 4671, "loss": 0.1258, "learning_rate": 4.7105195307191805e-06, "epoch": 1.7000642260757868, "percentage": 56.67, "elapsed_time": "6:41:10", "remaining_time": "5:06:45"} +{"current_steps": 2648, "total_steps": 4671, "loss": 0.0376, "learning_rate": 4.706788559124517e-06, "epoch": 1.7007064868336546, "percentage": 56.69, "elapsed_time": "6:41:19", "remaining_time": "5:06:36"} +{"current_steps": 2649, "total_steps": 4671, "loss": 0.0938, "learning_rate": 4.703057751347946e-06, "epoch": 1.701348747591522, "percentage": 56.71, "elapsed_time": "6:41:28", "remaining_time": "5:06:27"} +{"current_steps": 2650, "total_steps": 4671, "loss": 0.0482, "learning_rate": 4.699327109473876e-06, "epoch": 1.7019910083493899, "percentage": 56.73, "elapsed_time": "6:41:36", "remaining_time": "5:06:17"} +{"current_steps": 2651, "total_steps": 4671, "loss": 0.1038, "learning_rate": 4.69559663558663e-06, "epoch": 1.7026332691072574, "percentage": 56.75, "elapsed_time": "6:41:47", "remaining_time": "5:06:09"} +{"current_steps": 2652, "total_steps": 4671, "loss": 0.0847, "learning_rate": 4.691866331770434e-06, "epoch": 1.7032755298651252, "percentage": 56.78, "elapsed_time": "6:41:56", "remaining_time": "5:06:00"} +{"current_steps": 2653, "total_steps": 4671, "loss": 0.0591, "learning_rate": 4.68813620010942e-06, "epoch": 1.703917790622993, "percentage": 56.8, "elapsed_time": "6:42:04", "remaining_time": "5:05:50"} +{"current_steps": 2654, "total_steps": 4671, "loss": 0.0968, "learning_rate": 4.684406242687622e-06, "epoch": 1.7045600513808608, "percentage": 56.82, "elapsed_time": "6:42:12", "remaining_time": "5:05:40"} +{"current_steps": 2655, "total_steps": 4671, "loss": 0.0383, "learning_rate": 4.68067646158898e-06, "epoch": 1.7052023121387283, "percentage": 56.84, "elapsed_time": "6:42:20", "remaining_time": "5:05:30"} +{"current_steps": 2656, "total_steps": 4671, "loss": 0.1214, "learning_rate": 4.676946858897334e-06, "epoch": 1.7058445728965959, "percentage": 56.86, "elapsed_time": "6:42:28", "remaining_time": "5:05:20"} +{"current_steps": 2657, "total_steps": 4671, "loss": 0.0709, "learning_rate": 4.673217436696423e-06, "epoch": 1.7064868336544636, "percentage": 56.88, "elapsed_time": "6:42:40", "remaining_time": "5:05:13"} +{"current_steps": 2658, "total_steps": 4671, "loss": 0.0343, "learning_rate": 4.669488197069885e-06, "epoch": 1.7071290944123314, "percentage": 56.9, "elapsed_time": "6:42:49", "remaining_time": "5:05:04"} +{"current_steps": 2659, "total_steps": 4671, "loss": 0.092, "learning_rate": 4.665759142101257e-06, "epoch": 1.7077713551701992, "percentage": 56.93, "elapsed_time": "6:43:00", "remaining_time": "5:04:56"} +{"current_steps": 2660, "total_steps": 4671, "loss": 0.0632, "learning_rate": 4.662030273873976e-06, "epoch": 1.708413615928067, "percentage": 56.95, "elapsed_time": "6:43:07", "remaining_time": "5:04:46"} +{"current_steps": 2661, "total_steps": 4671, "loss": 0.0618, "learning_rate": 4.6583015944713675e-06, "epoch": 1.7090558766859345, "percentage": 56.97, "elapsed_time": "6:43:16", "remaining_time": "5:04:37"} +{"current_steps": 2662, "total_steps": 4671, "loss": 0.0945, "learning_rate": 4.654573105976658e-06, "epoch": 1.709698137443802, "percentage": 56.99, "elapsed_time": "6:43:24", "remaining_time": "5:04:27"} +{"current_steps": 2663, "total_steps": 4671, "loss": 0.066, "learning_rate": 4.650844810472966e-06, "epoch": 1.7103403982016698, "percentage": 57.01, "elapsed_time": "6:43:34", "remaining_time": "5:04:18"} +{"current_steps": 2664, "total_steps": 4671, "loss": 0.1052, "learning_rate": 4.647116710043302e-06, "epoch": 1.7109826589595376, "percentage": 57.03, "elapsed_time": "6:43:44", "remaining_time": "5:04:10"} +{"current_steps": 2665, "total_steps": 4671, "loss": 0.0792, "learning_rate": 4.643388806770561e-06, "epoch": 1.7116249197174054, "percentage": 57.05, "elapsed_time": "6:43:54", "remaining_time": "5:04:01"} +{"current_steps": 2666, "total_steps": 4671, "loss": 0.1031, "learning_rate": 4.6396611027375365e-06, "epoch": 1.712267180475273, "percentage": 57.08, "elapsed_time": "6:44:03", "remaining_time": "5:03:52"} +{"current_steps": 2667, "total_steps": 4671, "loss": 0.0588, "learning_rate": 4.635933600026909e-06, "epoch": 1.7129094412331407, "percentage": 57.1, "elapsed_time": "6:44:12", "remaining_time": "5:03:43"} +{"current_steps": 2668, "total_steps": 4671, "loss": 0.1096, "learning_rate": 4.632206300721243e-06, "epoch": 1.7135517019910083, "percentage": 57.12, "elapsed_time": "6:44:22", "remaining_time": "5:03:35"} +{"current_steps": 2669, "total_steps": 4671, "loss": 0.0522, "learning_rate": 4.628479206902995e-06, "epoch": 1.714193962748876, "percentage": 57.14, "elapsed_time": "6:44:30", "remaining_time": "5:03:25"} +{"current_steps": 2670, "total_steps": 4671, "loss": 0.0872, "learning_rate": 4.624752320654499e-06, "epoch": 1.7148362235067438, "percentage": 57.16, "elapsed_time": "6:44:41", "remaining_time": "5:03:17"} +{"current_steps": 2671, "total_steps": 4671, "loss": 0.0277, "learning_rate": 4.621025644057979e-06, "epoch": 1.7154784842646116, "percentage": 57.18, "elapsed_time": "6:44:49", "remaining_time": "5:03:07"} +{"current_steps": 2672, "total_steps": 4671, "loss": 0.0663, "learning_rate": 4.617299179195542e-06, "epoch": 1.7161207450224791, "percentage": 57.2, "elapsed_time": "6:44:58", "remaining_time": "5:02:58"} +{"current_steps": 2673, "total_steps": 4671, "loss": 0.1177, "learning_rate": 4.613572928149172e-06, "epoch": 1.7167630057803467, "percentage": 57.23, "elapsed_time": "6:45:07", "remaining_time": "5:02:49"} +{"current_steps": 2674, "total_steps": 4671, "loss": 0.0785, "learning_rate": 4.609846893000737e-06, "epoch": 1.7174052665382145, "percentage": 57.25, "elapsed_time": "6:45:16", "remaining_time": "5:02:39"} +{"current_steps": 2675, "total_steps": 4671, "loss": 0.0623, "learning_rate": 4.606121075831985e-06, "epoch": 1.7180475272960822, "percentage": 57.27, "elapsed_time": "6:45:25", "remaining_time": "5:02:30"} +{"current_steps": 2676, "total_steps": 4671, "loss": 0.0889, "learning_rate": 4.602395478724539e-06, "epoch": 1.71868978805395, "percentage": 57.29, "elapsed_time": "6:45:35", "remaining_time": "5:02:22"} +{"current_steps": 2677, "total_steps": 4671, "loss": 0.0658, "learning_rate": 4.598670103759902e-06, "epoch": 1.7193320488118176, "percentage": 57.31, "elapsed_time": "6:45:43", "remaining_time": "5:02:12"} +{"current_steps": 2678, "total_steps": 4671, "loss": 0.096, "learning_rate": 4.594944953019452e-06, "epoch": 1.7199743095696853, "percentage": 57.33, "elapsed_time": "6:45:51", "remaining_time": "5:02:02"} +{"current_steps": 2679, "total_steps": 4671, "loss": 0.0339, "learning_rate": 4.591220028584442e-06, "epoch": 1.7206165703275529, "percentage": 57.35, "elapsed_time": "6:45:59", "remaining_time": "5:01:52"} +{"current_steps": 2680, "total_steps": 4671, "loss": 0.071, "learning_rate": 4.587495332536e-06, "epoch": 1.7212588310854207, "percentage": 57.38, "elapsed_time": "6:46:08", "remaining_time": "5:01:43"} +{"current_steps": 2681, "total_steps": 4671, "loss": 0.1192, "learning_rate": 4.58377086695512e-06, "epoch": 1.7219010918432884, "percentage": 57.4, "elapsed_time": "6:46:17", "remaining_time": "5:01:34"} +{"current_steps": 2682, "total_steps": 4671, "loss": 0.0621, "learning_rate": 4.580046633922675e-06, "epoch": 1.7225433526011562, "percentage": 57.42, "elapsed_time": "6:46:26", "remaining_time": "5:01:25"} +{"current_steps": 2683, "total_steps": 4671, "loss": 0.0879, "learning_rate": 4.576322635519402e-06, "epoch": 1.7231856133590238, "percentage": 57.44, "elapsed_time": "6:46:36", "remaining_time": "5:01:16"} +{"current_steps": 2684, "total_steps": 4671, "loss": 0.0524, "learning_rate": 4.572598873825913e-06, "epoch": 1.7238278741168913, "percentage": 57.46, "elapsed_time": "6:46:43", "remaining_time": "5:01:06"} +{"current_steps": 2685, "total_steps": 4671, "loss": 0.1033, "learning_rate": 4.568875350922683e-06, "epoch": 1.724470134874759, "percentage": 57.48, "elapsed_time": "6:46:53", "remaining_time": "5:00:57"} +{"current_steps": 2686, "total_steps": 4671, "loss": 0.0873, "learning_rate": 4.565152068890057e-06, "epoch": 1.7251123956326269, "percentage": 57.5, "elapsed_time": "6:47:03", "remaining_time": "5:00:49"} +{"current_steps": 2687, "total_steps": 4671, "loss": 0.1554, "learning_rate": 4.561429029808241e-06, "epoch": 1.7257546563904946, "percentage": 57.53, "elapsed_time": "6:47:13", "remaining_time": "5:00:41"} +{"current_steps": 2688, "total_steps": 4671, "loss": 0.0751, "learning_rate": 4.55770623575731e-06, "epoch": 1.7263969171483622, "percentage": 57.55, "elapsed_time": "6:47:24", "remaining_time": "5:00:33"} +{"current_steps": 2689, "total_steps": 4671, "loss": 0.078, "learning_rate": 4.553983688817199e-06, "epoch": 1.72703917790623, "percentage": 57.57, "elapsed_time": "6:47:34", "remaining_time": "5:00:25"} +{"current_steps": 2690, "total_steps": 4671, "loss": 0.0813, "learning_rate": 4.550261391067704e-06, "epoch": 1.7276814386640975, "percentage": 57.59, "elapsed_time": "6:47:45", "remaining_time": "5:00:17"} +{"current_steps": 2691, "total_steps": 4671, "loss": 0.1434, "learning_rate": 4.546539344588486e-06, "epoch": 1.7283236994219653, "percentage": 57.61, "elapsed_time": "6:47:54", "remaining_time": "5:00:07"} +{"current_steps": 2692, "total_steps": 4671, "loss": 0.0614, "learning_rate": 4.542817551459064e-06, "epoch": 1.728965960179833, "percentage": 57.63, "elapsed_time": "6:48:02", "remaining_time": "4:59:58"} +{"current_steps": 2693, "total_steps": 4671, "loss": 0.0903, "learning_rate": 4.539096013758811e-06, "epoch": 1.7296082209377008, "percentage": 57.65, "elapsed_time": "6:48:12", "remaining_time": "4:59:49"} +{"current_steps": 2694, "total_steps": 4671, "loss": 0.0383, "learning_rate": 4.535374733566964e-06, "epoch": 1.7302504816955684, "percentage": 57.68, "elapsed_time": "6:48:19", "remaining_time": "4:59:39"} +{"current_steps": 2695, "total_steps": 4671, "loss": 0.0938, "learning_rate": 4.531653712962612e-06, "epoch": 1.730892742453436, "percentage": 57.7, "elapsed_time": "6:48:29", "remaining_time": "4:59:30"} +{"current_steps": 2696, "total_steps": 4671, "loss": 0.121, "learning_rate": 4.527932954024704e-06, "epoch": 1.7315350032113037, "percentage": 57.72, "elapsed_time": "6:48:39", "remaining_time": "4:59:22"} +{"current_steps": 2697, "total_steps": 4671, "loss": 0.0992, "learning_rate": 4.524212458832033e-06, "epoch": 1.7321772639691715, "percentage": 57.74, "elapsed_time": "6:48:46", "remaining_time": "4:59:11"} +{"current_steps": 2698, "total_steps": 4671, "loss": 0.1133, "learning_rate": 4.520492229463253e-06, "epoch": 1.7328195247270393, "percentage": 57.76, "elapsed_time": "6:48:56", "remaining_time": "4:59:03"} +{"current_steps": 2699, "total_steps": 4671, "loss": 0.0374, "learning_rate": 4.516772267996867e-06, "epoch": 1.733461785484907, "percentage": 57.78, "elapsed_time": "6:49:04", "remaining_time": "4:58:53"} +{"current_steps": 2700, "total_steps": 4671, "loss": 0.0417, "learning_rate": 4.513052576511227e-06, "epoch": 1.7341040462427746, "percentage": 57.8, "elapsed_time": "6:49:12", "remaining_time": "4:58:43"} +{"current_steps": 2701, "total_steps": 4671, "loss": 0.0371, "learning_rate": 4.509333157084538e-06, "epoch": 1.7347463070006421, "percentage": 57.82, "elapsed_time": "6:49:20", "remaining_time": "4:58:33"} +{"current_steps": 2702, "total_steps": 4671, "loss": 0.1024, "learning_rate": 4.50561401179485e-06, "epoch": 1.73538856775851, "percentage": 57.85, "elapsed_time": "6:49:29", "remaining_time": "4:58:24"} +{"current_steps": 2703, "total_steps": 4671, "loss": 0.0699, "learning_rate": 4.501895142720059e-06, "epoch": 1.7360308285163777, "percentage": 57.87, "elapsed_time": "6:49:37", "remaining_time": "4:58:14"} +{"current_steps": 2704, "total_steps": 4671, "loss": 0.0371, "learning_rate": 4.498176551937911e-06, "epoch": 1.7366730892742455, "percentage": 57.89, "elapsed_time": "6:49:46", "remaining_time": "4:58:05"} +{"current_steps": 2705, "total_steps": 4671, "loss": 0.1503, "learning_rate": 4.494458241525988e-06, "epoch": 1.737315350032113, "percentage": 57.91, "elapsed_time": "6:49:55", "remaining_time": "4:57:55"} +{"current_steps": 2706, "total_steps": 4671, "loss": 0.06, "learning_rate": 4.490740213561727e-06, "epoch": 1.7379576107899806, "percentage": 57.93, "elapsed_time": "6:50:04", "remaining_time": "4:57:46"} +{"current_steps": 2707, "total_steps": 4671, "loss": 0.0448, "learning_rate": 4.487022470122396e-06, "epoch": 1.7385998715478483, "percentage": 57.95, "elapsed_time": "6:50:15", "remaining_time": "4:57:39"} +{"current_steps": 2708, "total_steps": 4671, "loss": 0.0918, "learning_rate": 4.483305013285113e-06, "epoch": 1.7392421323057161, "percentage": 57.97, "elapsed_time": "6:50:26", "remaining_time": "4:57:31"} +{"current_steps": 2709, "total_steps": 4671, "loss": 0.0477, "learning_rate": 4.47958784512683e-06, "epoch": 1.739884393063584, "percentage": 58.0, "elapsed_time": "6:50:36", "remaining_time": "4:57:22"} +{"current_steps": 2710, "total_steps": 4671, "loss": 0.0557, "learning_rate": 4.47587096772434e-06, "epoch": 1.7405266538214517, "percentage": 58.02, "elapsed_time": "6:50:44", "remaining_time": "4:57:13"} +{"current_steps": 2711, "total_steps": 4671, "loss": 0.063, "learning_rate": 4.4721543831542756e-06, "epoch": 1.7411689145793192, "percentage": 58.04, "elapsed_time": "6:50:55", "remaining_time": "4:57:05"} +{"current_steps": 2712, "total_steps": 4671, "loss": 0.0593, "learning_rate": 4.468438093493099e-06, "epoch": 1.7418111753371868, "percentage": 58.06, "elapsed_time": "6:51:04", "remaining_time": "4:56:55"} +{"current_steps": 2713, "total_steps": 4671, "loss": 0.109, "learning_rate": 4.464722100817115e-06, "epoch": 1.7424534360950545, "percentage": 58.08, "elapsed_time": "6:51:12", "remaining_time": "4:56:46"} +{"current_steps": 2714, "total_steps": 4671, "loss": 0.0783, "learning_rate": 4.461006407202459e-06, "epoch": 1.7430956968529223, "percentage": 58.1, "elapsed_time": "6:51:21", "remaining_time": "4:56:37"} +{"current_steps": 2715, "total_steps": 4671, "loss": 0.0409, "learning_rate": 4.4572910147250995e-06, "epoch": 1.74373795761079, "percentage": 58.12, "elapsed_time": "6:51:30", "remaining_time": "4:56:27"} +{"current_steps": 2716, "total_steps": 4671, "loss": 0.0657, "learning_rate": 4.453575925460838e-06, "epoch": 1.7443802183686576, "percentage": 58.15, "elapsed_time": "6:51:40", "remaining_time": "4:56:19"} +{"current_steps": 2717, "total_steps": 4671, "loss": 0.0545, "learning_rate": 4.449861141485304e-06, "epoch": 1.7450224791265254, "percentage": 58.17, "elapsed_time": "6:51:49", "remaining_time": "4:56:10"} +{"current_steps": 2718, "total_steps": 4671, "loss": 0.0448, "learning_rate": 4.446146664873961e-06, "epoch": 1.745664739884393, "percentage": 58.19, "elapsed_time": "6:51:59", "remaining_time": "4:56:02"} +{"current_steps": 2719, "total_steps": 4671, "loss": 0.061, "learning_rate": 4.4424324977020985e-06, "epoch": 1.7463070006422607, "percentage": 58.21, "elapsed_time": "6:52:09", "remaining_time": "4:55:53"} +{"current_steps": 2720, "total_steps": 4671, "loss": 0.0563, "learning_rate": 4.438718642044828e-06, "epoch": 1.7469492614001285, "percentage": 58.23, "elapsed_time": "6:52:17", "remaining_time": "4:55:43"} +{"current_steps": 2721, "total_steps": 4671, "loss": 0.1215, "learning_rate": 4.435005099977093e-06, "epoch": 1.7475915221579963, "percentage": 58.25, "elapsed_time": "6:52:28", "remaining_time": "4:55:35"} +{"current_steps": 2722, "total_steps": 4671, "loss": 0.1064, "learning_rate": 4.431291873573663e-06, "epoch": 1.7482337829158638, "percentage": 58.27, "elapsed_time": "6:52:36", "remaining_time": "4:55:25"} +{"current_steps": 2723, "total_steps": 4671, "loss": 0.0607, "learning_rate": 4.4275789649091265e-06, "epoch": 1.7488760436737314, "percentage": 58.3, "elapsed_time": "6:52:43", "remaining_time": "4:55:15"} +{"current_steps": 2724, "total_steps": 4671, "loss": 0.0776, "learning_rate": 4.4238663760578965e-06, "epoch": 1.7495183044315992, "percentage": 58.32, "elapsed_time": "6:52:53", "remaining_time": "4:55:07"} +{"current_steps": 2725, "total_steps": 4671, "loss": 0.0364, "learning_rate": 4.420154109094208e-06, "epoch": 1.750160565189467, "percentage": 58.34, "elapsed_time": "6:53:02", "remaining_time": "4:54:57"} +{"current_steps": 2726, "total_steps": 4671, "loss": 0.2269, "learning_rate": 4.416442166092114e-06, "epoch": 1.7508028259473347, "percentage": 58.36, "elapsed_time": "6:53:11", "remaining_time": "4:54:48"} +{"current_steps": 2727, "total_steps": 4671, "loss": 0.0429, "learning_rate": 4.41273054912549e-06, "epoch": 1.7514450867052023, "percentage": 58.38, "elapsed_time": "6:53:19", "remaining_time": "4:54:38"} +{"current_steps": 2728, "total_steps": 4671, "loss": 0.0754, "learning_rate": 4.409019260268025e-06, "epoch": 1.75208734746307, "percentage": 58.4, "elapsed_time": "6:53:27", "remaining_time": "4:54:29"} +{"current_steps": 2729, "total_steps": 4671, "loss": 0.081, "learning_rate": 4.405308301593228e-06, "epoch": 1.7527296082209376, "percentage": 58.42, "elapsed_time": "6:53:38", "remaining_time": "4:54:21"} +{"current_steps": 2730, "total_steps": 4671, "loss": 0.1021, "learning_rate": 4.401597675174423e-06, "epoch": 1.7533718689788054, "percentage": 58.45, "elapsed_time": "6:53:48", "remaining_time": "4:54:12"} +{"current_steps": 2731, "total_steps": 4671, "loss": 0.0529, "learning_rate": 4.397887383084748e-06, "epoch": 1.7540141297366731, "percentage": 58.47, "elapsed_time": "6:53:56", "remaining_time": "4:54:03"} +{"current_steps": 2732, "total_steps": 4671, "loss": 0.0562, "learning_rate": 4.3941774273971515e-06, "epoch": 1.754656390494541, "percentage": 58.49, "elapsed_time": "6:54:07", "remaining_time": "4:53:55"} +{"current_steps": 2733, "total_steps": 4671, "loss": 0.0547, "learning_rate": 4.390467810184399e-06, "epoch": 1.7552986512524085, "percentage": 58.51, "elapsed_time": "6:54:16", "remaining_time": "4:53:45"} +{"current_steps": 2734, "total_steps": 4671, "loss": 0.1011, "learning_rate": 4.386758533519063e-06, "epoch": 1.755940912010276, "percentage": 58.53, "elapsed_time": "6:54:26", "remaining_time": "4:53:37"} +{"current_steps": 2735, "total_steps": 4671, "loss": 0.0648, "learning_rate": 4.383049599473532e-06, "epoch": 1.7565831727681438, "percentage": 58.55, "elapsed_time": "6:54:35", "remaining_time": "4:53:28"} +{"current_steps": 2736, "total_steps": 4671, "loss": 0.0458, "learning_rate": 4.379341010119992e-06, "epoch": 1.7572254335260116, "percentage": 58.57, "elapsed_time": "6:54:44", "remaining_time": "4:53:19"} +{"current_steps": 2737, "total_steps": 4671, "loss": 0.1075, "learning_rate": 4.375632767530444e-06, "epoch": 1.7578676942838793, "percentage": 58.6, "elapsed_time": "6:54:52", "remaining_time": "4:53:09"} +{"current_steps": 2738, "total_steps": 4671, "loss": 0.0495, "learning_rate": 4.371924873776696e-06, "epoch": 1.758509955041747, "percentage": 58.62, "elapsed_time": "6:55:01", "remaining_time": "4:53:00"} +{"current_steps": 2739, "total_steps": 4671, "loss": 0.052, "learning_rate": 4.368217330930358e-06, "epoch": 1.7591522157996147, "percentage": 58.64, "elapsed_time": "6:55:09", "remaining_time": "4:52:50"} +{"current_steps": 2740, "total_steps": 4671, "loss": 0.0606, "learning_rate": 4.364510141062845e-06, "epoch": 1.7597944765574822, "percentage": 58.66, "elapsed_time": "6:55:19", "remaining_time": "4:52:41"} +{"current_steps": 2741, "total_steps": 4671, "loss": 0.0636, "learning_rate": 4.360803306245377e-06, "epoch": 1.76043673731535, "percentage": 58.68, "elapsed_time": "6:55:26", "remaining_time": "4:52:31"} +{"current_steps": 2742, "total_steps": 4671, "loss": 0.0339, "learning_rate": 4.35709682854897e-06, "epoch": 1.7610789980732178, "percentage": 58.7, "elapsed_time": "6:55:36", "remaining_time": "4:52:23"} +{"current_steps": 2743, "total_steps": 4671, "loss": 0.0884, "learning_rate": 4.3533907100444464e-06, "epoch": 1.7617212588310855, "percentage": 58.72, "elapsed_time": "6:55:46", "remaining_time": "4:52:14"} +{"current_steps": 2744, "total_steps": 4671, "loss": 0.0802, "learning_rate": 4.349684952802424e-06, "epoch": 1.762363519588953, "percentage": 58.75, "elapsed_time": "6:55:56", "remaining_time": "4:52:06"} +{"current_steps": 2745, "total_steps": 4671, "loss": 0.1194, "learning_rate": 4.34597955889332e-06, "epoch": 1.7630057803468207, "percentage": 58.77, "elapsed_time": "6:56:06", "remaining_time": "4:51:57"} +{"current_steps": 2746, "total_steps": 4671, "loss": 0.1409, "learning_rate": 4.34227453038735e-06, "epoch": 1.7636480411046884, "percentage": 58.79, "elapsed_time": "6:56:16", "remaining_time": "4:51:49"} +{"current_steps": 2747, "total_steps": 4671, "loss": 0.0352, "learning_rate": 4.338569869354524e-06, "epoch": 1.7642903018625562, "percentage": 58.81, "elapsed_time": "6:56:26", "remaining_time": "4:51:40"} +{"current_steps": 2748, "total_steps": 4671, "loss": 0.0811, "learning_rate": 4.334865577864647e-06, "epoch": 1.764932562620424, "percentage": 58.83, "elapsed_time": "6:56:36", "remaining_time": "4:51:32"} +{"current_steps": 2749, "total_steps": 4671, "loss": 0.0848, "learning_rate": 4.331161657987316e-06, "epoch": 1.7655748233782917, "percentage": 58.85, "elapsed_time": "6:56:45", "remaining_time": "4:51:22"} +{"current_steps": 2750, "total_steps": 4671, "loss": 0.0293, "learning_rate": 4.327458111791923e-06, "epoch": 1.7662170841361593, "percentage": 58.87, "elapsed_time": "6:56:52", "remaining_time": "4:51:12"} +{"current_steps": 2751, "total_steps": 4671, "loss": 0.0731, "learning_rate": 4.3237549413476544e-06, "epoch": 1.7668593448940269, "percentage": 58.9, "elapsed_time": "6:57:01", "remaining_time": "4:51:03"} +{"current_steps": 2752, "total_steps": 4671, "loss": 0.0363, "learning_rate": 4.3200521487234746e-06, "epoch": 1.7675016056518946, "percentage": 58.92, "elapsed_time": "6:57:11", "remaining_time": "4:50:54"} +{"current_steps": 2753, "total_steps": 4671, "loss": 0.0498, "learning_rate": 4.316349735988149e-06, "epoch": 1.7681438664097624, "percentage": 58.94, "elapsed_time": "6:57:19", "remaining_time": "4:50:44"} +{"current_steps": 2754, "total_steps": 4671, "loss": 0.0611, "learning_rate": 4.312647705210226e-06, "epoch": 1.7687861271676302, "percentage": 58.96, "elapsed_time": "6:57:28", "remaining_time": "4:50:35"} +{"current_steps": 2755, "total_steps": 4671, "loss": 0.0443, "learning_rate": 4.3089460584580385e-06, "epoch": 1.7694283879254977, "percentage": 58.98, "elapsed_time": "6:57:35", "remaining_time": "4:50:25"} +{"current_steps": 2756, "total_steps": 4671, "loss": 0.1044, "learning_rate": 4.3052447977997106e-06, "epoch": 1.7700706486833655, "percentage": 59.0, "elapsed_time": "6:57:46", "remaining_time": "4:50:17"} +{"current_steps": 2757, "total_steps": 4671, "loss": 0.0873, "learning_rate": 4.301543925303147e-06, "epoch": 1.770712909441233, "percentage": 59.02, "elapsed_time": "6:57:54", "remaining_time": "4:50:07"} +{"current_steps": 2758, "total_steps": 4671, "loss": 0.0883, "learning_rate": 4.297843443036036e-06, "epoch": 1.7713551701991008, "percentage": 59.05, "elapsed_time": "6:58:05", "remaining_time": "4:49:59"} +{"current_steps": 2759, "total_steps": 4671, "loss": 0.2138, "learning_rate": 4.294143353065848e-06, "epoch": 1.7719974309569686, "percentage": 59.07, "elapsed_time": "6:58:15", "remaining_time": "4:49:51"} +{"current_steps": 2760, "total_steps": 4671, "loss": 0.1279, "learning_rate": 4.290443657459832e-06, "epoch": 1.7726396917148364, "percentage": 59.09, "elapsed_time": "6:58:27", "remaining_time": "4:49:43"} +{"current_steps": 2761, "total_steps": 4671, "loss": 0.1421, "learning_rate": 4.28674435828502e-06, "epoch": 1.773281952472704, "percentage": 59.11, "elapsed_time": "6:58:38", "remaining_time": "4:49:36"} +{"current_steps": 2762, "total_steps": 4671, "loss": 0.089, "learning_rate": 4.283045457608222e-06, "epoch": 1.7739242132305715, "percentage": 59.13, "elapsed_time": "6:58:49", "remaining_time": "4:49:28"} +{"current_steps": 2763, "total_steps": 4671, "loss": 0.0921, "learning_rate": 4.279346957496023e-06, "epoch": 1.7745664739884393, "percentage": 59.15, "elapsed_time": "6:58:58", "remaining_time": "4:49:19"} +{"current_steps": 2764, "total_steps": 4671, "loss": 0.09, "learning_rate": 4.2756488600147875e-06, "epoch": 1.775208734746307, "percentage": 59.17, "elapsed_time": "6:59:08", "remaining_time": "4:49:11"} +{"current_steps": 2765, "total_steps": 4671, "loss": 0.0629, "learning_rate": 4.271951167230653e-06, "epoch": 1.7758509955041748, "percentage": 59.2, "elapsed_time": "6:59:15", "remaining_time": "4:49:00"} +{"current_steps": 2766, "total_steps": 4671, "loss": 0.1303, "learning_rate": 4.268253881209532e-06, "epoch": 1.7764932562620424, "percentage": 59.22, "elapsed_time": "6:59:25", "remaining_time": "4:48:51"} +{"current_steps": 2767, "total_steps": 4671, "loss": 0.0787, "learning_rate": 4.264557004017107e-06, "epoch": 1.7771355170199101, "percentage": 59.24, "elapsed_time": "6:59:35", "remaining_time": "4:48:43"} +{"current_steps": 2768, "total_steps": 4671, "loss": 0.0911, "learning_rate": 4.260860537718834e-06, "epoch": 1.7777777777777777, "percentage": 59.26, "elapsed_time": "6:59:45", "remaining_time": "4:48:34"} +{"current_steps": 2769, "total_steps": 4671, "loss": 0.1396, "learning_rate": 4.257164484379942e-06, "epoch": 1.7784200385356455, "percentage": 59.28, "elapsed_time": "6:59:54", "remaining_time": "4:48:25"} +{"current_steps": 2770, "total_steps": 4671, "loss": 0.17, "learning_rate": 4.253468846065425e-06, "epoch": 1.7790622992935132, "percentage": 59.3, "elapsed_time": "7:00:05", "remaining_time": "4:48:18"} +{"current_steps": 2771, "total_steps": 4671, "loss": 0.06, "learning_rate": 4.249773624840048e-06, "epoch": 1.779704560051381, "percentage": 59.32, "elapsed_time": "7:00:14", "remaining_time": "4:48:08"} +{"current_steps": 2772, "total_steps": 4671, "loss": 0.0454, "learning_rate": 4.246078822768339e-06, "epoch": 1.7803468208092486, "percentage": 59.34, "elapsed_time": "7:00:23", "remaining_time": "4:47:59"} +{"current_steps": 2773, "total_steps": 4671, "loss": 0.0602, "learning_rate": 4.242384441914599e-06, "epoch": 1.780989081567116, "percentage": 59.37, "elapsed_time": "7:00:31", "remaining_time": "4:47:49"} +{"current_steps": 2774, "total_steps": 4671, "loss": 0.073, "learning_rate": 4.2386904843428895e-06, "epoch": 1.7816313423249839, "percentage": 59.39, "elapsed_time": "7:00:40", "remaining_time": "4:47:40"} +{"current_steps": 2775, "total_steps": 4671, "loss": 0.1208, "learning_rate": 4.234996952117031e-06, "epoch": 1.7822736030828517, "percentage": 59.41, "elapsed_time": "7:00:49", "remaining_time": "4:47:31"} +{"current_steps": 2776, "total_steps": 4671, "loss": 0.0731, "learning_rate": 4.2313038473006125e-06, "epoch": 1.7829158638407194, "percentage": 59.43, "elapsed_time": "7:00:59", "remaining_time": "4:47:23"} +{"current_steps": 2777, "total_steps": 4671, "loss": 0.0555, "learning_rate": 4.227611171956984e-06, "epoch": 1.783558124598587, "percentage": 59.45, "elapsed_time": "7:01:09", "remaining_time": "4:47:14"} +{"current_steps": 2778, "total_steps": 4671, "loss": 0.129, "learning_rate": 4.223918928149253e-06, "epoch": 1.7842003853564548, "percentage": 59.47, "elapsed_time": "7:01:20", "remaining_time": "4:47:06"} +{"current_steps": 2779, "total_steps": 4671, "loss": 0.0746, "learning_rate": 4.220227117940287e-06, "epoch": 1.7848426461143223, "percentage": 59.49, "elapsed_time": "7:01:27", "remaining_time": "4:46:56"} +{"current_steps": 2780, "total_steps": 4671, "loss": 0.0849, "learning_rate": 4.21653574339271e-06, "epoch": 1.78548490687219, "percentage": 59.52, "elapsed_time": "7:01:37", "remaining_time": "4:46:47"} +{"current_steps": 2781, "total_steps": 4671, "loss": 0.0947, "learning_rate": 4.212844806568906e-06, "epoch": 1.7861271676300579, "percentage": 59.54, "elapsed_time": "7:01:45", "remaining_time": "4:46:37"} +{"current_steps": 2782, "total_steps": 4671, "loss": 0.0657, "learning_rate": 4.209154309531012e-06, "epoch": 1.7867694283879256, "percentage": 59.56, "elapsed_time": "7:01:53", "remaining_time": "4:46:28"} +{"current_steps": 2783, "total_steps": 4671, "loss": 0.1097, "learning_rate": 4.205464254340918e-06, "epoch": 1.7874116891457932, "percentage": 59.58, "elapsed_time": "7:02:03", "remaining_time": "4:46:19"} +{"current_steps": 2784, "total_steps": 4671, "loss": 0.0417, "learning_rate": 4.201774643060269e-06, "epoch": 1.7880539499036607, "percentage": 59.6, "elapsed_time": "7:02:11", "remaining_time": "4:46:09"} +{"current_steps": 2785, "total_steps": 4671, "loss": 0.1112, "learning_rate": 4.198085477750461e-06, "epoch": 1.7886962106615285, "percentage": 59.62, "elapsed_time": "7:02:21", "remaining_time": "4:46:01"} +{"current_steps": 2786, "total_steps": 4671, "loss": 0.1841, "learning_rate": 4.194396760472643e-06, "epoch": 1.7893384714193963, "percentage": 59.64, "elapsed_time": "7:02:32", "remaining_time": "4:45:53"} +{"current_steps": 2787, "total_steps": 4671, "loss": 0.0842, "learning_rate": 4.1907084932877114e-06, "epoch": 1.789980732177264, "percentage": 59.67, "elapsed_time": "7:02:42", "remaining_time": "4:45:45"} +{"current_steps": 2788, "total_steps": 4671, "loss": 0.0538, "learning_rate": 4.187020678256313e-06, "epoch": 1.7906229929351318, "percentage": 59.69, "elapsed_time": "7:02:50", "remaining_time": "4:45:35"} +{"current_steps": 2789, "total_steps": 4671, "loss": 0.0814, "learning_rate": 4.183333317438837e-06, "epoch": 1.7912652536929994, "percentage": 59.71, "elapsed_time": "7:03:01", "remaining_time": "4:45:27"} +{"current_steps": 2790, "total_steps": 4671, "loss": 0.0397, "learning_rate": 4.17964641289543e-06, "epoch": 1.791907514450867, "percentage": 59.73, "elapsed_time": "7:03:09", "remaining_time": "4:45:17"} +{"current_steps": 2791, "total_steps": 4671, "loss": 0.1111, "learning_rate": 4.175959966685968e-06, "epoch": 1.7925497752087347, "percentage": 59.75, "elapsed_time": "7:03:19", "remaining_time": "4:45:08"} +{"current_steps": 2792, "total_steps": 4671, "loss": 0.1667, "learning_rate": 4.172273980870084e-06, "epoch": 1.7931920359666025, "percentage": 59.77, "elapsed_time": "7:03:28", "remaining_time": "4:44:59"} +{"current_steps": 2793, "total_steps": 4671, "loss": 0.0817, "learning_rate": 4.168588457507147e-06, "epoch": 1.7938342967244703, "percentage": 59.79, "elapsed_time": "7:03:36", "remaining_time": "4:44:50"} +{"current_steps": 2794, "total_steps": 4671, "loss": 0.0529, "learning_rate": 4.164903398656271e-06, "epoch": 1.7944765574823378, "percentage": 59.82, "elapsed_time": "7:03:46", "remaining_time": "4:44:41"} +{"current_steps": 2795, "total_steps": 4671, "loss": 0.0633, "learning_rate": 4.16121880637631e-06, "epoch": 1.7951188182402054, "percentage": 59.84, "elapsed_time": "7:03:56", "remaining_time": "4:44:32"} +{"current_steps": 2796, "total_steps": 4671, "loss": 0.0418, "learning_rate": 4.157534682725855e-06, "epoch": 1.7957610789980731, "percentage": 59.86, "elapsed_time": "7:04:04", "remaining_time": "4:44:23"} +{"current_steps": 2797, "total_steps": 4671, "loss": 0.0776, "learning_rate": 4.153851029763238e-06, "epoch": 1.796403339755941, "percentage": 59.88, "elapsed_time": "7:04:12", "remaining_time": "4:44:13"} +{"current_steps": 2798, "total_steps": 4671, "loss": 0.0512, "learning_rate": 4.150167849546526e-06, "epoch": 1.7970456005138087, "percentage": 59.9, "elapsed_time": "7:04:20", "remaining_time": "4:44:03"} +{"current_steps": 2799, "total_steps": 4671, "loss": 0.0531, "learning_rate": 4.1464851441335215e-06, "epoch": 1.7976878612716765, "percentage": 59.92, "elapsed_time": "7:04:30", "remaining_time": "4:43:54"} +{"current_steps": 2800, "total_steps": 4671, "loss": 0.0773, "learning_rate": 4.1428029155817635e-06, "epoch": 1.798330122029544, "percentage": 59.94, "elapsed_time": "7:04:37", "remaining_time": "4:43:44"} +{"current_steps": 2801, "total_steps": 4671, "loss": 0.0331, "learning_rate": 4.139121165948524e-06, "epoch": 1.7989723827874116, "percentage": 59.97, "elapsed_time": "7:04:46", "remaining_time": "4:43:35"} +{"current_steps": 2802, "total_steps": 4671, "loss": 0.066, "learning_rate": 4.135439897290807e-06, "epoch": 1.7996146435452793, "percentage": 59.99, "elapsed_time": "7:04:56", "remaining_time": "4:43:26"} +{"current_steps": 2803, "total_steps": 4671, "loss": 0.0653, "learning_rate": 4.131759111665349e-06, "epoch": 1.800256904303147, "percentage": 60.01, "elapsed_time": "7:05:04", "remaining_time": "4:43:17"} +{"current_steps": 2804, "total_steps": 4671, "loss": 0.0632, "learning_rate": 4.128078811128615e-06, "epoch": 1.8008991650610149, "percentage": 60.03, "elapsed_time": "7:05:13", "remaining_time": "4:43:07"} +{"current_steps": 2805, "total_steps": 4671, "loss": 0.1026, "learning_rate": 4.124398997736799e-06, "epoch": 1.8015414258188824, "percentage": 60.05, "elapsed_time": "7:05:21", "remaining_time": "4:42:58"} +{"current_steps": 2806, "total_steps": 4671, "loss": 0.0567, "learning_rate": 4.120719673545825e-06, "epoch": 1.8021836865767502, "percentage": 60.07, "elapsed_time": "7:05:29", "remaining_time": "4:42:48"} +{"current_steps": 2807, "total_steps": 4671, "loss": 0.0679, "learning_rate": 4.1170408406113414e-06, "epoch": 1.8028259473346178, "percentage": 60.09, "elapsed_time": "7:05:38", "remaining_time": "4:42:39"} +{"current_steps": 2808, "total_steps": 4671, "loss": 0.0868, "learning_rate": 4.113362500988722e-06, "epoch": 1.8034682080924855, "percentage": 60.12, "elapsed_time": "7:05:46", "remaining_time": "4:42:29"} +{"current_steps": 2809, "total_steps": 4671, "loss": 0.0559, "learning_rate": 4.109684656733068e-06, "epoch": 1.8041104688503533, "percentage": 60.14, "elapsed_time": "7:05:56", "remaining_time": "4:42:20"} +{"current_steps": 2810, "total_steps": 4671, "loss": 0.0618, "learning_rate": 4.1060073098991995e-06, "epoch": 1.804752729608221, "percentage": 60.16, "elapsed_time": "7:06:07", "remaining_time": "4:42:12"} +{"current_steps": 2811, "total_steps": 4671, "loss": 0.0588, "learning_rate": 4.102330462541662e-06, "epoch": 1.8053949903660886, "percentage": 60.18, "elapsed_time": "7:06:15", "remaining_time": "4:42:03"} +{"current_steps": 2812, "total_steps": 4671, "loss": 0.0161, "learning_rate": 4.0986541167147216e-06, "epoch": 1.8060372511239562, "percentage": 60.2, "elapsed_time": "7:06:24", "remaining_time": "4:41:54"} +{"current_steps": 2813, "total_steps": 4671, "loss": 0.0997, "learning_rate": 4.094978274472362e-06, "epoch": 1.806679511881824, "percentage": 60.22, "elapsed_time": "7:06:35", "remaining_time": "4:41:45"} +{"current_steps": 2814, "total_steps": 4671, "loss": 0.0588, "learning_rate": 4.09130293786829e-06, "epoch": 1.8073217726396917, "percentage": 60.24, "elapsed_time": "7:06:44", "remaining_time": "4:41:36"} +{"current_steps": 2815, "total_steps": 4671, "loss": 0.0918, "learning_rate": 4.087628108955923e-06, "epoch": 1.8079640333975595, "percentage": 60.27, "elapsed_time": "7:06:53", "remaining_time": "4:41:27"} +{"current_steps": 2816, "total_steps": 4671, "loss": 0.0506, "learning_rate": 4.0839537897884e-06, "epoch": 1.808606294155427, "percentage": 60.29, "elapsed_time": "7:07:01", "remaining_time": "4:41:17"} +{"current_steps": 2817, "total_steps": 4671, "loss": 0.0729, "learning_rate": 4.080279982418574e-06, "epoch": 1.8092485549132948, "percentage": 60.31, "elapsed_time": "7:07:11", "remaining_time": "4:41:09"} +{"current_steps": 2818, "total_steps": 4671, "loss": 0.0883, "learning_rate": 4.0766066888990134e-06, "epoch": 1.8098908156711624, "percentage": 60.33, "elapsed_time": "7:07:21", "remaining_time": "4:41:00"} +{"current_steps": 2819, "total_steps": 4671, "loss": 0.0647, "learning_rate": 4.072933911281996e-06, "epoch": 1.8105330764290302, "percentage": 60.35, "elapsed_time": "7:07:30", "remaining_time": "4:40:51"} +{"current_steps": 2820, "total_steps": 4671, "loss": 0.1329, "learning_rate": 4.069261651619514e-06, "epoch": 1.811175337186898, "percentage": 60.37, "elapsed_time": "7:07:40", "remaining_time": "4:40:42"} +{"current_steps": 2821, "total_steps": 4671, "loss": 0.0309, "learning_rate": 4.065589911963271e-06, "epoch": 1.8118175979447657, "percentage": 60.39, "elapsed_time": "7:07:49", "remaining_time": "4:40:33"} +{"current_steps": 2822, "total_steps": 4671, "loss": 0.1055, "learning_rate": 4.061918694364677e-06, "epoch": 1.8124598587026333, "percentage": 60.42, "elapsed_time": "7:08:00", "remaining_time": "4:40:25"} +{"current_steps": 2823, "total_steps": 4671, "loss": 0.0405, "learning_rate": 4.058248000874851e-06, "epoch": 1.8131021194605008, "percentage": 60.44, "elapsed_time": "7:08:08", "remaining_time": "4:40:16"} +{"current_steps": 2824, "total_steps": 4671, "loss": 0.059, "learning_rate": 4.054577833544623e-06, "epoch": 1.8137443802183686, "percentage": 60.46, "elapsed_time": "7:08:18", "remaining_time": "4:40:07"} +{"current_steps": 2825, "total_steps": 4671, "loss": 0.0188, "learning_rate": 4.050908194424525e-06, "epoch": 1.8143866409762364, "percentage": 60.48, "elapsed_time": "7:08:27", "remaining_time": "4:39:58"} +{"current_steps": 2826, "total_steps": 4671, "loss": 0.0444, "learning_rate": 4.047239085564794e-06, "epoch": 1.8150289017341041, "percentage": 60.5, "elapsed_time": "7:08:34", "remaining_time": "4:39:48"} +{"current_steps": 2827, "total_steps": 4671, "loss": 0.0515, "learning_rate": 4.043570509015373e-06, "epoch": 1.8156711624919717, "percentage": 60.52, "elapsed_time": "7:08:41", "remaining_time": "4:39:37"} +{"current_steps": 2828, "total_steps": 4671, "loss": 0.1137, "learning_rate": 4.039902466825907e-06, "epoch": 1.8163134232498395, "percentage": 60.54, "elapsed_time": "7:08:51", "remaining_time": "4:39:29"} +{"current_steps": 2829, "total_steps": 4671, "loss": 0.1205, "learning_rate": 4.036234961045743e-06, "epoch": 1.816955684007707, "percentage": 60.57, "elapsed_time": "7:09:00", "remaining_time": "4:39:19"} +{"current_steps": 2830, "total_steps": 4671, "loss": 0.0735, "learning_rate": 4.032567993723922e-06, "epoch": 1.8175979447655748, "percentage": 60.59, "elapsed_time": "7:09:10", "remaining_time": "4:39:11"} +{"current_steps": 2831, "total_steps": 4671, "loss": 0.0544, "learning_rate": 4.028901566909194e-06, "epoch": 1.8182402055234426, "percentage": 60.61, "elapsed_time": "7:09:18", "remaining_time": "4:39:01"} +{"current_steps": 2832, "total_steps": 4671, "loss": 0.0786, "learning_rate": 4.025235682650001e-06, "epoch": 1.8188824662813103, "percentage": 60.63, "elapsed_time": "7:09:25", "remaining_time": "4:38:51"} +{"current_steps": 2833, "total_steps": 4671, "loss": 0.1113, "learning_rate": 4.0215703429944835e-06, "epoch": 1.819524727039178, "percentage": 60.65, "elapsed_time": "7:09:33", "remaining_time": "4:38:41"} +{"current_steps": 2834, "total_steps": 4671, "loss": 0.0841, "learning_rate": 4.017905549990477e-06, "epoch": 1.8201669877970454, "percentage": 60.67, "elapsed_time": "7:09:43", "remaining_time": "4:38:32"} +{"current_steps": 2835, "total_steps": 4671, "loss": 0.0777, "learning_rate": 4.014241305685514e-06, "epoch": 1.8208092485549132, "percentage": 60.69, "elapsed_time": "7:09:52", "remaining_time": "4:38:23"} +{"current_steps": 2836, "total_steps": 4671, "loss": 0.1381, "learning_rate": 4.010577612126816e-06, "epoch": 1.821451509312781, "percentage": 60.72, "elapsed_time": "7:10:03", "remaining_time": "4:38:15"} +{"current_steps": 2837, "total_steps": 4671, "loss": 0.089, "learning_rate": 4.006914471361301e-06, "epoch": 1.8220937700706488, "percentage": 60.74, "elapsed_time": "7:10:13", "remaining_time": "4:38:07"} +{"current_steps": 2838, "total_steps": 4671, "loss": 0.0594, "learning_rate": 4.003251885435576e-06, "epoch": 1.8227360308285165, "percentage": 60.76, "elapsed_time": "7:10:21", "remaining_time": "4:37:57"} +{"current_steps": 2839, "total_steps": 4671, "loss": 0.1012, "learning_rate": 3.9995898563959365e-06, "epoch": 1.823378291586384, "percentage": 60.78, "elapsed_time": "7:10:30", "remaining_time": "4:37:48"} +{"current_steps": 2840, "total_steps": 4671, "loss": 0.0272, "learning_rate": 3.995928386288372e-06, "epoch": 1.8240205523442516, "percentage": 60.8, "elapsed_time": "7:10:38", "remaining_time": "4:37:38"} +{"current_steps": 2841, "total_steps": 4671, "loss": 0.0422, "learning_rate": 3.992267477158555e-06, "epoch": 1.8246628131021194, "percentage": 60.82, "elapsed_time": "7:10:48", "remaining_time": "4:37:29"} +{"current_steps": 2842, "total_steps": 4671, "loss": 0.0766, "learning_rate": 3.988607131051845e-06, "epoch": 1.8253050738599872, "percentage": 60.84, "elapsed_time": "7:10:56", "remaining_time": "4:37:20"} +{"current_steps": 2843, "total_steps": 4671, "loss": 0.1343, "learning_rate": 3.9849473500132906e-06, "epoch": 1.825947334617855, "percentage": 60.86, "elapsed_time": "7:11:06", "remaining_time": "4:37:11"} +{"current_steps": 2844, "total_steps": 4671, "loss": 0.0681, "learning_rate": 3.98128813608762e-06, "epoch": 1.8265895953757225, "percentage": 60.89, "elapsed_time": "7:11:17", "remaining_time": "4:37:03"} +{"current_steps": 2845, "total_steps": 4671, "loss": 0.1212, "learning_rate": 3.9776294913192494e-06, "epoch": 1.8272318561335903, "percentage": 60.91, "elapsed_time": "7:11:25", "remaining_time": "4:36:54"} +{"current_steps": 2846, "total_steps": 4671, "loss": 0.0805, "learning_rate": 3.973971417752272e-06, "epoch": 1.8278741168914578, "percentage": 60.93, "elapsed_time": "7:11:35", "remaining_time": "4:36:45"} +{"current_steps": 2847, "total_steps": 4671, "loss": 0.0681, "learning_rate": 3.970313917430464e-06, "epoch": 1.8285163776493256, "percentage": 60.95, "elapsed_time": "7:11:43", "remaining_time": "4:36:35"} +{"current_steps": 2848, "total_steps": 4671, "loss": 0.0783, "learning_rate": 3.966656992397282e-06, "epoch": 1.8291586384071934, "percentage": 60.97, "elapsed_time": "7:11:52", "remaining_time": "4:36:26"} +{"current_steps": 2849, "total_steps": 4671, "loss": 0.0315, "learning_rate": 3.9630006446958615e-06, "epoch": 1.8298008991650612, "percentage": 60.99, "elapsed_time": "7:12:00", "remaining_time": "4:36:16"} +{"current_steps": 2850, "total_steps": 4671, "loss": 0.0289, "learning_rate": 3.959344876369013e-06, "epoch": 1.8304431599229287, "percentage": 61.01, "elapsed_time": "7:12:08", "remaining_time": "4:36:07"} +{"current_steps": 2851, "total_steps": 4671, "loss": 0.0853, "learning_rate": 3.955689689459228e-06, "epoch": 1.8310854206807963, "percentage": 61.04, "elapsed_time": "7:12:18", "remaining_time": "4:35:58"} +{"current_steps": 2852, "total_steps": 4671, "loss": 0.0693, "learning_rate": 3.952035086008668e-06, "epoch": 1.831727681438664, "percentage": 61.06, "elapsed_time": "7:12:26", "remaining_time": "4:35:48"} +{"current_steps": 2853, "total_steps": 4671, "loss": 0.0601, "learning_rate": 3.948381068059171e-06, "epoch": 1.8323699421965318, "percentage": 61.08, "elapsed_time": "7:12:35", "remaining_time": "4:35:39"} +{"current_steps": 2854, "total_steps": 4671, "loss": 0.0785, "learning_rate": 3.944727637652247e-06, "epoch": 1.8330122029543996, "percentage": 61.1, "elapsed_time": "7:12:43", "remaining_time": "4:35:29"} +{"current_steps": 2855, "total_steps": 4671, "loss": 0.0539, "learning_rate": 3.941074796829078e-06, "epoch": 1.8336544637122671, "percentage": 61.12, "elapsed_time": "7:12:51", "remaining_time": "4:35:19"} +{"current_steps": 2856, "total_steps": 4671, "loss": 0.0352, "learning_rate": 3.937422547630519e-06, "epoch": 1.834296724470135, "percentage": 61.14, "elapsed_time": "7:12:58", "remaining_time": "4:35:09"} +{"current_steps": 2857, "total_steps": 4671, "loss": 0.0776, "learning_rate": 3.93377089209709e-06, "epoch": 1.8349389852280025, "percentage": 61.16, "elapsed_time": "7:13:08", "remaining_time": "4:35:00"} +{"current_steps": 2858, "total_steps": 4671, "loss": 0.1108, "learning_rate": 3.930119832268982e-06, "epoch": 1.8355812459858702, "percentage": 61.19, "elapsed_time": "7:13:17", "remaining_time": "4:34:51"} +{"current_steps": 2859, "total_steps": 4671, "loss": 0.0769, "learning_rate": 3.926469370186053e-06, "epoch": 1.836223506743738, "percentage": 61.21, "elapsed_time": "7:13:27", "remaining_time": "4:34:43"} +{"current_steps": 2860, "total_steps": 4671, "loss": 0.1235, "learning_rate": 3.922819507887828e-06, "epoch": 1.8368657675016058, "percentage": 61.23, "elapsed_time": "7:13:34", "remaining_time": "4:34:32"} +{"current_steps": 2861, "total_steps": 4671, "loss": 0.0731, "learning_rate": 3.919170247413496e-06, "epoch": 1.8375080282594733, "percentage": 61.25, "elapsed_time": "7:13:43", "remaining_time": "4:34:23"} +{"current_steps": 2862, "total_steps": 4671, "loss": 0.1331, "learning_rate": 3.915521590801907e-06, "epoch": 1.838150289017341, "percentage": 61.27, "elapsed_time": "7:13:53", "remaining_time": "4:34:15"} +{"current_steps": 2863, "total_steps": 4671, "loss": 0.0932, "learning_rate": 3.911873540091578e-06, "epoch": 1.8387925497752087, "percentage": 61.29, "elapsed_time": "7:14:01", "remaining_time": "4:34:05"} +{"current_steps": 2864, "total_steps": 4671, "loss": 0.1368, "learning_rate": 3.908226097320684e-06, "epoch": 1.8394348105330764, "percentage": 61.31, "elapsed_time": "7:14:09", "remaining_time": "4:33:55"} +{"current_steps": 2865, "total_steps": 4671, "loss": 0.0755, "learning_rate": 3.904579264527063e-06, "epoch": 1.8400770712909442, "percentage": 61.34, "elapsed_time": "7:14:17", "remaining_time": "4:33:45"} +{"current_steps": 2866, "total_steps": 4671, "loss": 0.1279, "learning_rate": 3.900933043748211e-06, "epoch": 1.8407193320488118, "percentage": 61.36, "elapsed_time": "7:14:27", "remaining_time": "4:33:37"} +{"current_steps": 2867, "total_steps": 4671, "loss": 0.0455, "learning_rate": 3.897287437021283e-06, "epoch": 1.8413615928066795, "percentage": 61.38, "elapsed_time": "7:14:36", "remaining_time": "4:33:28"} +{"current_steps": 2868, "total_steps": 4671, "loss": 0.0754, "learning_rate": 3.89364244638309e-06, "epoch": 1.842003853564547, "percentage": 61.4, "elapsed_time": "7:14:45", "remaining_time": "4:33:19"} +{"current_steps": 2869, "total_steps": 4671, "loss": 0.0539, "learning_rate": 3.8899980738700995e-06, "epoch": 1.8426461143224149, "percentage": 61.42, "elapsed_time": "7:14:53", "remaining_time": "4:33:09"} +{"current_steps": 2870, "total_steps": 4671, "loss": 0.0723, "learning_rate": 3.88635432151843e-06, "epoch": 1.8432883750802826, "percentage": 61.44, "elapsed_time": "7:15:03", "remaining_time": "4:33:00"} +{"current_steps": 2871, "total_steps": 4671, "loss": 0.0553, "learning_rate": 3.88271119136386e-06, "epoch": 1.8439306358381504, "percentage": 61.46, "elapsed_time": "7:15:11", "remaining_time": "4:32:50"} +{"current_steps": 2872, "total_steps": 4671, "loss": 0.1264, "learning_rate": 3.879068685441814e-06, "epoch": 1.844572896596018, "percentage": 61.49, "elapsed_time": "7:15:19", "remaining_time": "4:32:41"} +{"current_steps": 2873, "total_steps": 4671, "loss": 0.0401, "learning_rate": 3.875426805787374e-06, "epoch": 1.8452151573538855, "percentage": 61.51, "elapsed_time": "7:15:31", "remaining_time": "4:32:33"} +{"current_steps": 2874, "total_steps": 4671, "loss": 0.1096, "learning_rate": 3.8717855544352655e-06, "epoch": 1.8458574181117533, "percentage": 61.53, "elapsed_time": "7:15:43", "remaining_time": "4:32:26"} +{"current_steps": 2875, "total_steps": 4671, "loss": 0.0391, "learning_rate": 3.868144933419869e-06, "epoch": 1.846499678869621, "percentage": 61.55, "elapsed_time": "7:15:50", "remaining_time": "4:32:16"} +{"current_steps": 2876, "total_steps": 4671, "loss": 0.1238, "learning_rate": 3.86450494477521e-06, "epoch": 1.8471419396274888, "percentage": 61.57, "elapsed_time": "7:15:59", "remaining_time": "4:32:06"} +{"current_steps": 2877, "total_steps": 4671, "loss": 0.0646, "learning_rate": 3.8608655905349586e-06, "epoch": 1.8477842003853564, "percentage": 61.59, "elapsed_time": "7:16:09", "remaining_time": "4:31:58"} +{"current_steps": 2878, "total_steps": 4671, "loss": 0.0824, "learning_rate": 3.857226872732434e-06, "epoch": 1.8484264611432242, "percentage": 61.61, "elapsed_time": "7:16:18", "remaining_time": "4:31:49"} +{"current_steps": 2879, "total_steps": 4671, "loss": 0.0363, "learning_rate": 3.8535887934005985e-06, "epoch": 1.8490687219010917, "percentage": 61.64, "elapsed_time": "7:16:26", "remaining_time": "4:31:39"} +{"current_steps": 2880, "total_steps": 4671, "loss": 0.069, "learning_rate": 3.849951354572057e-06, "epoch": 1.8497109826589595, "percentage": 61.66, "elapsed_time": "7:16:33", "remaining_time": "4:31:28"} +{"current_steps": 2881, "total_steps": 4671, "loss": 0.0667, "learning_rate": 3.846314558279059e-06, "epoch": 1.8503532434168273, "percentage": 61.68, "elapsed_time": "7:16:41", "remaining_time": "4:31:19"} +{"current_steps": 2882, "total_steps": 4671, "loss": 0.045, "learning_rate": 3.84267840655349e-06, "epoch": 1.850995504174695, "percentage": 61.7, "elapsed_time": "7:16:49", "remaining_time": "4:31:09"} +{"current_steps": 2883, "total_steps": 4671, "loss": 0.0459, "learning_rate": 3.8390429014268806e-06, "epoch": 1.8516377649325626, "percentage": 61.72, "elapsed_time": "7:16:57", "remaining_time": "4:30:59"} +{"current_steps": 2884, "total_steps": 4671, "loss": 0.0748, "learning_rate": 3.835408044930402e-06, "epoch": 1.8522800256904302, "percentage": 61.74, "elapsed_time": "7:17:06", "remaining_time": "4:30:50"} +{"current_steps": 2885, "total_steps": 4671, "loss": 0.0917, "learning_rate": 3.831773839094852e-06, "epoch": 1.852922286448298, "percentage": 61.76, "elapsed_time": "7:17:16", "remaining_time": "4:30:41"} +{"current_steps": 2886, "total_steps": 4671, "loss": 0.0683, "learning_rate": 3.828140285950676e-06, "epoch": 1.8535645472061657, "percentage": 61.79, "elapsed_time": "7:17:25", "remaining_time": "4:30:33"} +{"current_steps": 2887, "total_steps": 4671, "loss": 0.0769, "learning_rate": 3.824507387527949e-06, "epoch": 1.8542068079640335, "percentage": 61.81, "elapsed_time": "7:17:34", "remaining_time": "4:30:23"} +{"current_steps": 2888, "total_steps": 4671, "loss": 0.0536, "learning_rate": 3.820875145856384e-06, "epoch": 1.8548490687219013, "percentage": 61.83, "elapsed_time": "7:17:43", "remaining_time": "4:30:14"} +{"current_steps": 2889, "total_steps": 4671, "loss": 0.0613, "learning_rate": 3.817243562965324e-06, "epoch": 1.8554913294797688, "percentage": 61.85, "elapsed_time": "7:17:51", "remaining_time": "4:30:05"} +{"current_steps": 2890, "total_steps": 4671, "loss": 0.0677, "learning_rate": 3.8136126408837454e-06, "epoch": 1.8561335902376364, "percentage": 61.87, "elapsed_time": "7:18:03", "remaining_time": "4:29:57"} +{"current_steps": 2891, "total_steps": 4671, "loss": 0.0662, "learning_rate": 3.8099823816402547e-06, "epoch": 1.8567758509955041, "percentage": 61.89, "elapsed_time": "7:18:10", "remaining_time": "4:29:47"} +{"current_steps": 2892, "total_steps": 4671, "loss": 0.08, "learning_rate": 3.806352787263089e-06, "epoch": 1.857418111753372, "percentage": 61.91, "elapsed_time": "7:18:19", "remaining_time": "4:29:38"} +{"current_steps": 2893, "total_steps": 4671, "loss": 0.053, "learning_rate": 3.802723859780112e-06, "epoch": 1.8580603725112397, "percentage": 61.94, "elapsed_time": "7:18:29", "remaining_time": "4:29:29"} +{"current_steps": 2894, "total_steps": 4671, "loss": 0.1015, "learning_rate": 3.7990956012188168e-06, "epoch": 1.8587026332691072, "percentage": 61.96, "elapsed_time": "7:18:39", "remaining_time": "4:29:20"} +{"current_steps": 2895, "total_steps": 4671, "loss": 0.0639, "learning_rate": 3.7954680136063217e-06, "epoch": 1.859344894026975, "percentage": 61.98, "elapsed_time": "7:18:47", "remaining_time": "4:29:11"} +{"current_steps": 2896, "total_steps": 4671, "loss": 0.0754, "learning_rate": 3.791841098969371e-06, "epoch": 1.8599871547848426, "percentage": 62.0, "elapsed_time": "7:18:55", "remaining_time": "4:29:01"} +{"current_steps": 2897, "total_steps": 4671, "loss": 0.0582, "learning_rate": 3.788214859334332e-06, "epoch": 1.8606294155427103, "percentage": 62.02, "elapsed_time": "7:19:05", "remaining_time": "4:28:52"} +{"current_steps": 2898, "total_steps": 4671, "loss": 0.0955, "learning_rate": 3.7845892967271963e-06, "epoch": 1.861271676300578, "percentage": 62.04, "elapsed_time": "7:19:14", "remaining_time": "4:28:43"} +{"current_steps": 2899, "total_steps": 4671, "loss": 0.0758, "learning_rate": 3.7809644131735747e-06, "epoch": 1.8619139370584459, "percentage": 62.06, "elapsed_time": "7:19:23", "remaining_time": "4:28:34"} +{"current_steps": 2900, "total_steps": 4671, "loss": 0.0342, "learning_rate": 3.777340210698704e-06, "epoch": 1.8625561978163134, "percentage": 62.09, "elapsed_time": "7:19:31", "remaining_time": "4:28:24"} +{"current_steps": 2901, "total_steps": 4671, "loss": 0.0591, "learning_rate": 3.773716691327432e-06, "epoch": 1.863198458574181, "percentage": 62.11, "elapsed_time": "7:19:40", "remaining_time": "4:28:15"} +{"current_steps": 2902, "total_steps": 4671, "loss": 0.0528, "learning_rate": 3.7700938570842317e-06, "epoch": 1.8638407193320488, "percentage": 62.13, "elapsed_time": "7:19:50", "remaining_time": "4:28:06"} +{"current_steps": 2903, "total_steps": 4671, "loss": 0.1117, "learning_rate": 3.7664717099931915e-06, "epoch": 1.8644829800899165, "percentage": 62.15, "elapsed_time": "7:20:00", "remaining_time": "4:27:58"} +{"current_steps": 2904, "total_steps": 4671, "loss": 0.108, "learning_rate": 3.7628502520780134e-06, "epoch": 1.8651252408477843, "percentage": 62.17, "elapsed_time": "7:20:08", "remaining_time": "4:27:48"} +{"current_steps": 2905, "total_steps": 4671, "loss": 0.0203, "learning_rate": 3.75922948536202e-06, "epoch": 1.8657675016056519, "percentage": 62.19, "elapsed_time": "7:20:17", "remaining_time": "4:27:39"} +{"current_steps": 2906, "total_steps": 4671, "loss": 0.1131, "learning_rate": 3.755609411868142e-06, "epoch": 1.8664097623635196, "percentage": 62.21, "elapsed_time": "7:20:25", "remaining_time": "4:27:29"} +{"current_steps": 2907, "total_steps": 4671, "loss": 0.0914, "learning_rate": 3.7519900336189265e-06, "epoch": 1.8670520231213872, "percentage": 62.24, "elapsed_time": "7:20:35", "remaining_time": "4:27:21"} +{"current_steps": 2908, "total_steps": 4671, "loss": 0.0412, "learning_rate": 3.7483713526365294e-06, "epoch": 1.867694283879255, "percentage": 62.26, "elapsed_time": "7:20:45", "remaining_time": "4:27:12"} +{"current_steps": 2909, "total_steps": 4671, "loss": 0.0895, "learning_rate": 3.744753370942719e-06, "epoch": 1.8683365446371227, "percentage": 62.28, "elapsed_time": "7:20:54", "remaining_time": "4:27:03"} +{"current_steps": 2910, "total_steps": 4671, "loss": 0.1269, "learning_rate": 3.741136090558872e-06, "epoch": 1.8689788053949905, "percentage": 62.3, "elapsed_time": "7:21:04", "remaining_time": "4:26:55"} +{"current_steps": 2911, "total_steps": 4671, "loss": 0.0684, "learning_rate": 3.7375195135059728e-06, "epoch": 1.869621066152858, "percentage": 62.32, "elapsed_time": "7:21:14", "remaining_time": "4:26:46"} +{"current_steps": 2912, "total_steps": 4671, "loss": 0.1284, "learning_rate": 3.7339036418046147e-06, "epoch": 1.8702633269107256, "percentage": 62.34, "elapsed_time": "7:21:22", "remaining_time": "4:26:36"} +{"current_steps": 2913, "total_steps": 4671, "loss": 0.0569, "learning_rate": 3.730288477474996e-06, "epoch": 1.8709055876685934, "percentage": 62.36, "elapsed_time": "7:21:30", "remaining_time": "4:26:26"} +{"current_steps": 2914, "total_steps": 4671, "loss": 0.0527, "learning_rate": 3.726674022536918e-06, "epoch": 1.8715478484264612, "percentage": 62.38, "elapsed_time": "7:21:40", "remaining_time": "4:26:18"} +{"current_steps": 2915, "total_steps": 4671, "loss": 0.1387, "learning_rate": 3.723060279009789e-06, "epoch": 1.872190109184329, "percentage": 62.41, "elapsed_time": "7:21:50", "remaining_time": "4:26:10"} +{"current_steps": 2916, "total_steps": 4671, "loss": 0.0978, "learning_rate": 3.7194472489126176e-06, "epoch": 1.8728323699421965, "percentage": 62.43, "elapsed_time": "7:22:00", "remaining_time": "4:26:01"} +{"current_steps": 2917, "total_steps": 4671, "loss": 0.1137, "learning_rate": 3.715834934264014e-06, "epoch": 1.8734746307000643, "percentage": 62.45, "elapsed_time": "7:22:09", "remaining_time": "4:25:52"} +{"current_steps": 2918, "total_steps": 4671, "loss": 0.1129, "learning_rate": 3.7122233370821885e-06, "epoch": 1.8741168914579318, "percentage": 62.47, "elapsed_time": "7:22:18", "remaining_time": "4:25:42"} +{"current_steps": 2919, "total_steps": 4671, "loss": 0.0959, "learning_rate": 3.7086124593849514e-06, "epoch": 1.8747591522157996, "percentage": 62.49, "elapsed_time": "7:22:28", "remaining_time": "4:25:34"} +{"current_steps": 2920, "total_steps": 4671, "loss": 0.0732, "learning_rate": 3.705002303189711e-06, "epoch": 1.8754014129736674, "percentage": 62.51, "elapsed_time": "7:22:35", "remaining_time": "4:25:24"} +{"current_steps": 2921, "total_steps": 4671, "loss": 0.0745, "learning_rate": 3.7013928705134705e-06, "epoch": 1.8760436737315351, "percentage": 62.53, "elapsed_time": "7:22:45", "remaining_time": "4:25:15"} +{"current_steps": 2922, "total_steps": 4671, "loss": 0.0604, "learning_rate": 3.6977841633728332e-06, "epoch": 1.8766859344894027, "percentage": 62.56, "elapsed_time": "7:22:55", "remaining_time": "4:25:07"} +{"current_steps": 2923, "total_steps": 4671, "loss": 0.0583, "learning_rate": 3.6941761837839928e-06, "epoch": 1.8773281952472702, "percentage": 62.58, "elapsed_time": "7:23:05", "remaining_time": "4:24:58"} +{"current_steps": 2924, "total_steps": 4671, "loss": 0.0668, "learning_rate": 3.69056893376274e-06, "epoch": 1.877970456005138, "percentage": 62.6, "elapsed_time": "7:23:14", "remaining_time": "4:24:49"} +{"current_steps": 2925, "total_steps": 4671, "loss": 0.0304, "learning_rate": 3.686962415324452e-06, "epoch": 1.8786127167630058, "percentage": 62.62, "elapsed_time": "7:23:24", "remaining_time": "4:24:41"} +{"current_steps": 2926, "total_steps": 4671, "loss": 0.0525, "learning_rate": 3.683356630484104e-06, "epoch": 1.8792549775208736, "percentage": 62.64, "elapsed_time": "7:23:32", "remaining_time": "4:24:31"} +{"current_steps": 2927, "total_steps": 4671, "loss": 0.0744, "learning_rate": 3.679751581256258e-06, "epoch": 1.8798972382787413, "percentage": 62.66, "elapsed_time": "7:23:41", "remaining_time": "4:24:22"} +{"current_steps": 2928, "total_steps": 4671, "loss": 0.059, "learning_rate": 3.676147269655065e-06, "epoch": 1.8805394990366089, "percentage": 62.68, "elapsed_time": "7:23:50", "remaining_time": "4:24:12"} +{"current_steps": 2929, "total_steps": 4671, "loss": 0.1483, "learning_rate": 3.672543697694265e-06, "epoch": 1.8811817597944764, "percentage": 62.71, "elapsed_time": "7:24:00", "remaining_time": "4:24:04"} +{"current_steps": 2930, "total_steps": 4671, "loss": 0.1322, "learning_rate": 3.6689408673871845e-06, "epoch": 1.8818240205523442, "percentage": 62.73, "elapsed_time": "7:24:09", "remaining_time": "4:23:55"} +{"current_steps": 2931, "total_steps": 4671, "loss": 0.05, "learning_rate": 3.665338780746736e-06, "epoch": 1.882466281310212, "percentage": 62.75, "elapsed_time": "7:24:19", "remaining_time": "4:23:46"} +{"current_steps": 2932, "total_steps": 4671, "loss": 0.1069, "learning_rate": 3.6617374397854134e-06, "epoch": 1.8831085420680798, "percentage": 62.77, "elapsed_time": "7:24:28", "remaining_time": "4:23:37"} +{"current_steps": 2933, "total_steps": 4671, "loss": 0.0779, "learning_rate": 3.658136846515298e-06, "epoch": 1.8837508028259473, "percentage": 62.79, "elapsed_time": "7:24:38", "remaining_time": "4:23:28"} +{"current_steps": 2934, "total_steps": 4671, "loss": 0.0628, "learning_rate": 3.6545370029480515e-06, "epoch": 1.8843930635838149, "percentage": 62.81, "elapsed_time": "7:24:46", "remaining_time": "4:23:19"} +{"current_steps": 2935, "total_steps": 4671, "loss": 0.0898, "learning_rate": 3.6509379110949173e-06, "epoch": 1.8850353243416826, "percentage": 62.83, "elapsed_time": "7:24:56", "remaining_time": "4:23:10"} +{"current_steps": 2936, "total_steps": 4671, "loss": 0.0496, "learning_rate": 3.647339572966718e-06, "epoch": 1.8856775850995504, "percentage": 62.86, "elapsed_time": "7:25:06", "remaining_time": "4:23:01"} +{"current_steps": 2937, "total_steps": 4671, "loss": 0.0471, "learning_rate": 3.6437419905738547e-06, "epoch": 1.8863198458574182, "percentage": 62.88, "elapsed_time": "7:25:15", "remaining_time": "4:22:53"} +{"current_steps": 2938, "total_steps": 4671, "loss": 0.0468, "learning_rate": 3.6401451659263105e-06, "epoch": 1.886962106615286, "percentage": 62.9, "elapsed_time": "7:25:24", "remaining_time": "4:22:43"} +{"current_steps": 2939, "total_steps": 4671, "loss": 0.0643, "learning_rate": 3.636549101033642e-06, "epoch": 1.8876043673731535, "percentage": 62.92, "elapsed_time": "7:25:32", "remaining_time": "4:22:33"} +{"current_steps": 2940, "total_steps": 4671, "loss": 0.1083, "learning_rate": 3.6329537979049757e-06, "epoch": 1.888246628131021, "percentage": 62.94, "elapsed_time": "7:25:42", "remaining_time": "4:22:25"} +{"current_steps": 2941, "total_steps": 4671, "loss": 0.0961, "learning_rate": 3.6293592585490223e-06, "epoch": 1.8888888888888888, "percentage": 62.96, "elapsed_time": "7:25:50", "remaining_time": "4:22:15"} +{"current_steps": 2942, "total_steps": 4671, "loss": 0.0351, "learning_rate": 3.6257654849740585e-06, "epoch": 1.8895311496467566, "percentage": 62.98, "elapsed_time": "7:25:58", "remaining_time": "4:22:05"} +{"current_steps": 2943, "total_steps": 4671, "loss": 0.0753, "learning_rate": 3.6221724791879406e-06, "epoch": 1.8901734104046244, "percentage": 63.01, "elapsed_time": "7:26:07", "remaining_time": "4:21:56"} +{"current_steps": 2944, "total_steps": 4671, "loss": 0.0523, "learning_rate": 3.6185802431980875e-06, "epoch": 1.890815671162492, "percentage": 63.03, "elapsed_time": "7:26:17", "remaining_time": "4:21:48"} +{"current_steps": 2945, "total_steps": 4671, "loss": 0.0969, "learning_rate": 3.6149887790114944e-06, "epoch": 1.8914579319203597, "percentage": 63.05, "elapsed_time": "7:26:26", "remaining_time": "4:21:38"} +{"current_steps": 2946, "total_steps": 4671, "loss": 0.0799, "learning_rate": 3.6113980886347213e-06, "epoch": 1.8921001926782273, "percentage": 63.07, "elapsed_time": "7:26:35", "remaining_time": "4:21:30"} +{"current_steps": 2947, "total_steps": 4671, "loss": 0.0612, "learning_rate": 3.607808174073899e-06, "epoch": 1.892742453436095, "percentage": 63.09, "elapsed_time": "7:26:44", "remaining_time": "4:21:20"} +{"current_steps": 2948, "total_steps": 4671, "loss": 0.1623, "learning_rate": 3.6042190373347212e-06, "epoch": 1.8933847141939628, "percentage": 63.11, "elapsed_time": "7:26:52", "remaining_time": "4:21:10"} +{"current_steps": 2949, "total_steps": 4671, "loss": 0.0536, "learning_rate": 3.60063068042245e-06, "epoch": 1.8940269749518306, "percentage": 63.13, "elapsed_time": "7:27:02", "remaining_time": "4:21:02"} +{"current_steps": 2950, "total_steps": 4671, "loss": 0.086, "learning_rate": 3.5970431053419112e-06, "epoch": 1.8946692357096981, "percentage": 63.16, "elapsed_time": "7:27:11", "remaining_time": "4:20:53"} +{"current_steps": 2951, "total_steps": 4671, "loss": 0.0679, "learning_rate": 3.593456314097493e-06, "epoch": 1.8953114964675657, "percentage": 63.18, "elapsed_time": "7:27:20", "remaining_time": "4:20:44"} +{"current_steps": 2952, "total_steps": 4671, "loss": 0.0437, "learning_rate": 3.5898703086931474e-06, "epoch": 1.8959537572254335, "percentage": 63.2, "elapsed_time": "7:27:31", "remaining_time": "4:20:35"} +{"current_steps": 2953, "total_steps": 4671, "loss": 0.0543, "learning_rate": 3.586285091132384e-06, "epoch": 1.8965960179833012, "percentage": 63.22, "elapsed_time": "7:27:42", "remaining_time": "4:20:27"} +{"current_steps": 2954, "total_steps": 4671, "loss": 0.0743, "learning_rate": 3.5827006634182754e-06, "epoch": 1.897238278741169, "percentage": 63.24, "elapsed_time": "7:27:49", "remaining_time": "4:20:17"} +{"current_steps": 2955, "total_steps": 4671, "loss": 0.082, "learning_rate": 3.579117027553455e-06, "epoch": 1.8978805394990366, "percentage": 63.26, "elapsed_time": "7:28:00", "remaining_time": "4:20:10"} +{"current_steps": 2956, "total_steps": 4671, "loss": 0.0683, "learning_rate": 3.5755341855401048e-06, "epoch": 1.8985228002569043, "percentage": 63.28, "elapsed_time": "7:28:10", "remaining_time": "4:20:01"} +{"current_steps": 2957, "total_steps": 4671, "loss": 0.022, "learning_rate": 3.571952139379972e-06, "epoch": 1.899165061014772, "percentage": 63.31, "elapsed_time": "7:28:18", "remaining_time": "4:19:51"} +{"current_steps": 2958, "total_steps": 4671, "loss": 0.1122, "learning_rate": 3.5683708910743563e-06, "epoch": 1.8998073217726397, "percentage": 63.33, "elapsed_time": "7:28:28", "remaining_time": "4:19:42"} +{"current_steps": 2959, "total_steps": 4671, "loss": 0.045, "learning_rate": 3.564790442624111e-06, "epoch": 1.9004495825305074, "percentage": 63.35, "elapsed_time": "7:28:36", "remaining_time": "4:19:33"} +{"current_steps": 2960, "total_steps": 4671, "loss": 0.0382, "learning_rate": 3.5612107960296437e-06, "epoch": 1.9010918432883752, "percentage": 63.37, "elapsed_time": "7:28:44", "remaining_time": "4:19:23"} +{"current_steps": 2961, "total_steps": 4671, "loss": 0.0312, "learning_rate": 3.557631953290914e-06, "epoch": 1.9017341040462428, "percentage": 63.39, "elapsed_time": "7:28:52", "remaining_time": "4:19:13"} +{"current_steps": 2962, "total_steps": 4671, "loss": 0.0965, "learning_rate": 3.5540539164074306e-06, "epoch": 1.9023763648041103, "percentage": 63.41, "elapsed_time": "7:29:01", "remaining_time": "4:19:04"} +{"current_steps": 2963, "total_steps": 4671, "loss": 0.0529, "learning_rate": 3.5504766873782552e-06, "epoch": 1.903018625561978, "percentage": 63.43, "elapsed_time": "7:29:08", "remaining_time": "4:18:54"} +{"current_steps": 2964, "total_steps": 4671, "loss": 0.0719, "learning_rate": 3.5469002682019936e-06, "epoch": 1.9036608863198459, "percentage": 63.46, "elapsed_time": "7:29:17", "remaining_time": "4:18:45"} +{"current_steps": 2965, "total_steps": 4671, "loss": 0.1138, "learning_rate": 3.5433246608768025e-06, "epoch": 1.9043031470777136, "percentage": 63.48, "elapsed_time": "7:29:27", "remaining_time": "4:18:36"} +{"current_steps": 2966, "total_steps": 4671, "loss": 0.1542, "learning_rate": 3.5397498674003843e-06, "epoch": 1.9049454078355812, "percentage": 63.5, "elapsed_time": "7:29:36", "remaining_time": "4:18:27"} +{"current_steps": 2967, "total_steps": 4671, "loss": 0.0856, "learning_rate": 3.536175889769987e-06, "epoch": 1.905587668593449, "percentage": 63.52, "elapsed_time": "7:29:46", "remaining_time": "4:18:18"} +{"current_steps": 2968, "total_steps": 4671, "loss": 0.1549, "learning_rate": 3.532602729982402e-06, "epoch": 1.9062299293513165, "percentage": 63.54, "elapsed_time": "7:29:57", "remaining_time": "4:18:10"} +{"current_steps": 2969, "total_steps": 4671, "loss": 0.1218, "learning_rate": 3.5290303900339634e-06, "epoch": 1.9068721901091843, "percentage": 63.56, "elapsed_time": "7:30:05", "remaining_time": "4:18:01"} +{"current_steps": 2970, "total_steps": 4671, "loss": 0.0622, "learning_rate": 3.5254588719205494e-06, "epoch": 1.907514450867052, "percentage": 63.58, "elapsed_time": "7:30:15", "remaining_time": "4:17:52"} +{"current_steps": 2971, "total_steps": 4671, "loss": 0.0774, "learning_rate": 3.5218881776375773e-06, "epoch": 1.9081567116249198, "percentage": 63.61, "elapsed_time": "7:30:24", "remaining_time": "4:17:43"} +{"current_steps": 2972, "total_steps": 4671, "loss": 0.0534, "learning_rate": 3.5183183091800035e-06, "epoch": 1.9087989723827874, "percentage": 63.63, "elapsed_time": "7:30:33", "remaining_time": "4:17:34"} +{"current_steps": 2973, "total_steps": 4671, "loss": 0.0426, "learning_rate": 3.5147492685423247e-06, "epoch": 1.909441233140655, "percentage": 63.65, "elapsed_time": "7:30:41", "remaining_time": "4:17:24"} +{"current_steps": 2974, "total_steps": 4671, "loss": 0.0971, "learning_rate": 3.5111810577185734e-06, "epoch": 1.9100834938985227, "percentage": 63.67, "elapsed_time": "7:30:49", "remaining_time": "4:17:14"} +{"current_steps": 2975, "total_steps": 4671, "loss": 0.0564, "learning_rate": 3.5076136787023207e-06, "epoch": 1.9107257546563905, "percentage": 63.69, "elapsed_time": "7:30:58", "remaining_time": "4:17:05"} +{"current_steps": 2976, "total_steps": 4671, "loss": 0.0583, "learning_rate": 3.50404713348667e-06, "epoch": 1.9113680154142583, "percentage": 63.71, "elapsed_time": "7:31:07", "remaining_time": "4:16:56"} +{"current_steps": 2977, "total_steps": 4671, "loss": 0.0549, "learning_rate": 3.5004814240642624e-06, "epoch": 1.912010276172126, "percentage": 63.73, "elapsed_time": "7:31:17", "remaining_time": "4:16:48"} +{"current_steps": 2978, "total_steps": 4671, "loss": 0.1026, "learning_rate": 3.4969165524272695e-06, "epoch": 1.9126525369299936, "percentage": 63.76, "elapsed_time": "7:31:27", "remaining_time": "4:16:39"} +{"current_steps": 2979, "total_steps": 4671, "loss": 0.0994, "learning_rate": 3.4933525205673977e-06, "epoch": 1.9132947976878611, "percentage": 63.78, "elapsed_time": "7:31:36", "remaining_time": "4:16:30"} +{"current_steps": 2980, "total_steps": 4671, "loss": 0.062, "learning_rate": 3.489789330475877e-06, "epoch": 1.913937058445729, "percentage": 63.8, "elapsed_time": "7:31:47", "remaining_time": "4:16:22"} +{"current_steps": 2981, "total_steps": 4671, "loss": 0.0635, "learning_rate": 3.4862269841434758e-06, "epoch": 1.9145793192035967, "percentage": 63.82, "elapsed_time": "7:31:55", "remaining_time": "4:16:12"} +{"current_steps": 2982, "total_steps": 4671, "loss": 0.0768, "learning_rate": 3.4826654835604867e-06, "epoch": 1.9152215799614645, "percentage": 63.84, "elapsed_time": "7:32:06", "remaining_time": "4:16:04"} +{"current_steps": 2983, "total_steps": 4671, "loss": 0.1254, "learning_rate": 3.4791048307167307e-06, "epoch": 1.915863840719332, "percentage": 63.86, "elapsed_time": "7:32:15", "remaining_time": "4:15:55"} +{"current_steps": 2984, "total_steps": 4671, "loss": 0.1069, "learning_rate": 3.475545027601554e-06, "epoch": 1.9165061014771998, "percentage": 63.88, "elapsed_time": "7:32:24", "remaining_time": "4:15:46"} +{"current_steps": 2985, "total_steps": 4671, "loss": 0.0641, "learning_rate": 3.47198607620383e-06, "epoch": 1.9171483622350673, "percentage": 63.9, "elapsed_time": "7:32:32", "remaining_time": "4:15:36"} +{"current_steps": 2986, "total_steps": 4671, "loss": 0.1151, "learning_rate": 3.4684279785119558e-06, "epoch": 1.9177906229929351, "percentage": 63.93, "elapsed_time": "7:32:41", "remaining_time": "4:15:27"} +{"current_steps": 2987, "total_steps": 4671, "loss": 0.0484, "learning_rate": 3.464870736513849e-06, "epoch": 1.918432883750803, "percentage": 63.95, "elapsed_time": "7:32:50", "remaining_time": "4:15:18"} +{"current_steps": 2988, "total_steps": 4671, "loss": 0.0911, "learning_rate": 3.461314352196952e-06, "epoch": 1.9190751445086707, "percentage": 63.97, "elapsed_time": "7:33:00", "remaining_time": "4:15:09"} +{"current_steps": 2989, "total_steps": 4671, "loss": 0.0562, "learning_rate": 3.4577588275482272e-06, "epoch": 1.9197174052665382, "percentage": 63.99, "elapsed_time": "7:33:08", "remaining_time": "4:14:59"} +{"current_steps": 2990, "total_steps": 4671, "loss": 0.0601, "learning_rate": 3.4542041645541567e-06, "epoch": 1.9203596660244058, "percentage": 64.01, "elapsed_time": "7:33:17", "remaining_time": "4:14:50"} +{"current_steps": 2991, "total_steps": 4671, "loss": 0.0967, "learning_rate": 3.450650365200742e-06, "epoch": 1.9210019267822736, "percentage": 64.03, "elapsed_time": "7:33:28", "remaining_time": "4:14:42"} +{"current_steps": 2992, "total_steps": 4671, "loss": 0.0741, "learning_rate": 3.4470974314734996e-06, "epoch": 1.9216441875401413, "percentage": 64.05, "elapsed_time": "7:33:40", "remaining_time": "4:14:35"} +{"current_steps": 2993, "total_steps": 4671, "loss": 0.0437, "learning_rate": 3.4435453653574634e-06, "epoch": 1.922286448298009, "percentage": 64.08, "elapsed_time": "7:33:50", "remaining_time": "4:14:26"} +{"current_steps": 2994, "total_steps": 4671, "loss": 0.0589, "learning_rate": 3.4399941688371884e-06, "epoch": 1.9229287090558767, "percentage": 64.1, "elapsed_time": "7:33:58", "remaining_time": "4:14:16"} +{"current_steps": 2995, "total_steps": 4671, "loss": 0.0214, "learning_rate": 3.436443843896732e-06, "epoch": 1.9235709698137444, "percentage": 64.12, "elapsed_time": "7:34:07", "remaining_time": "4:14:07"} +{"current_steps": 2996, "total_steps": 4671, "loss": 0.0703, "learning_rate": 3.4328943925196735e-06, "epoch": 1.924213230571612, "percentage": 64.14, "elapsed_time": "7:34:15", "remaining_time": "4:13:58"} +{"current_steps": 2997, "total_steps": 4671, "loss": 0.0896, "learning_rate": 3.429345816689101e-06, "epoch": 1.9248554913294798, "percentage": 64.16, "elapsed_time": "7:34:25", "remaining_time": "4:13:49"} +{"current_steps": 2998, "total_steps": 4671, "loss": 0.0328, "learning_rate": 3.425798118387616e-06, "epoch": 1.9254977520873475, "percentage": 64.18, "elapsed_time": "7:34:33", "remaining_time": "4:13:39"} +{"current_steps": 2999, "total_steps": 4671, "loss": 0.0403, "learning_rate": 3.422251299597327e-06, "epoch": 1.9261400128452153, "percentage": 64.2, "elapsed_time": "7:34:41", "remaining_time": "4:13:29"} +{"current_steps": 3000, "total_steps": 4671, "loss": 0.0572, "learning_rate": 3.4187053622998524e-06, "epoch": 1.9267822736030829, "percentage": 64.23, "elapsed_time": "7:34:50", "remaining_time": "4:13:20"} +{"current_steps": 3001, "total_steps": 4671, "loss": 0.0217, "learning_rate": 3.4151603084763175e-06, "epoch": 1.9274245343609504, "percentage": 64.25, "elapsed_time": "7:34:58", "remaining_time": "4:13:10"} +{"current_steps": 3002, "total_steps": 4671, "loss": 0.121, "learning_rate": 3.4116161401073544e-06, "epoch": 1.9280667951188182, "percentage": 64.27, "elapsed_time": "7:35:06", "remaining_time": "4:13:01"} +{"current_steps": 3003, "total_steps": 4671, "loss": 0.0891, "learning_rate": 3.408072859173099e-06, "epoch": 1.928709055876686, "percentage": 64.29, "elapsed_time": "7:35:17", "remaining_time": "4:12:53"} +{"current_steps": 3004, "total_steps": 4671, "loss": 0.0784, "learning_rate": 3.4045304676531952e-06, "epoch": 1.9293513166345537, "percentage": 64.31, "elapsed_time": "7:35:27", "remaining_time": "4:12:44"} +{"current_steps": 3005, "total_steps": 4671, "loss": 0.0458, "learning_rate": 3.400988967526785e-06, "epoch": 1.9299935773924213, "percentage": 64.33, "elapsed_time": "7:35:36", "remaining_time": "4:12:35"} +{"current_steps": 3006, "total_steps": 4671, "loss": 0.0668, "learning_rate": 3.397448360772516e-06, "epoch": 1.930635838150289, "percentage": 64.35, "elapsed_time": "7:35:44", "remaining_time": "4:12:25"} +{"current_steps": 3007, "total_steps": 4671, "loss": 0.0505, "learning_rate": 3.3939086493685357e-06, "epoch": 1.9312780989081566, "percentage": 64.38, "elapsed_time": "7:35:52", "remaining_time": "4:12:16"} +{"current_steps": 3008, "total_steps": 4671, "loss": 0.0726, "learning_rate": 3.390369835292491e-06, "epoch": 1.9319203596660244, "percentage": 64.4, "elapsed_time": "7:36:01", "remaining_time": "4:12:07"} +{"current_steps": 3009, "total_steps": 4671, "loss": 0.109, "learning_rate": 3.3868319205215284e-06, "epoch": 1.9325626204238922, "percentage": 64.42, "elapsed_time": "7:36:12", "remaining_time": "4:11:58"} +{"current_steps": 3010, "total_steps": 4671, "loss": 0.0999, "learning_rate": 3.3832949070322907e-06, "epoch": 1.93320488118176, "percentage": 64.44, "elapsed_time": "7:36:20", "remaining_time": "4:11:49"} +{"current_steps": 3011, "total_steps": 4671, "loss": 0.0341, "learning_rate": 3.379758796800917e-06, "epoch": 1.9338471419396275, "percentage": 64.46, "elapsed_time": "7:36:30", "remaining_time": "4:11:40"} +{"current_steps": 3012, "total_steps": 4671, "loss": 0.0788, "learning_rate": 3.376223591803043e-06, "epoch": 1.934489402697495, "percentage": 64.48, "elapsed_time": "7:36:40", "remaining_time": "4:11:32"} +{"current_steps": 3013, "total_steps": 4671, "loss": 0.1729, "learning_rate": 3.372689294013797e-06, "epoch": 1.9351316634553628, "percentage": 64.5, "elapsed_time": "7:36:52", "remaining_time": "4:11:24"} +{"current_steps": 3014, "total_steps": 4671, "loss": 0.0919, "learning_rate": 3.3691559054078026e-06, "epoch": 1.9357739242132306, "percentage": 64.53, "elapsed_time": "7:37:02", "remaining_time": "4:11:16"} +{"current_steps": 3015, "total_steps": 4671, "loss": 0.0758, "learning_rate": 3.365623427959175e-06, "epoch": 1.9364161849710984, "percentage": 64.55, "elapsed_time": "7:37:11", "remaining_time": "4:11:06"} +{"current_steps": 3016, "total_steps": 4671, "loss": 0.0708, "learning_rate": 3.362091863641519e-06, "epoch": 1.937058445728966, "percentage": 64.57, "elapsed_time": "7:37:21", "remaining_time": "4:10:58"} +{"current_steps": 3017, "total_steps": 4671, "loss": 0.064, "learning_rate": 3.35856121442793e-06, "epoch": 1.9377007064868337, "percentage": 64.59, "elapsed_time": "7:37:30", "remaining_time": "4:10:49"} +{"current_steps": 3018, "total_steps": 4671, "loss": 0.0691, "learning_rate": 3.355031482290994e-06, "epoch": 1.9383429672447012, "percentage": 64.61, "elapsed_time": "7:37:41", "remaining_time": "4:10:40"} +{"current_steps": 3019, "total_steps": 4671, "loss": 0.1023, "learning_rate": 3.3515026692027774e-06, "epoch": 1.938985228002569, "percentage": 64.63, "elapsed_time": "7:37:48", "remaining_time": "4:10:30"} +{"current_steps": 3020, "total_steps": 4671, "loss": 0.0607, "learning_rate": 3.3479747771348424e-06, "epoch": 1.9396274887604368, "percentage": 64.65, "elapsed_time": "7:37:56", "remaining_time": "4:10:21"} +{"current_steps": 3021, "total_steps": 4671, "loss": 0.054, "learning_rate": 3.344447808058232e-06, "epoch": 1.9402697495183046, "percentage": 64.68, "elapsed_time": "7:38:04", "remaining_time": "4:10:11"} +{"current_steps": 3022, "total_steps": 4671, "loss": 0.115, "learning_rate": 3.3409217639434743e-06, "epoch": 1.940912010276172, "percentage": 64.7, "elapsed_time": "7:38:14", "remaining_time": "4:10:02"} +{"current_steps": 3023, "total_steps": 4671, "loss": 0.0523, "learning_rate": 3.33739664676058e-06, "epoch": 1.9415542710340397, "percentage": 64.72, "elapsed_time": "7:38:24", "remaining_time": "4:09:53"} +{"current_steps": 3024, "total_steps": 4671, "loss": 0.0196, "learning_rate": 3.3338724584790427e-06, "epoch": 1.9421965317919074, "percentage": 64.74, "elapsed_time": "7:38:32", "remaining_time": "4:09:44"} +{"current_steps": 3025, "total_steps": 4671, "loss": 0.0694, "learning_rate": 3.330349201067836e-06, "epoch": 1.9428387925497752, "percentage": 64.76, "elapsed_time": "7:38:41", "remaining_time": "4:09:35"} +{"current_steps": 3026, "total_steps": 4671, "loss": 0.0605, "learning_rate": 3.3268268764954157e-06, "epoch": 1.943481053307643, "percentage": 64.78, "elapsed_time": "7:38:52", "remaining_time": "4:09:27"} +{"current_steps": 3027, "total_steps": 4671, "loss": 0.0853, "learning_rate": 3.323305486729713e-06, "epoch": 1.9441233140655108, "percentage": 64.8, "elapsed_time": "7:39:00", "remaining_time": "4:09:17"} +{"current_steps": 3028, "total_steps": 4671, "loss": 0.0843, "learning_rate": 3.31978503373814e-06, "epoch": 1.9447655748233783, "percentage": 64.83, "elapsed_time": "7:39:09", "remaining_time": "4:09:08"} +{"current_steps": 3029, "total_steps": 4671, "loss": 0.0428, "learning_rate": 3.3162655194875825e-06, "epoch": 1.9454078355812459, "percentage": 64.85, "elapsed_time": "7:39:17", "remaining_time": "4:08:58"} +{"current_steps": 3030, "total_steps": 4671, "loss": 0.0528, "learning_rate": 3.312746945944405e-06, "epoch": 1.9460500963391136, "percentage": 64.87, "elapsed_time": "7:39:26", "remaining_time": "4:08:49"} +{"current_steps": 3031, "total_steps": 4671, "loss": 0.0463, "learning_rate": 3.3092293150744425e-06, "epoch": 1.9466923570969814, "percentage": 64.89, "elapsed_time": "7:39:34", "remaining_time": "4:08:40"} +{"current_steps": 3032, "total_steps": 4671, "loss": 0.0611, "learning_rate": 3.305712628843009e-06, "epoch": 1.9473346178548492, "percentage": 64.91, "elapsed_time": "7:39:42", "remaining_time": "4:08:30"} +{"current_steps": 3033, "total_steps": 4671, "loss": 0.1043, "learning_rate": 3.302196889214886e-06, "epoch": 1.9479768786127167, "percentage": 64.93, "elapsed_time": "7:39:53", "remaining_time": "4:08:22"} +{"current_steps": 3034, "total_steps": 4671, "loss": 0.066, "learning_rate": 3.2986820981543293e-06, "epoch": 1.9486191393705845, "percentage": 64.95, "elapsed_time": "7:40:01", "remaining_time": "4:08:12"} +{"current_steps": 3035, "total_steps": 4671, "loss": 0.0736, "learning_rate": 3.2951682576250575e-06, "epoch": 1.949261400128452, "percentage": 64.98, "elapsed_time": "7:40:09", "remaining_time": "4:08:02"} +{"current_steps": 3036, "total_steps": 4671, "loss": 0.0453, "learning_rate": 3.291655369590269e-06, "epoch": 1.9499036608863198, "percentage": 65.0, "elapsed_time": "7:40:18", "remaining_time": "4:07:53"} +{"current_steps": 3037, "total_steps": 4671, "loss": 0.1067, "learning_rate": 3.288143436012622e-06, "epoch": 1.9505459216441876, "percentage": 65.02, "elapsed_time": "7:40:29", "remaining_time": "4:07:45"} +{"current_steps": 3038, "total_steps": 4671, "loss": 0.0461, "learning_rate": 3.2846324588542442e-06, "epoch": 1.9511881824020554, "percentage": 65.04, "elapsed_time": "7:40:37", "remaining_time": "4:07:36"} +{"current_steps": 3039, "total_steps": 4671, "loss": 0.0853, "learning_rate": 3.2811224400767292e-06, "epoch": 1.951830443159923, "percentage": 65.06, "elapsed_time": "7:40:45", "remaining_time": "4:07:26"} +{"current_steps": 3040, "total_steps": 4671, "loss": 0.0491, "learning_rate": 3.277613381641136e-06, "epoch": 1.9524727039177905, "percentage": 65.08, "elapsed_time": "7:40:54", "remaining_time": "4:07:16"} +{"current_steps": 3041, "total_steps": 4671, "loss": 0.0705, "learning_rate": 3.2741052855079857e-06, "epoch": 1.9531149646756583, "percentage": 65.1, "elapsed_time": "7:41:03", "remaining_time": "4:07:07"} +{"current_steps": 3042, "total_steps": 4671, "loss": 0.0772, "learning_rate": 3.270598153637259e-06, "epoch": 1.953757225433526, "percentage": 65.13, "elapsed_time": "7:41:11", "remaining_time": "4:06:58"} +{"current_steps": 3043, "total_steps": 4671, "loss": 0.0835, "learning_rate": 3.2670919879884035e-06, "epoch": 1.9543994861913938, "percentage": 65.15, "elapsed_time": "7:41:18", "remaining_time": "4:06:48"} +{"current_steps": 3044, "total_steps": 4671, "loss": 0.0406, "learning_rate": 3.2635867905203223e-06, "epoch": 1.9550417469492614, "percentage": 65.17, "elapsed_time": "7:41:26", "remaining_time": "4:06:38"} +{"current_steps": 3045, "total_steps": 4671, "loss": 0.0547, "learning_rate": 3.2600825631913815e-06, "epoch": 1.9556840077071291, "percentage": 65.19, "elapsed_time": "7:41:35", "remaining_time": "4:06:29"} +{"current_steps": 3046, "total_steps": 4671, "loss": 0.07, "learning_rate": 3.256579307959401e-06, "epoch": 1.9563262684649967, "percentage": 65.21, "elapsed_time": "7:41:43", "remaining_time": "4:06:19"} +{"current_steps": 3047, "total_steps": 4671, "loss": 0.091, "learning_rate": 3.253077026781662e-06, "epoch": 1.9569685292228645, "percentage": 65.23, "elapsed_time": "7:41:52", "remaining_time": "4:06:10"} +{"current_steps": 3048, "total_steps": 4671, "loss": 0.112, "learning_rate": 3.2495757216148965e-06, "epoch": 1.9576107899807322, "percentage": 65.25, "elapsed_time": "7:42:02", "remaining_time": "4:06:01"} +{"current_steps": 3049, "total_steps": 4671, "loss": 0.0457, "learning_rate": 3.246075394415299e-06, "epoch": 1.9582530507386, "percentage": 65.28, "elapsed_time": "7:42:10", "remaining_time": "4:05:52"} +{"current_steps": 3050, "total_steps": 4671, "loss": 0.1054, "learning_rate": 3.242576047138507e-06, "epoch": 1.9588953114964676, "percentage": 65.3, "elapsed_time": "7:42:21", "remaining_time": "4:05:43"} +{"current_steps": 3051, "total_steps": 4671, "loss": 0.076, "learning_rate": 3.239077681739618e-06, "epoch": 1.9595375722543351, "percentage": 65.32, "elapsed_time": "7:42:29", "remaining_time": "4:05:34"} +{"current_steps": 3052, "total_steps": 4671, "loss": 0.0481, "learning_rate": 3.2355803001731785e-06, "epoch": 1.9601798330122029, "percentage": 65.34, "elapsed_time": "7:42:38", "remaining_time": "4:05:25"} +{"current_steps": 3053, "total_steps": 4671, "loss": 0.0894, "learning_rate": 3.232083904393187e-06, "epoch": 1.9608220937700707, "percentage": 65.36, "elapsed_time": "7:42:47", "remaining_time": "4:05:16"} +{"current_steps": 3054, "total_steps": 4671, "loss": 0.1024, "learning_rate": 3.22858849635309e-06, "epoch": 1.9614643545279384, "percentage": 65.38, "elapsed_time": "7:42:58", "remaining_time": "4:05:07"} +{"current_steps": 3055, "total_steps": 4671, "loss": 0.0687, "learning_rate": 3.2250940780057816e-06, "epoch": 1.962106615285806, "percentage": 65.4, "elapsed_time": "7:43:07", "remaining_time": "4:04:58"} +{"current_steps": 3056, "total_steps": 4671, "loss": 0.0677, "learning_rate": 3.2216006513036034e-06, "epoch": 1.9627488760436738, "percentage": 65.42, "elapsed_time": "7:43:17", "remaining_time": "4:04:49"} +{"current_steps": 3057, "total_steps": 4671, "loss": 0.0617, "learning_rate": 3.2181082181983447e-06, "epoch": 1.9633911368015413, "percentage": 65.45, "elapsed_time": "7:43:25", "remaining_time": "4:04:40"} +{"current_steps": 3058, "total_steps": 4671, "loss": 0.075, "learning_rate": 3.2146167806412353e-06, "epoch": 1.964033397559409, "percentage": 65.47, "elapsed_time": "7:43:36", "remaining_time": "4:04:32"} +{"current_steps": 3059, "total_steps": 4671, "loss": 0.1068, "learning_rate": 3.2111263405829534e-06, "epoch": 1.9646756583172769, "percentage": 65.49, "elapsed_time": "7:43:46", "remaining_time": "4:04:23"} +{"current_steps": 3060, "total_steps": 4671, "loss": 0.0991, "learning_rate": 3.2076368999736175e-06, "epoch": 1.9653179190751446, "percentage": 65.51, "elapsed_time": "7:43:53", "remaining_time": "4:04:13"} +{"current_steps": 3061, "total_steps": 4671, "loss": 0.1285, "learning_rate": 3.204148460762789e-06, "epoch": 1.9659601798330122, "percentage": 65.53, "elapsed_time": "7:44:02", "remaining_time": "4:04:04"} +{"current_steps": 3062, "total_steps": 4671, "loss": 0.0421, "learning_rate": 3.2006610248994687e-06, "epoch": 1.9666024405908797, "percentage": 65.55, "elapsed_time": "7:44:12", "remaining_time": "4:03:55"} +{"current_steps": 3063, "total_steps": 4671, "loss": 0.0802, "learning_rate": 3.1971745943320962e-06, "epoch": 1.9672447013487475, "percentage": 65.57, "elapsed_time": "7:44:22", "remaining_time": "4:03:47"} +{"current_steps": 3064, "total_steps": 4671, "loss": 0.0886, "learning_rate": 3.1936891710085514e-06, "epoch": 1.9678869621066153, "percentage": 65.6, "elapsed_time": "7:44:32", "remaining_time": "4:03:38"} +{"current_steps": 3065, "total_steps": 4671, "loss": 0.1059, "learning_rate": 3.190204756876153e-06, "epoch": 1.968529222864483, "percentage": 65.62, "elapsed_time": "7:44:42", "remaining_time": "4:03:29"} +{"current_steps": 3066, "total_steps": 4671, "loss": 0.0953, "learning_rate": 3.1867213538816484e-06, "epoch": 1.9691714836223508, "percentage": 65.64, "elapsed_time": "7:44:49", "remaining_time": "4:03:19"} +{"current_steps": 3067, "total_steps": 4671, "loss": 0.0848, "learning_rate": 3.183238963971228e-06, "epoch": 1.9698137443802184, "percentage": 65.66, "elapsed_time": "7:44:58", "remaining_time": "4:03:10"} +{"current_steps": 3068, "total_steps": 4671, "loss": 0.1072, "learning_rate": 3.1797575890905125e-06, "epoch": 1.970456005138086, "percentage": 65.68, "elapsed_time": "7:45:08", "remaining_time": "4:03:01"} +{"current_steps": 3069, "total_steps": 4671, "loss": 0.0692, "learning_rate": 3.176277231184556e-06, "epoch": 1.9710982658959537, "percentage": 65.7, "elapsed_time": "7:45:18", "remaining_time": "4:02:53"} +{"current_steps": 3070, "total_steps": 4671, "loss": 0.053, "learning_rate": 3.172797892197845e-06, "epoch": 1.9717405266538215, "percentage": 65.72, "elapsed_time": "7:45:27", "remaining_time": "4:02:44"} +{"current_steps": 3071, "total_steps": 4671, "loss": 0.036, "learning_rate": 3.169319574074298e-06, "epoch": 1.9723827874116893, "percentage": 65.75, "elapsed_time": "7:45:34", "remaining_time": "4:02:34"} +{"current_steps": 3072, "total_steps": 4671, "loss": 0.0607, "learning_rate": 3.1658422787572586e-06, "epoch": 1.9730250481695568, "percentage": 65.77, "elapsed_time": "7:45:42", "remaining_time": "4:02:24"} +{"current_steps": 3073, "total_steps": 4671, "loss": 0.0544, "learning_rate": 3.1623660081895058e-06, "epoch": 1.9736673089274244, "percentage": 65.79, "elapsed_time": "7:45:50", "remaining_time": "4:02:14"} +{"current_steps": 3074, "total_steps": 4671, "loss": 0.1079, "learning_rate": 3.158890764313236e-06, "epoch": 1.9743095696852921, "percentage": 65.81, "elapsed_time": "7:45:58", "remaining_time": "4:02:04"} +{"current_steps": 3075, "total_steps": 4671, "loss": 0.0317, "learning_rate": 3.155416549070083e-06, "epoch": 1.97495183044316, "percentage": 65.83, "elapsed_time": "7:46:08", "remaining_time": "4:01:56"} +{"current_steps": 3076, "total_steps": 4671, "loss": 0.0551, "learning_rate": 3.1519433644010998e-06, "epoch": 1.9755940912010277, "percentage": 65.85, "elapsed_time": "7:46:16", "remaining_time": "4:01:46"} +{"current_steps": 3077, "total_steps": 4671, "loss": 0.0861, "learning_rate": 3.1484712122467655e-06, "epoch": 1.9762363519588955, "percentage": 65.87, "elapsed_time": "7:46:26", "remaining_time": "4:01:37"} +{"current_steps": 3078, "total_steps": 4671, "loss": 0.0241, "learning_rate": 3.14500009454698e-06, "epoch": 1.976878612716763, "percentage": 65.9, "elapsed_time": "7:46:34", "remaining_time": "4:01:28"} +{"current_steps": 3079, "total_steps": 4671, "loss": 0.1115, "learning_rate": 3.141530013241068e-06, "epoch": 1.9775208734746306, "percentage": 65.92, "elapsed_time": "7:46:43", "remaining_time": "4:01:19"} +{"current_steps": 3080, "total_steps": 4671, "loss": 0.0823, "learning_rate": 3.138060970267774e-06, "epoch": 1.9781631342324983, "percentage": 65.94, "elapsed_time": "7:46:52", "remaining_time": "4:01:10"} +{"current_steps": 3081, "total_steps": 4671, "loss": 0.0709, "learning_rate": 3.1345929675652632e-06, "epoch": 1.9788053949903661, "percentage": 65.96, "elapsed_time": "7:47:03", "remaining_time": "4:01:02"} +{"current_steps": 3082, "total_steps": 4671, "loss": 0.0789, "learning_rate": 3.131126007071117e-06, "epoch": 1.979447655748234, "percentage": 65.98, "elapsed_time": "7:47:12", "remaining_time": "4:00:52"} +{"current_steps": 3083, "total_steps": 4671, "loss": 0.1001, "learning_rate": 3.1276600907223374e-06, "epoch": 1.9800899165061014, "percentage": 66.0, "elapsed_time": "7:47:21", "remaining_time": "4:00:43"} +{"current_steps": 3084, "total_steps": 4671, "loss": 0.098, "learning_rate": 3.1241952204553426e-06, "epoch": 1.9807321772639692, "percentage": 66.02, "elapsed_time": "7:47:31", "remaining_time": "4:00:34"} +{"current_steps": 3085, "total_steps": 4671, "loss": 0.0442, "learning_rate": 3.120731398205964e-06, "epoch": 1.9813744380218368, "percentage": 66.05, "elapsed_time": "7:47:38", "remaining_time": "4:00:24"} +{"current_steps": 3086, "total_steps": 4671, "loss": 0.1663, "learning_rate": 3.1172686259094497e-06, "epoch": 1.9820166987797045, "percentage": 66.07, "elapsed_time": "7:47:48", "remaining_time": "4:00:16"} +{"current_steps": 3087, "total_steps": 4671, "loss": 0.1277, "learning_rate": 3.1138069055004628e-06, "epoch": 1.9826589595375723, "percentage": 66.09, "elapsed_time": "7:47:56", "remaining_time": "4:00:06"} +{"current_steps": 3088, "total_steps": 4671, "loss": 0.0649, "learning_rate": 3.1103462389130756e-06, "epoch": 1.98330122029544, "percentage": 66.11, "elapsed_time": "7:48:05", "remaining_time": "3:59:57"} +{"current_steps": 3089, "total_steps": 4671, "loss": 0.0192, "learning_rate": 3.106886628080773e-06, "epoch": 1.9839434810533076, "percentage": 66.13, "elapsed_time": "7:48:15", "remaining_time": "3:59:48"} +{"current_steps": 3090, "total_steps": 4671, "loss": 0.0428, "learning_rate": 3.1034280749364476e-06, "epoch": 1.9845857418111752, "percentage": 66.15, "elapsed_time": "7:48:23", "remaining_time": "3:59:39"} +{"current_steps": 3091, "total_steps": 4671, "loss": 0.0352, "learning_rate": 3.0999705814124037e-06, "epoch": 1.985228002569043, "percentage": 66.17, "elapsed_time": "7:48:30", "remaining_time": "3:59:28"} +{"current_steps": 3092, "total_steps": 4671, "loss": 0.0368, "learning_rate": 3.0965141494403545e-06, "epoch": 1.9858702633269107, "percentage": 66.2, "elapsed_time": "7:48:40", "remaining_time": "3:59:20"} +{"current_steps": 3093, "total_steps": 4671, "loss": 0.0954, "learning_rate": 3.093058780951418e-06, "epoch": 1.9865125240847785, "percentage": 66.22, "elapsed_time": "7:48:52", "remaining_time": "3:59:12"} +{"current_steps": 3094, "total_steps": 4671, "loss": 0.0906, "learning_rate": 3.0896044778761184e-06, "epoch": 1.987154784842646, "percentage": 66.24, "elapsed_time": "7:49:01", "remaining_time": "3:59:03"} +{"current_steps": 3095, "total_steps": 4671, "loss": 0.1105, "learning_rate": 3.086151242144386e-06, "epoch": 1.9877970456005138, "percentage": 66.26, "elapsed_time": "7:49:10", "remaining_time": "3:58:54"} +{"current_steps": 3096, "total_steps": 4671, "loss": 0.0787, "learning_rate": 3.0826990756855528e-06, "epoch": 1.9884393063583814, "percentage": 66.28, "elapsed_time": "7:49:18", "remaining_time": "3:58:44"} +{"current_steps": 3097, "total_steps": 4671, "loss": 0.1391, "learning_rate": 3.0792479804283544e-06, "epoch": 1.9890815671162492, "percentage": 66.3, "elapsed_time": "7:49:29", "remaining_time": "3:58:36"} +{"current_steps": 3098, "total_steps": 4671, "loss": 0.0798, "learning_rate": 3.075797958300927e-06, "epoch": 1.989723827874117, "percentage": 66.32, "elapsed_time": "7:49:39", "remaining_time": "3:58:27"} +{"current_steps": 3099, "total_steps": 4671, "loss": 0.0527, "learning_rate": 3.0723490112308095e-06, "epoch": 1.9903660886319847, "percentage": 66.35, "elapsed_time": "7:49:47", "remaining_time": "3:58:18"} +{"current_steps": 3100, "total_steps": 4671, "loss": 0.0583, "learning_rate": 3.0689011411449377e-06, "epoch": 1.9910083493898523, "percentage": 66.37, "elapsed_time": "7:49:56", "remaining_time": "3:58:09"} +{"current_steps": 3101, "total_steps": 4671, "loss": 0.0686, "learning_rate": 3.065454349969647e-06, "epoch": 1.9916506101477198, "percentage": 66.39, "elapsed_time": "7:50:04", "remaining_time": "3:57:59"} +{"current_steps": 3102, "total_steps": 4671, "loss": 0.0527, "learning_rate": 3.0620086396306704e-06, "epoch": 1.9922928709055876, "percentage": 66.41, "elapsed_time": "7:50:13", "remaining_time": "3:57:50"} +{"current_steps": 3103, "total_steps": 4671, "loss": 0.0818, "learning_rate": 3.058564012053134e-06, "epoch": 1.9929351316634554, "percentage": 66.43, "elapsed_time": "7:50:22", "remaining_time": "3:57:41"} +{"current_steps": 3104, "total_steps": 4671, "loss": 0.1161, "learning_rate": 3.0551204691615667e-06, "epoch": 1.9935773924213231, "percentage": 66.45, "elapsed_time": "7:50:33", "remaining_time": "3:57:33"} +{"current_steps": 3105, "total_steps": 4671, "loss": 0.1086, "learning_rate": 3.0516780128798794e-06, "epoch": 1.9942196531791907, "percentage": 66.47, "elapsed_time": "7:50:40", "remaining_time": "3:57:23"} +{"current_steps": 3106, "total_steps": 4671, "loss": 0.0839, "learning_rate": 3.048236645131386e-06, "epoch": 1.9948619139370585, "percentage": 66.5, "elapsed_time": "7:50:48", "remaining_time": "3:57:13"} +{"current_steps": 3107, "total_steps": 4671, "loss": 0.0486, "learning_rate": 3.044796367838788e-06, "epoch": 1.995504174694926, "percentage": 66.52, "elapsed_time": "7:50:57", "remaining_time": "3:57:04"} +{"current_steps": 3108, "total_steps": 4671, "loss": 0.0804, "learning_rate": 3.0413571829241783e-06, "epoch": 1.9961464354527938, "percentage": 66.54, "elapsed_time": "7:51:06", "remaining_time": "3:56:55"} +{"current_steps": 3109, "total_steps": 4671, "loss": 0.0617, "learning_rate": 3.03791909230904e-06, "epoch": 1.9967886962106616, "percentage": 66.56, "elapsed_time": "7:51:14", "remaining_time": "3:56:45"} +{"current_steps": 3110, "total_steps": 4671, "loss": 0.0941, "learning_rate": 3.0344820979142443e-06, "epoch": 1.9974309569685293, "percentage": 66.58, "elapsed_time": "7:51:25", "remaining_time": "3:56:37"} +{"current_steps": 3111, "total_steps": 4671, "loss": 0.092, "learning_rate": 3.0310462016600505e-06, "epoch": 1.998073217726397, "percentage": 66.6, "elapsed_time": "7:51:34", "remaining_time": "3:56:27"} +{"current_steps": 3112, "total_steps": 4671, "loss": 0.0765, "learning_rate": 3.027611405466104e-06, "epoch": 1.9987154784842645, "percentage": 66.62, "elapsed_time": "7:51:43", "remaining_time": "3:56:19"} +{"current_steps": 3113, "total_steps": 4671, "loss": 0.047, "learning_rate": 3.0241777112514336e-06, "epoch": 1.9993577392421322, "percentage": 66.65, "elapsed_time": "7:51:52", "remaining_time": "3:56:09"} +{"current_steps": 3114, "total_steps": 4671, "loss": 0.0443, "learning_rate": 3.020745120934455e-06, "epoch": 2.0, "percentage": 66.67, "elapsed_time": "7:52:01", "remaining_time": "3:56:00"} +{"current_steps": 3115, "total_steps": 4671, "loss": 0.0398, "learning_rate": 3.017313636432968e-06, "epoch": 2.0006422607578678, "percentage": 66.69, "elapsed_time": "7:52:10", "remaining_time": "3:55:51"} +{"current_steps": 3116, "total_steps": 4671, "loss": 0.0487, "learning_rate": 3.013883259664151e-06, "epoch": 2.0012845215157355, "percentage": 66.71, "elapsed_time": "7:52:19", "remaining_time": "3:55:42"} +{"current_steps": 3117, "total_steps": 4671, "loss": 0.0328, "learning_rate": 3.010453992544567e-06, "epoch": 2.001926782273603, "percentage": 66.73, "elapsed_time": "7:52:29", "remaining_time": "3:55:33"} +{"current_steps": 3118, "total_steps": 4671, "loss": 0.0278, "learning_rate": 3.0070258369901573e-06, "epoch": 2.0025690430314707, "percentage": 66.75, "elapsed_time": "7:52:38", "remaining_time": "3:55:24"} +{"current_steps": 3119, "total_steps": 4671, "loss": 0.0221, "learning_rate": 3.0035987949162415e-06, "epoch": 2.0032113037893384, "percentage": 66.77, "elapsed_time": "7:52:46", "remaining_time": "3:55:15"} +{"current_steps": 3120, "total_steps": 4671, "loss": 0.043, "learning_rate": 3.0001728682375202e-06, "epoch": 2.003853564547206, "percentage": 66.8, "elapsed_time": "7:52:55", "remaining_time": "3:55:06"} +{"current_steps": 3121, "total_steps": 4671, "loss": 0.0205, "learning_rate": 2.9967480588680666e-06, "epoch": 2.004495825305074, "percentage": 66.82, "elapsed_time": "7:53:06", "remaining_time": "3:54:57"} +{"current_steps": 3122, "total_steps": 4671, "loss": 0.0141, "learning_rate": 2.9933243687213317e-06, "epoch": 2.0051380860629417, "percentage": 66.84, "elapsed_time": "7:53:14", "remaining_time": "3:54:48"} +{"current_steps": 3123, "total_steps": 4671, "loss": 0.0235, "learning_rate": 2.989901799710142e-06, "epoch": 2.005780346820809, "percentage": 66.86, "elapsed_time": "7:53:22", "remaining_time": "3:54:38"} +{"current_steps": 3124, "total_steps": 4671, "loss": 0.028, "learning_rate": 2.9864803537466963e-06, "epoch": 2.006422607578677, "percentage": 66.88, "elapsed_time": "7:53:31", "remaining_time": "3:54:29"} +{"current_steps": 3125, "total_steps": 4671, "loss": 0.0208, "learning_rate": 2.9830600327425664e-06, "epoch": 2.0070648683365446, "percentage": 66.9, "elapsed_time": "7:53:40", "remaining_time": "3:54:20"} +{"current_steps": 3126, "total_steps": 4671, "loss": 0.0321, "learning_rate": 2.979640838608696e-06, "epoch": 2.0077071290944124, "percentage": 66.92, "elapsed_time": "7:53:49", "remaining_time": "3:54:11"} +{"current_steps": 3127, "total_steps": 4671, "loss": 0.0243, "learning_rate": 2.9762227732554007e-06, "epoch": 2.00834938985228, "percentage": 66.94, "elapsed_time": "7:53:57", "remaining_time": "3:54:01"} +{"current_steps": 3128, "total_steps": 4671, "loss": 0.0358, "learning_rate": 2.972805838592362e-06, "epoch": 2.0089916506101475, "percentage": 66.97, "elapsed_time": "7:54:05", "remaining_time": "3:53:51"} +{"current_steps": 3129, "total_steps": 4671, "loss": 0.0333, "learning_rate": 2.9693900365286288e-06, "epoch": 2.0096339113680153, "percentage": 66.99, "elapsed_time": "7:54:15", "remaining_time": "3:53:43"} +{"current_steps": 3130, "total_steps": 4671, "loss": 0.0225, "learning_rate": 2.9659753689726234e-06, "epoch": 2.010276172125883, "percentage": 67.01, "elapsed_time": "7:54:24", "remaining_time": "3:53:33"} +{"current_steps": 3131, "total_steps": 4671, "loss": 0.0249, "learning_rate": 2.9625618378321287e-06, "epoch": 2.010918432883751, "percentage": 67.03, "elapsed_time": "7:54:34", "remaining_time": "3:53:25"} +{"current_steps": 3132, "total_steps": 4671, "loss": 0.0342, "learning_rate": 2.9591494450142957e-06, "epoch": 2.0115606936416186, "percentage": 67.05, "elapsed_time": "7:54:43", "remaining_time": "3:53:16"} +{"current_steps": 3133, "total_steps": 4671, "loss": 0.0529, "learning_rate": 2.9557381924256366e-06, "epoch": 2.0122029543994864, "percentage": 67.07, "elapsed_time": "7:54:52", "remaining_time": "3:53:07"} +{"current_steps": 3134, "total_steps": 4671, "loss": 0.0569, "learning_rate": 2.9523280819720294e-06, "epoch": 2.0128452151573537, "percentage": 67.09, "elapsed_time": "7:55:01", "remaining_time": "3:52:58"} +{"current_steps": 3135, "total_steps": 4671, "loss": 0.0333, "learning_rate": 2.9489191155587125e-06, "epoch": 2.0134874759152215, "percentage": 67.12, "elapsed_time": "7:55:11", "remaining_time": "3:52:49"} +{"current_steps": 3136, "total_steps": 4671, "loss": 0.0335, "learning_rate": 2.9455112950902874e-06, "epoch": 2.0141297366730893, "percentage": 67.14, "elapsed_time": "7:55:21", "remaining_time": "3:52:40"} +{"current_steps": 3137, "total_steps": 4671, "loss": 0.0112, "learning_rate": 2.9421046224707095e-06, "epoch": 2.014771997430957, "percentage": 67.16, "elapsed_time": "7:55:29", "remaining_time": "3:52:31"} +{"current_steps": 3138, "total_steps": 4671, "loss": 0.0377, "learning_rate": 2.938699099603299e-06, "epoch": 2.015414258188825, "percentage": 67.18, "elapsed_time": "7:55:39", "remaining_time": "3:52:22"} +{"current_steps": 3139, "total_steps": 4671, "loss": 0.0174, "learning_rate": 2.935294728390731e-06, "epoch": 2.0160565189466926, "percentage": 67.2, "elapsed_time": "7:55:46", "remaining_time": "3:52:12"} +{"current_steps": 3140, "total_steps": 4671, "loss": 0.0375, "learning_rate": 2.9318915107350376e-06, "epoch": 2.01669877970456, "percentage": 67.22, "elapsed_time": "7:55:56", "remaining_time": "3:52:03"} +{"current_steps": 3141, "total_steps": 4671, "loss": 0.0147, "learning_rate": 2.9284894485376057e-06, "epoch": 2.0173410404624277, "percentage": 67.24, "elapsed_time": "7:56:04", "remaining_time": "3:51:54"} +{"current_steps": 3142, "total_steps": 4671, "loss": 0.0138, "learning_rate": 2.9250885436991793e-06, "epoch": 2.0179833012202955, "percentage": 67.27, "elapsed_time": "7:56:13", "remaining_time": "3:51:44"} +{"current_steps": 3143, "total_steps": 4671, "loss": 0.0362, "learning_rate": 2.9216887981198553e-06, "epoch": 2.0186255619781632, "percentage": 67.29, "elapsed_time": "7:56:21", "remaining_time": "3:51:35"} +{"current_steps": 3144, "total_steps": 4671, "loss": 0.0214, "learning_rate": 2.9182902136990767e-06, "epoch": 2.019267822736031, "percentage": 67.31, "elapsed_time": "7:56:29", "remaining_time": "3:51:25"} +{"current_steps": 3145, "total_steps": 4671, "loss": 0.0313, "learning_rate": 2.914892792335645e-06, "epoch": 2.0199100834938983, "percentage": 67.33, "elapsed_time": "7:56:38", "remaining_time": "3:51:16"} +{"current_steps": 3146, "total_steps": 4671, "loss": 0.0266, "learning_rate": 2.9114965359277097e-06, "epoch": 2.020552344251766, "percentage": 67.35, "elapsed_time": "7:56:45", "remaining_time": "3:51:06"} +{"current_steps": 3147, "total_steps": 4671, "loss": 0.0257, "learning_rate": 2.908101446372769e-06, "epoch": 2.021194605009634, "percentage": 67.37, "elapsed_time": "7:56:53", "remaining_time": "3:50:56"} +{"current_steps": 3148, "total_steps": 4671, "loss": 0.0283, "learning_rate": 2.904707525567669e-06, "epoch": 2.0218368657675017, "percentage": 67.39, "elapsed_time": "7:57:03", "remaining_time": "3:50:48"} +{"current_steps": 3149, "total_steps": 4671, "loss": 0.0195, "learning_rate": 2.9013147754086044e-06, "epoch": 2.0224791265253694, "percentage": 67.42, "elapsed_time": "7:57:10", "remaining_time": "3:50:37"} +{"current_steps": 3150, "total_steps": 4671, "loss": 0.011, "learning_rate": 2.8979231977911127e-06, "epoch": 2.023121387283237, "percentage": 67.44, "elapsed_time": "7:57:19", "remaining_time": "3:50:28"} +{"current_steps": 3151, "total_steps": 4671, "loss": 0.0356, "learning_rate": 2.894532794610082e-06, "epoch": 2.0237636480411045, "percentage": 67.46, "elapsed_time": "7:57:29", "remaining_time": "3:50:19"} +{"current_steps": 3152, "total_steps": 4671, "loss": 0.0494, "learning_rate": 2.8911435677597355e-06, "epoch": 2.0244059087989723, "percentage": 67.48, "elapsed_time": "7:57:38", "remaining_time": "3:50:10"} +{"current_steps": 3153, "total_steps": 4671, "loss": 0.0212, "learning_rate": 2.8877555191336464e-06, "epoch": 2.02504816955684, "percentage": 67.5, "elapsed_time": "7:57:45", "remaining_time": "3:50:01"} +{"current_steps": 3154, "total_steps": 4671, "loss": 0.0354, "learning_rate": 2.884368650624725e-06, "epoch": 2.025690430314708, "percentage": 67.52, "elapsed_time": "7:57:53", "remaining_time": "3:49:51"} +{"current_steps": 3155, "total_steps": 4671, "loss": 0.0269, "learning_rate": 2.8809829641252297e-06, "epoch": 2.0263326910725756, "percentage": 67.54, "elapsed_time": "7:58:03", "remaining_time": "3:49:42"} +{"current_steps": 3156, "total_steps": 4671, "loss": 0.0239, "learning_rate": 2.8775984615267503e-06, "epoch": 2.026974951830443, "percentage": 67.57, "elapsed_time": "7:58:13", "remaining_time": "3:49:33"} +{"current_steps": 3157, "total_steps": 4671, "loss": 0.0393, "learning_rate": 2.8742151447202192e-06, "epoch": 2.0276172125883107, "percentage": 67.59, "elapsed_time": "7:58:22", "remaining_time": "3:49:24"} +{"current_steps": 3158, "total_steps": 4671, "loss": 0.014, "learning_rate": 2.870833015595905e-06, "epoch": 2.0282594733461785, "percentage": 67.61, "elapsed_time": "7:58:32", "remaining_time": "3:49:16"} +{"current_steps": 3159, "total_steps": 4671, "loss": 0.0279, "learning_rate": 2.8674520760434145e-06, "epoch": 2.0289017341040463, "percentage": 67.63, "elapsed_time": "7:58:44", "remaining_time": "3:49:08"} +{"current_steps": 3160, "total_steps": 4671, "loss": 0.0288, "learning_rate": 2.864072327951686e-06, "epoch": 2.029543994861914, "percentage": 67.65, "elapsed_time": "7:58:52", "remaining_time": "3:48:58"} +{"current_steps": 3161, "total_steps": 4671, "loss": 0.0192, "learning_rate": 2.8606937732089945e-06, "epoch": 2.030186255619782, "percentage": 67.67, "elapsed_time": "7:59:01", "remaining_time": "3:48:49"} +{"current_steps": 3162, "total_steps": 4671, "loss": 0.044, "learning_rate": 2.857316413702951e-06, "epoch": 2.030828516377649, "percentage": 67.69, "elapsed_time": "7:59:08", "remaining_time": "3:48:39"} +{"current_steps": 3163, "total_steps": 4671, "loss": 0.0199, "learning_rate": 2.853940251320494e-06, "epoch": 2.031470777135517, "percentage": 67.72, "elapsed_time": "7:59:16", "remaining_time": "3:48:30"} +{"current_steps": 3164, "total_steps": 4671, "loss": 0.015, "learning_rate": 2.850565287947896e-06, "epoch": 2.0321130378933847, "percentage": 67.74, "elapsed_time": "7:59:25", "remaining_time": "3:48:21"} +{"current_steps": 3165, "total_steps": 4671, "loss": 0.0214, "learning_rate": 2.8471915254707594e-06, "epoch": 2.0327552986512525, "percentage": 67.76, "elapsed_time": "7:59:33", "remaining_time": "3:48:11"} +{"current_steps": 3166, "total_steps": 4671, "loss": 0.0291, "learning_rate": 2.843818965774015e-06, "epoch": 2.0333975594091203, "percentage": 67.78, "elapsed_time": "7:59:43", "remaining_time": "3:48:02"} +{"current_steps": 3167, "total_steps": 4671, "loss": 0.0288, "learning_rate": 2.8404476107419217e-06, "epoch": 2.0340398201669876, "percentage": 67.8, "elapsed_time": "7:59:53", "remaining_time": "3:47:54"} +{"current_steps": 3168, "total_steps": 4671, "loss": 0.024, "learning_rate": 2.8370774622580644e-06, "epoch": 2.0346820809248554, "percentage": 67.82, "elapsed_time": "8:00:02", "remaining_time": "3:47:44"} +{"current_steps": 3169, "total_steps": 4671, "loss": 0.0374, "learning_rate": 2.8337085222053562e-06, "epoch": 2.035324341682723, "percentage": 67.84, "elapsed_time": "8:00:11", "remaining_time": "3:47:35"} +{"current_steps": 3170, "total_steps": 4671, "loss": 0.012, "learning_rate": 2.830340792466034e-06, "epoch": 2.035966602440591, "percentage": 67.87, "elapsed_time": "8:00:19", "remaining_time": "3:47:26"} +{"current_steps": 3171, "total_steps": 4671, "loss": 0.0259, "learning_rate": 2.826974274921657e-06, "epoch": 2.0366088631984587, "percentage": 67.89, "elapsed_time": "8:00:30", "remaining_time": "3:47:17"} +{"current_steps": 3172, "total_steps": 4671, "loss": 0.0377, "learning_rate": 2.823608971453109e-06, "epoch": 2.0372511239563265, "percentage": 67.91, "elapsed_time": "8:00:38", "remaining_time": "3:47:08"} +{"current_steps": 3173, "total_steps": 4671, "loss": 0.0365, "learning_rate": 2.820244883940595e-06, "epoch": 2.037893384714194, "percentage": 67.93, "elapsed_time": "8:00:45", "remaining_time": "3:46:58"} +{"current_steps": 3174, "total_steps": 4671, "loss": 0.0159, "learning_rate": 2.8168820142636405e-06, "epoch": 2.0385356454720616, "percentage": 67.95, "elapsed_time": "8:00:56", "remaining_time": "3:46:49"} +{"current_steps": 3175, "total_steps": 4671, "loss": 0.0282, "learning_rate": 2.8135203643010923e-06, "epoch": 2.0391779062299293, "percentage": 67.97, "elapsed_time": "8:01:04", "remaining_time": "3:46:40"} +{"current_steps": 3176, "total_steps": 4671, "loss": 0.0415, "learning_rate": 2.810159935931109e-06, "epoch": 2.039820166987797, "percentage": 67.99, "elapsed_time": "8:01:14", "remaining_time": "3:46:31"} +{"current_steps": 3177, "total_steps": 4671, "loss": 0.0353, "learning_rate": 2.806800731031176e-06, "epoch": 2.040462427745665, "percentage": 68.02, "elapsed_time": "8:01:22", "remaining_time": "3:46:21"} +{"current_steps": 3178, "total_steps": 4671, "loss": 0.024, "learning_rate": 2.803442751478091e-06, "epoch": 2.041104688503532, "percentage": 68.04, "elapsed_time": "8:01:31", "remaining_time": "3:46:13"} +{"current_steps": 3179, "total_steps": 4671, "loss": 0.0362, "learning_rate": 2.8000859991479655e-06, "epoch": 2.0417469492614, "percentage": 68.06, "elapsed_time": "8:01:39", "remaining_time": "3:46:03"} +{"current_steps": 3180, "total_steps": 4671, "loss": 0.0267, "learning_rate": 2.7967304759162274e-06, "epoch": 2.0423892100192678, "percentage": 68.08, "elapsed_time": "8:01:47", "remaining_time": "3:45:53"} +{"current_steps": 3181, "total_steps": 4671, "loss": 0.0278, "learning_rate": 2.793376183657618e-06, "epoch": 2.0430314707771355, "percentage": 68.1, "elapsed_time": "8:01:55", "remaining_time": "3:45:44"} +{"current_steps": 3182, "total_steps": 4671, "loss": 0.0337, "learning_rate": 2.7900231242461884e-06, "epoch": 2.0436737315350033, "percentage": 68.12, "elapsed_time": "8:02:05", "remaining_time": "3:45:35"} +{"current_steps": 3183, "total_steps": 4671, "loss": 0.0143, "learning_rate": 2.7866712995553056e-06, "epoch": 2.044315992292871, "percentage": 68.14, "elapsed_time": "8:02:14", "remaining_time": "3:45:26"} +{"current_steps": 3184, "total_steps": 4671, "loss": 0.0382, "learning_rate": 2.783320711457641e-06, "epoch": 2.0449582530507384, "percentage": 68.17, "elapsed_time": "8:02:26", "remaining_time": "3:45:18"} +{"current_steps": 3185, "total_steps": 4671, "loss": 0.0239, "learning_rate": 2.779971361825179e-06, "epoch": 2.045600513808606, "percentage": 68.19, "elapsed_time": "8:02:35", "remaining_time": "3:45:09"} +{"current_steps": 3186, "total_steps": 4671, "loss": 0.0417, "learning_rate": 2.7766232525292104e-06, "epoch": 2.046242774566474, "percentage": 68.21, "elapsed_time": "8:02:45", "remaining_time": "3:45:00"} +{"current_steps": 3187, "total_steps": 4671, "loss": 0.0238, "learning_rate": 2.773276385440335e-06, "epoch": 2.0468850353243417, "percentage": 68.23, "elapsed_time": "8:02:54", "remaining_time": "3:44:51"} +{"current_steps": 3188, "total_steps": 4671, "loss": 0.0244, "learning_rate": 2.769930762428454e-06, "epoch": 2.0475272960822095, "percentage": 68.25, "elapsed_time": "8:03:04", "remaining_time": "3:44:42"} +{"current_steps": 3189, "total_steps": 4671, "loss": 0.0303, "learning_rate": 2.7665863853627816e-06, "epoch": 2.0481695568400773, "percentage": 68.27, "elapsed_time": "8:03:13", "remaining_time": "3:44:33"} +{"current_steps": 3190, "total_steps": 4671, "loss": 0.0152, "learning_rate": 2.763243256111828e-06, "epoch": 2.0488118175979446, "percentage": 68.29, "elapsed_time": "8:03:22", "remaining_time": "3:44:24"} +{"current_steps": 3191, "total_steps": 4671, "loss": 0.0173, "learning_rate": 2.7599013765434135e-06, "epoch": 2.0494540783558124, "percentage": 68.32, "elapsed_time": "8:03:31", "remaining_time": "3:44:15"} +{"current_steps": 3192, "total_steps": 4671, "loss": 0.0252, "learning_rate": 2.756560748524649e-06, "epoch": 2.05009633911368, "percentage": 68.34, "elapsed_time": "8:03:38", "remaining_time": "3:44:05"} +{"current_steps": 3193, "total_steps": 4671, "loss": 0.018, "learning_rate": 2.7532213739219578e-06, "epoch": 2.050738599871548, "percentage": 68.36, "elapsed_time": "8:03:48", "remaining_time": "3:43:57"} +{"current_steps": 3194, "total_steps": 4671, "loss": 0.0231, "learning_rate": 2.749883254601057e-06, "epoch": 2.0513808606294157, "percentage": 68.38, "elapsed_time": "8:03:58", "remaining_time": "3:43:48"} +{"current_steps": 3195, "total_steps": 4671, "loss": 0.0187, "learning_rate": 2.746546392426963e-06, "epoch": 2.052023121387283, "percentage": 68.4, "elapsed_time": "8:04:08", "remaining_time": "3:43:39"} +{"current_steps": 3196, "total_steps": 4671, "loss": 0.0319, "learning_rate": 2.743210789263992e-06, "epoch": 2.052665382145151, "percentage": 68.42, "elapsed_time": "8:04:16", "remaining_time": "3:43:30"} +{"current_steps": 3197, "total_steps": 4671, "loss": 0.0166, "learning_rate": 2.7398764469757546e-06, "epoch": 2.0533076429030186, "percentage": 68.44, "elapsed_time": "8:04:25", "remaining_time": "3:43:20"} +{"current_steps": 3198, "total_steps": 4671, "loss": 0.0278, "learning_rate": 2.736543367425156e-06, "epoch": 2.0539499036608864, "percentage": 68.46, "elapsed_time": "8:04:34", "remaining_time": "3:43:11"} +{"current_steps": 3199, "total_steps": 4671, "loss": 0.0482, "learning_rate": 2.7332115524744006e-06, "epoch": 2.054592164418754, "percentage": 68.49, "elapsed_time": "8:04:45", "remaining_time": "3:43:03"} +{"current_steps": 3200, "total_steps": 4671, "loss": 0.0395, "learning_rate": 2.729881003984981e-06, "epoch": 2.055234425176622, "percentage": 68.51, "elapsed_time": "8:04:55", "remaining_time": "3:42:55"} +{"current_steps": 3201, "total_steps": 4671, "loss": 0.0365, "learning_rate": 2.7265517238176847e-06, "epoch": 2.0558766859344892, "percentage": 68.53, "elapsed_time": "8:05:04", "remaining_time": "3:42:45"} +{"current_steps": 3202, "total_steps": 4671, "loss": 0.0194, "learning_rate": 2.7232237138325906e-06, "epoch": 2.056518946692357, "percentage": 68.55, "elapsed_time": "8:05:11", "remaining_time": "3:42:35"} +{"current_steps": 3203, "total_steps": 4671, "loss": 0.0281, "learning_rate": 2.7198969758890675e-06, "epoch": 2.057161207450225, "percentage": 68.57, "elapsed_time": "8:05:22", "remaining_time": "3:42:27"} +{"current_steps": 3204, "total_steps": 4671, "loss": 0.0273, "learning_rate": 2.7165715118457735e-06, "epoch": 2.0578034682080926, "percentage": 68.59, "elapsed_time": "8:05:32", "remaining_time": "3:42:18"} +{"current_steps": 3205, "total_steps": 4671, "loss": 0.0118, "learning_rate": 2.7132473235606553e-06, "epoch": 2.0584457289659603, "percentage": 68.61, "elapsed_time": "8:05:41", "remaining_time": "3:42:09"} +{"current_steps": 3206, "total_steps": 4671, "loss": 0.022, "learning_rate": 2.7099244128909483e-06, "epoch": 2.0590879897238277, "percentage": 68.64, "elapsed_time": "8:05:50", "remaining_time": "3:42:00"} +{"current_steps": 3207, "total_steps": 4671, "loss": 0.0357, "learning_rate": 2.706602781693169e-06, "epoch": 2.0597302504816954, "percentage": 68.66, "elapsed_time": "8:06:02", "remaining_time": "3:41:52"} +{"current_steps": 3208, "total_steps": 4671, "loss": 0.0374, "learning_rate": 2.7032824318231237e-06, "epoch": 2.060372511239563, "percentage": 68.68, "elapsed_time": "8:06:12", "remaining_time": "3:41:43"} +{"current_steps": 3209, "total_steps": 4671, "loss": 0.0364, "learning_rate": 2.6999633651359026e-06, "epoch": 2.061014771997431, "percentage": 68.7, "elapsed_time": "8:06:20", "remaining_time": "3:41:34"} +{"current_steps": 3210, "total_steps": 4671, "loss": 0.0159, "learning_rate": 2.6966455834858746e-06, "epoch": 2.0616570327552988, "percentage": 68.72, "elapsed_time": "8:06:31", "remaining_time": "3:41:26"} +{"current_steps": 3211, "total_steps": 4671, "loss": 0.0226, "learning_rate": 2.6933290887266994e-06, "epoch": 2.0622992935131665, "percentage": 68.74, "elapsed_time": "8:06:40", "remaining_time": "3:41:17"} +{"current_steps": 3212, "total_steps": 4671, "loss": 0.0417, "learning_rate": 2.690013882711309e-06, "epoch": 2.062941554271034, "percentage": 68.76, "elapsed_time": "8:06:49", "remaining_time": "3:41:08"} +{"current_steps": 3213, "total_steps": 4671, "loss": 0.0209, "learning_rate": 2.6866999672919198e-06, "epoch": 2.0635838150289016, "percentage": 68.79, "elapsed_time": "8:06:58", "remaining_time": "3:40:59"} +{"current_steps": 3214, "total_steps": 4671, "loss": 0.0124, "learning_rate": 2.6833873443200275e-06, "epoch": 2.0642260757867694, "percentage": 68.81, "elapsed_time": "8:07:09", "remaining_time": "3:40:50"} +{"current_steps": 3215, "total_steps": 4671, "loss": 0.0275, "learning_rate": 2.6800760156464e-06, "epoch": 2.064868336544637, "percentage": 68.83, "elapsed_time": "8:07:20", "remaining_time": "3:40:42"} +{"current_steps": 3216, "total_steps": 4671, "loss": 0.0169, "learning_rate": 2.676765983121089e-06, "epoch": 2.065510597302505, "percentage": 68.85, "elapsed_time": "8:07:31", "remaining_time": "3:40:34"} +{"current_steps": 3217, "total_steps": 4671, "loss": 0.0208, "learning_rate": 2.6734572485934192e-06, "epoch": 2.0661528580603723, "percentage": 68.87, "elapsed_time": "8:07:41", "remaining_time": "3:40:25"} +{"current_steps": 3218, "total_steps": 4671, "loss": 0.0229, "learning_rate": 2.6701498139119896e-06, "epoch": 2.06679511881824, "percentage": 68.89, "elapsed_time": "8:07:49", "remaining_time": "3:40:15"} +{"current_steps": 3219, "total_steps": 4671, "loss": 0.021, "learning_rate": 2.6668436809246746e-06, "epoch": 2.067437379576108, "percentage": 68.91, "elapsed_time": "8:07:58", "remaining_time": "3:40:06"} +{"current_steps": 3220, "total_steps": 4671, "loss": 0.0376, "learning_rate": 2.6635388514786198e-06, "epoch": 2.0680796403339756, "percentage": 68.94, "elapsed_time": "8:08:08", "remaining_time": "3:39:58"} +{"current_steps": 3221, "total_steps": 4671, "loss": 0.0431, "learning_rate": 2.660235327420243e-06, "epoch": 2.0687219010918434, "percentage": 68.96, "elapsed_time": "8:08:17", "remaining_time": "3:39:48"} +{"current_steps": 3222, "total_steps": 4671, "loss": 0.0342, "learning_rate": 2.656933110595233e-06, "epoch": 2.069364161849711, "percentage": 68.98, "elapsed_time": "8:08:28", "remaining_time": "3:39:40"} +{"current_steps": 3223, "total_steps": 4671, "loss": 0.0218, "learning_rate": 2.653632202848548e-06, "epoch": 2.0700064226075785, "percentage": 69.0, "elapsed_time": "8:08:38", "remaining_time": "3:39:31"} +{"current_steps": 3224, "total_steps": 4671, "loss": 0.0206, "learning_rate": 2.6503326060244146e-06, "epoch": 2.0706486833654463, "percentage": 69.02, "elapsed_time": "8:08:45", "remaining_time": "3:39:22"} +{"current_steps": 3225, "total_steps": 4671, "loss": 0.0436, "learning_rate": 2.6470343219663275e-06, "epoch": 2.071290944123314, "percentage": 69.04, "elapsed_time": "8:08:54", "remaining_time": "3:39:12"} +{"current_steps": 3226, "total_steps": 4671, "loss": 0.0262, "learning_rate": 2.6437373525170473e-06, "epoch": 2.071933204881182, "percentage": 69.06, "elapsed_time": "8:09:03", "remaining_time": "3:39:03"} +{"current_steps": 3227, "total_steps": 4671, "loss": 0.0208, "learning_rate": 2.6404416995186005e-06, "epoch": 2.0725754656390496, "percentage": 69.09, "elapsed_time": "8:09:12", "remaining_time": "3:38:54"} +{"current_steps": 3228, "total_steps": 4671, "loss": 0.0395, "learning_rate": 2.637147364812278e-06, "epoch": 2.0732177263969174, "percentage": 69.11, "elapsed_time": "8:09:22", "remaining_time": "3:38:45"} +{"current_steps": 3229, "total_steps": 4671, "loss": 0.0207, "learning_rate": 2.6338543502386355e-06, "epoch": 2.0738599871547847, "percentage": 69.13, "elapsed_time": "8:09:31", "remaining_time": "3:38:36"} +{"current_steps": 3230, "total_steps": 4671, "loss": 0.034, "learning_rate": 2.63056265763749e-06, "epoch": 2.0745022479126525, "percentage": 69.15, "elapsed_time": "8:09:41", "remaining_time": "3:38:28"} +{"current_steps": 3231, "total_steps": 4671, "loss": 0.0321, "learning_rate": 2.6272722888479152e-06, "epoch": 2.0751445086705202, "percentage": 69.17, "elapsed_time": "8:09:52", "remaining_time": "3:38:19"} +{"current_steps": 3232, "total_steps": 4671, "loss": 0.0224, "learning_rate": 2.623983245708255e-06, "epoch": 2.075786769428388, "percentage": 69.19, "elapsed_time": "8:09:59", "remaining_time": "3:38:09"} +{"current_steps": 3233, "total_steps": 4671, "loss": 0.0548, "learning_rate": 2.6206955300561048e-06, "epoch": 2.076429030186256, "percentage": 69.21, "elapsed_time": "8:10:11", "remaining_time": "3:38:01"} +{"current_steps": 3234, "total_steps": 4671, "loss": 0.0433, "learning_rate": 2.617409143728322e-06, "epoch": 2.077071290944123, "percentage": 69.24, "elapsed_time": "8:10:22", "remaining_time": "3:37:53"} +{"current_steps": 3235, "total_steps": 4671, "loss": 0.0091, "learning_rate": 2.6141240885610206e-06, "epoch": 2.077713551701991, "percentage": 69.26, "elapsed_time": "8:10:30", "remaining_time": "3:37:44"} +{"current_steps": 3236, "total_steps": 4671, "loss": 0.0225, "learning_rate": 2.6108403663895705e-06, "epoch": 2.0783558124598587, "percentage": 69.28, "elapsed_time": "8:10:39", "remaining_time": "3:37:35"} +{"current_steps": 3237, "total_steps": 4671, "loss": 0.0163, "learning_rate": 2.607557979048595e-06, "epoch": 2.0789980732177264, "percentage": 69.3, "elapsed_time": "8:10:48", "remaining_time": "3:37:25"} +{"current_steps": 3238, "total_steps": 4671, "loss": 0.0354, "learning_rate": 2.6042769283719783e-06, "epoch": 2.0796403339755942, "percentage": 69.32, "elapsed_time": "8:10:58", "remaining_time": "3:37:16"} +{"current_steps": 3239, "total_steps": 4671, "loss": 0.0298, "learning_rate": 2.6009972161928463e-06, "epoch": 2.080282594733462, "percentage": 69.34, "elapsed_time": "8:11:05", "remaining_time": "3:37:07"} +{"current_steps": 3240, "total_steps": 4671, "loss": 0.0255, "learning_rate": 2.5977188443435874e-06, "epoch": 2.0809248554913293, "percentage": 69.36, "elapsed_time": "8:11:15", "remaining_time": "3:36:58"} +{"current_steps": 3241, "total_steps": 4671, "loss": 0.0299, "learning_rate": 2.594441814655837e-06, "epoch": 2.081567116249197, "percentage": 69.39, "elapsed_time": "8:11:24", "remaining_time": "3:36:49"} +{"current_steps": 3242, "total_steps": 4671, "loss": 0.0203, "learning_rate": 2.591166128960482e-06, "epoch": 2.082209377007065, "percentage": 69.41, "elapsed_time": "8:11:32", "remaining_time": "3:36:39"} +{"current_steps": 3243, "total_steps": 4671, "loss": 0.0222, "learning_rate": 2.5878917890876544e-06, "epoch": 2.0828516377649327, "percentage": 69.43, "elapsed_time": "8:11:41", "remaining_time": "3:36:30"} +{"current_steps": 3244, "total_steps": 4671, "loss": 0.0286, "learning_rate": 2.5846187968667423e-06, "epoch": 2.0834938985228004, "percentage": 69.45, "elapsed_time": "8:11:51", "remaining_time": "3:36:21"} +{"current_steps": 3245, "total_steps": 4671, "loss": 0.0069, "learning_rate": 2.5813471541263734e-06, "epoch": 2.0841361592806678, "percentage": 69.47, "elapsed_time": "8:12:00", "remaining_time": "3:36:12"} +{"current_steps": 3246, "total_steps": 4671, "loss": 0.0209, "learning_rate": 2.5780768626944265e-06, "epoch": 2.0847784200385355, "percentage": 69.49, "elapsed_time": "8:12:11", "remaining_time": "3:36:04"} +{"current_steps": 3247, "total_steps": 4671, "loss": 0.035, "learning_rate": 2.574807924398019e-06, "epoch": 2.0854206807964033, "percentage": 69.51, "elapsed_time": "8:12:20", "remaining_time": "3:35:55"} +{"current_steps": 3248, "total_steps": 4671, "loss": 0.0266, "learning_rate": 2.571540341063518e-06, "epoch": 2.086062941554271, "percentage": 69.54, "elapsed_time": "8:12:31", "remaining_time": "3:35:46"} +{"current_steps": 3249, "total_steps": 4671, "loss": 0.0154, "learning_rate": 2.5682741145165325e-06, "epoch": 2.086705202312139, "percentage": 69.56, "elapsed_time": "8:12:39", "remaining_time": "3:35:37"} +{"current_steps": 3250, "total_steps": 4671, "loss": 0.0397, "learning_rate": 2.565009246581912e-06, "epoch": 2.0873474630700066, "percentage": 69.58, "elapsed_time": "8:12:50", "remaining_time": "3:35:29"} +{"current_steps": 3251, "total_steps": 4671, "loss": 0.0351, "learning_rate": 2.5617457390837474e-06, "epoch": 2.087989723827874, "percentage": 69.6, "elapsed_time": "8:13:00", "remaining_time": "3:35:20"} +{"current_steps": 3252, "total_steps": 4671, "loss": 0.023, "learning_rate": 2.558483593845372e-06, "epoch": 2.0886319845857417, "percentage": 69.62, "elapsed_time": "8:13:08", "remaining_time": "3:35:10"} +{"current_steps": 3253, "total_steps": 4671, "loss": 0.0361, "learning_rate": 2.5552228126893542e-06, "epoch": 2.0892742453436095, "percentage": 69.64, "elapsed_time": "8:13:15", "remaining_time": "3:35:00"} +{"current_steps": 3254, "total_steps": 4671, "loss": 0.0335, "learning_rate": 2.5519633974375014e-06, "epoch": 2.0899165061014773, "percentage": 69.66, "elapsed_time": "8:13:23", "remaining_time": "3:34:51"} +{"current_steps": 3255, "total_steps": 4671, "loss": 0.0274, "learning_rate": 2.54870534991086e-06, "epoch": 2.090558766859345, "percentage": 69.69, "elapsed_time": "8:13:34", "remaining_time": "3:34:43"} +{"current_steps": 3256, "total_steps": 4671, "loss": 0.0211, "learning_rate": 2.54544867192971e-06, "epoch": 2.0912010276172124, "percentage": 69.71, "elapsed_time": "8:13:42", "remaining_time": "3:34:33"} +{"current_steps": 3257, "total_steps": 4671, "loss": 0.0271, "learning_rate": 2.5421933653135665e-06, "epoch": 2.09184328837508, "percentage": 69.73, "elapsed_time": "8:13:53", "remaining_time": "3:34:24"} +{"current_steps": 3258, "total_steps": 4671, "loss": 0.0347, "learning_rate": 2.53893943188118e-06, "epoch": 2.092485549132948, "percentage": 69.75, "elapsed_time": "8:14:03", "remaining_time": "3:34:16"} +{"current_steps": 3259, "total_steps": 4671, "loss": 0.0195, "learning_rate": 2.535686873450531e-06, "epoch": 2.0931278098908157, "percentage": 69.77, "elapsed_time": "8:14:11", "remaining_time": "3:34:07"} +{"current_steps": 3260, "total_steps": 4671, "loss": 0.0211, "learning_rate": 2.532435691838835e-06, "epoch": 2.0937700706486835, "percentage": 69.79, "elapsed_time": "8:14:21", "remaining_time": "3:33:58"} +{"current_steps": 3261, "total_steps": 4671, "loss": 0.0204, "learning_rate": 2.529185888862537e-06, "epoch": 2.0944123314065513, "percentage": 69.81, "elapsed_time": "8:14:31", "remaining_time": "3:33:49"} +{"current_steps": 3262, "total_steps": 4671, "loss": 0.0208, "learning_rate": 2.5259374663373093e-06, "epoch": 2.0950545921644186, "percentage": 69.84, "elapsed_time": "8:14:39", "remaining_time": "3:33:39"} +{"current_steps": 3263, "total_steps": 4671, "loss": 0.0411, "learning_rate": 2.5226904260780556e-06, "epoch": 2.0956968529222864, "percentage": 69.86, "elapsed_time": "8:14:48", "remaining_time": "3:33:30"} +{"current_steps": 3264, "total_steps": 4671, "loss": 0.0175, "learning_rate": 2.519444769898908e-06, "epoch": 2.096339113680154, "percentage": 69.88, "elapsed_time": "8:14:57", "remaining_time": "3:33:21"} +{"current_steps": 3265, "total_steps": 4671, "loss": 0.0135, "learning_rate": 2.5162004996132205e-06, "epoch": 2.096981374438022, "percentage": 69.9, "elapsed_time": "8:15:05", "remaining_time": "3:33:11"} +{"current_steps": 3266, "total_steps": 4671, "loss": 0.0277, "learning_rate": 2.512957617033582e-06, "epoch": 2.0976236351958897, "percentage": 69.92, "elapsed_time": "8:15:15", "remaining_time": "3:33:03"} +{"current_steps": 3267, "total_steps": 4671, "loss": 0.0339, "learning_rate": 2.5097161239717975e-06, "epoch": 2.098265895953757, "percentage": 69.94, "elapsed_time": "8:15:25", "remaining_time": "3:32:54"} +{"current_steps": 3268, "total_steps": 4671, "loss": 0.0164, "learning_rate": 2.5064760222388994e-06, "epoch": 2.098908156711625, "percentage": 69.96, "elapsed_time": "8:15:36", "remaining_time": "3:32:46"} +{"current_steps": 3269, "total_steps": 4671, "loss": 0.0224, "learning_rate": 2.503237313645143e-06, "epoch": 2.0995504174694926, "percentage": 69.99, "elapsed_time": "8:15:45", "remaining_time": "3:32:36"} +{"current_steps": 3270, "total_steps": 4671, "loss": 0.0482, "learning_rate": 2.5000000000000015e-06, "epoch": 2.1001926782273603, "percentage": 70.01, "elapsed_time": "8:15:53", "remaining_time": "3:32:27"} +{"current_steps": 3271, "total_steps": 4671, "loss": 0.042, "learning_rate": 2.496764083112172e-06, "epoch": 2.100834938985228, "percentage": 70.03, "elapsed_time": "8:16:01", "remaining_time": "3:32:18"} +{"current_steps": 3272, "total_steps": 4671, "loss": 0.0386, "learning_rate": 2.4935295647895724e-06, "epoch": 2.101477199743096, "percentage": 70.05, "elapsed_time": "8:16:11", "remaining_time": "3:32:09"} +{"current_steps": 3273, "total_steps": 4671, "loss": 0.0176, "learning_rate": 2.4902964468393365e-06, "epoch": 2.102119460500963, "percentage": 70.07, "elapsed_time": "8:16:20", "remaining_time": "3:32:00"} +{"current_steps": 3274, "total_steps": 4671, "loss": 0.0108, "learning_rate": 2.4870647310678168e-06, "epoch": 2.102761721258831, "percentage": 70.09, "elapsed_time": "8:16:28", "remaining_time": "3:31:50"} +{"current_steps": 3275, "total_steps": 4671, "loss": 0.0266, "learning_rate": 2.483834419280583e-06, "epoch": 2.1034039820166988, "percentage": 70.11, "elapsed_time": "8:16:37", "remaining_time": "3:31:41"} +{"current_steps": 3276, "total_steps": 4671, "loss": 0.0292, "learning_rate": 2.4806055132824186e-06, "epoch": 2.1040462427745665, "percentage": 70.13, "elapsed_time": "8:16:47", "remaining_time": "3:31:32"} +{"current_steps": 3277, "total_steps": 4671, "loss": 0.0258, "learning_rate": 2.477378014877324e-06, "epoch": 2.1046885035324343, "percentage": 70.16, "elapsed_time": "8:16:56", "remaining_time": "3:31:23"} +{"current_steps": 3278, "total_steps": 4671, "loss": 0.0302, "learning_rate": 2.4741519258685115e-06, "epoch": 2.1053307642903016, "percentage": 70.18, "elapsed_time": "8:17:06", "remaining_time": "3:31:14"} +{"current_steps": 3279, "total_steps": 4671, "loss": 0.0466, "learning_rate": 2.4709272480584064e-06, "epoch": 2.1059730250481694, "percentage": 70.2, "elapsed_time": "8:17:17", "remaining_time": "3:31:06"} +{"current_steps": 3280, "total_steps": 4671, "loss": 0.0248, "learning_rate": 2.4677039832486455e-06, "epoch": 2.106615285806037, "percentage": 70.22, "elapsed_time": "8:17:27", "remaining_time": "3:30:57"} +{"current_steps": 3281, "total_steps": 4671, "loss": 0.0256, "learning_rate": 2.464482133240077e-06, "epoch": 2.107257546563905, "percentage": 70.24, "elapsed_time": "8:17:34", "remaining_time": "3:30:47"} +{"current_steps": 3282, "total_steps": 4671, "loss": 0.0252, "learning_rate": 2.461261699832757e-06, "epoch": 2.1078998073217727, "percentage": 70.26, "elapsed_time": "8:17:42", "remaining_time": "3:30:38"} +{"current_steps": 3283, "total_steps": 4671, "loss": 0.0456, "learning_rate": 2.4580426848259514e-06, "epoch": 2.1085420680796405, "percentage": 70.28, "elapsed_time": "8:17:51", "remaining_time": "3:30:29"} +{"current_steps": 3284, "total_steps": 4671, "loss": 0.0227, "learning_rate": 2.4548250900181336e-06, "epoch": 2.109184328837508, "percentage": 70.31, "elapsed_time": "8:18:01", "remaining_time": "3:30:20"} +{"current_steps": 3285, "total_steps": 4671, "loss": 0.0187, "learning_rate": 2.4516089172069852e-06, "epoch": 2.1098265895953756, "percentage": 70.33, "elapsed_time": "8:18:10", "remaining_time": "3:30:11"} +{"current_steps": 3286, "total_steps": 4671, "loss": 0.0241, "learning_rate": 2.4483941681893853e-06, "epoch": 2.1104688503532434, "percentage": 70.35, "elapsed_time": "8:18:19", "remaining_time": "3:30:02"} +{"current_steps": 3287, "total_steps": 4671, "loss": 0.0304, "learning_rate": 2.445180844761429e-06, "epoch": 2.111111111111111, "percentage": 70.37, "elapsed_time": "8:18:30", "remaining_time": "3:29:53"} +{"current_steps": 3288, "total_steps": 4671, "loss": 0.0373, "learning_rate": 2.4419689487184077e-06, "epoch": 2.111753371868979, "percentage": 70.39, "elapsed_time": "8:18:40", "remaining_time": "3:29:45"} +{"current_steps": 3289, "total_steps": 4671, "loss": 0.0107, "learning_rate": 2.4387584818548175e-06, "epoch": 2.1123956326268467, "percentage": 70.41, "elapsed_time": "8:18:48", "remaining_time": "3:29:35"} +{"current_steps": 3290, "total_steps": 4671, "loss": 0.0172, "learning_rate": 2.4355494459643562e-06, "epoch": 2.113037893384714, "percentage": 70.43, "elapsed_time": "8:18:58", "remaining_time": "3:29:26"} +{"current_steps": 3291, "total_steps": 4671, "loss": 0.0126, "learning_rate": 2.4323418428399204e-06, "epoch": 2.113680154142582, "percentage": 70.46, "elapsed_time": "8:19:05", "remaining_time": "3:29:17"} +{"current_steps": 3292, "total_steps": 4671, "loss": 0.0226, "learning_rate": 2.429135674273608e-06, "epoch": 2.1143224149004496, "percentage": 70.48, "elapsed_time": "8:19:13", "remaining_time": "3:29:07"} +{"current_steps": 3293, "total_steps": 4671, "loss": 0.0231, "learning_rate": 2.4259309420567158e-06, "epoch": 2.1149646756583174, "percentage": 70.5, "elapsed_time": "8:19:24", "remaining_time": "3:28:58"} +{"current_steps": 3294, "total_steps": 4671, "loss": 0.0184, "learning_rate": 2.422727647979734e-06, "epoch": 2.115606936416185, "percentage": 70.52, "elapsed_time": "8:19:32", "remaining_time": "3:28:49"} +{"current_steps": 3295, "total_steps": 4671, "loss": 0.0394, "learning_rate": 2.4195257938323544e-06, "epoch": 2.1162491971740525, "percentage": 70.54, "elapsed_time": "8:19:41", "remaining_time": "3:28:40"} +{"current_steps": 3296, "total_steps": 4671, "loss": 0.0299, "learning_rate": 2.4163253814034622e-06, "epoch": 2.1168914579319202, "percentage": 70.56, "elapsed_time": "8:19:49", "remaining_time": "3:28:30"} +{"current_steps": 3297, "total_steps": 4671, "loss": 0.0247, "learning_rate": 2.4131264124811366e-06, "epoch": 2.117533718689788, "percentage": 70.58, "elapsed_time": "8:19:57", "remaining_time": "3:28:21"} +{"current_steps": 3298, "total_steps": 4671, "loss": 0.0164, "learning_rate": 2.409928888852652e-06, "epoch": 2.118175979447656, "percentage": 70.61, "elapsed_time": "8:20:07", "remaining_time": "3:28:12"} +{"current_steps": 3299, "total_steps": 4671, "loss": 0.0235, "learning_rate": 2.406732812304471e-06, "epoch": 2.1188182402055236, "percentage": 70.63, "elapsed_time": "8:20:16", "remaining_time": "3:28:03"} +{"current_steps": 3300, "total_steps": 4671, "loss": 0.0346, "learning_rate": 2.4035381846222554e-06, "epoch": 2.1194605009633913, "percentage": 70.65, "elapsed_time": "8:20:26", "remaining_time": "3:27:54"} +{"current_steps": 3301, "total_steps": 4671, "loss": 0.0257, "learning_rate": 2.4003450075908534e-06, "epoch": 2.1201027617212587, "percentage": 70.67, "elapsed_time": "8:20:37", "remaining_time": "3:27:46"} +{"current_steps": 3302, "total_steps": 4671, "loss": 0.0509, "learning_rate": 2.397153282994298e-06, "epoch": 2.1207450224791264, "percentage": 70.69, "elapsed_time": "8:20:46", "remaining_time": "3:27:37"} +{"current_steps": 3303, "total_steps": 4671, "loss": 0.0376, "learning_rate": 2.393963012615817e-06, "epoch": 2.121387283236994, "percentage": 70.71, "elapsed_time": "8:20:56", "remaining_time": "3:27:28"} +{"current_steps": 3304, "total_steps": 4671, "loss": 0.0213, "learning_rate": 2.3907741982378234e-06, "epoch": 2.122029543994862, "percentage": 70.73, "elapsed_time": "8:21:05", "remaining_time": "3:27:19"} +{"current_steps": 3305, "total_steps": 4671, "loss": 0.0502, "learning_rate": 2.3875868416419187e-06, "epoch": 2.1226718047527298, "percentage": 70.76, "elapsed_time": "8:21:15", "remaining_time": "3:27:10"} +{"current_steps": 3306, "total_steps": 4671, "loss": 0.0235, "learning_rate": 2.3844009446088863e-06, "epoch": 2.123314065510597, "percentage": 70.78, "elapsed_time": "8:21:24", "remaining_time": "3:27:01"} +{"current_steps": 3307, "total_steps": 4671, "loss": 0.029, "learning_rate": 2.3812165089186974e-06, "epoch": 2.123956326268465, "percentage": 70.8, "elapsed_time": "8:21:32", "remaining_time": "3:26:51"} +{"current_steps": 3308, "total_steps": 4671, "loss": 0.0208, "learning_rate": 2.3780335363505052e-06, "epoch": 2.1245985870263326, "percentage": 70.82, "elapsed_time": "8:21:40", "remaining_time": "3:26:42"} +{"current_steps": 3309, "total_steps": 4671, "loss": 0.0323, "learning_rate": 2.374852028682646e-06, "epoch": 2.1252408477842004, "percentage": 70.84, "elapsed_time": "8:21:51", "remaining_time": "3:26:33"} +{"current_steps": 3310, "total_steps": 4671, "loss": 0.0375, "learning_rate": 2.3716719876926377e-06, "epoch": 2.125883108542068, "percentage": 70.86, "elapsed_time": "8:22:02", "remaining_time": "3:26:25"} +{"current_steps": 3311, "total_steps": 4671, "loss": 0.0291, "learning_rate": 2.3684934151571778e-06, "epoch": 2.126525369299936, "percentage": 70.88, "elapsed_time": "8:22:13", "remaining_time": "3:26:17"} +{"current_steps": 3312, "total_steps": 4671, "loss": 0.0437, "learning_rate": 2.365316312852144e-06, "epoch": 2.1271676300578033, "percentage": 70.91, "elapsed_time": "8:22:23", "remaining_time": "3:26:08"} +{"current_steps": 3313, "total_steps": 4671, "loss": 0.0406, "learning_rate": 2.3621406825525935e-06, "epoch": 2.127809890815671, "percentage": 70.93, "elapsed_time": "8:22:33", "remaining_time": "3:26:00"} +{"current_steps": 3314, "total_steps": 4671, "loss": 0.0139, "learning_rate": 2.3589665260327595e-06, "epoch": 2.128452151573539, "percentage": 70.95, "elapsed_time": "8:22:43", "remaining_time": "3:25:51"} +{"current_steps": 3315, "total_steps": 4671, "loss": 0.0221, "learning_rate": 2.355793845066053e-06, "epoch": 2.1290944123314066, "percentage": 70.97, "elapsed_time": "8:22:51", "remaining_time": "3:25:41"} +{"current_steps": 3316, "total_steps": 4671, "loss": 0.0303, "learning_rate": 2.3526226414250615e-06, "epoch": 2.1297366730892744, "percentage": 70.99, "elapsed_time": "8:23:01", "remaining_time": "3:25:32"} +{"current_steps": 3317, "total_steps": 4671, "loss": 0.0278, "learning_rate": 2.3494529168815428e-06, "epoch": 2.130378933847142, "percentage": 71.01, "elapsed_time": "8:23:10", "remaining_time": "3:25:23"} +{"current_steps": 3318, "total_steps": 4671, "loss": 0.0211, "learning_rate": 2.346284673206432e-06, "epoch": 2.1310211946050095, "percentage": 71.03, "elapsed_time": "8:23:17", "remaining_time": "3:25:13"} +{"current_steps": 3319, "total_steps": 4671, "loss": 0.0425, "learning_rate": 2.3431179121698375e-06, "epoch": 2.1316634553628773, "percentage": 71.06, "elapsed_time": "8:23:26", "remaining_time": "3:25:04"} +{"current_steps": 3320, "total_steps": 4671, "loss": 0.0301, "learning_rate": 2.339952635541035e-06, "epoch": 2.132305716120745, "percentage": 71.08, "elapsed_time": "8:23:37", "remaining_time": "3:24:56"} +{"current_steps": 3321, "total_steps": 4671, "loss": 0.0149, "learning_rate": 2.336788845088478e-06, "epoch": 2.132947976878613, "percentage": 71.1, "elapsed_time": "8:23:46", "remaining_time": "3:24:47"} +{"current_steps": 3322, "total_steps": 4671, "loss": 0.0415, "learning_rate": 2.333626542579784e-06, "epoch": 2.1335902376364806, "percentage": 71.12, "elapsed_time": "8:23:56", "remaining_time": "3:24:38"} +{"current_steps": 3323, "total_steps": 4671, "loss": 0.0333, "learning_rate": 2.3304657297817395e-06, "epoch": 2.134232498394348, "percentage": 71.14, "elapsed_time": "8:24:05", "remaining_time": "3:24:29"} +{"current_steps": 3324, "total_steps": 4671, "loss": 0.026, "learning_rate": 2.3273064084603024e-06, "epoch": 2.1348747591522157, "percentage": 71.16, "elapsed_time": "8:24:15", "remaining_time": "3:24:20"} +{"current_steps": 3325, "total_steps": 4671, "loss": 0.0238, "learning_rate": 2.3241485803805913e-06, "epoch": 2.1355170199100835, "percentage": 71.18, "elapsed_time": "8:24:23", "remaining_time": "3:24:11"} +{"current_steps": 3326, "total_steps": 4671, "loss": 0.032, "learning_rate": 2.320992247306896e-06, "epoch": 2.1361592806679512, "percentage": 71.21, "elapsed_time": "8:24:31", "remaining_time": "3:24:01"} +{"current_steps": 3327, "total_steps": 4671, "loss": 0.018, "learning_rate": 2.317837411002668e-06, "epoch": 2.136801541425819, "percentage": 71.23, "elapsed_time": "8:24:39", "remaining_time": "3:23:52"} +{"current_steps": 3328, "total_steps": 4671, "loss": 0.0361, "learning_rate": 2.3146840732305244e-06, "epoch": 2.137443802183687, "percentage": 71.25, "elapsed_time": "8:24:47", "remaining_time": "3:23:42"} +{"current_steps": 3329, "total_steps": 4671, "loss": 0.024, "learning_rate": 2.3115322357522436e-06, "epoch": 2.138086062941554, "percentage": 71.27, "elapsed_time": "8:24:57", "remaining_time": "3:23:33"} +{"current_steps": 3330, "total_steps": 4671, "loss": 0.0169, "learning_rate": 2.308381900328767e-06, "epoch": 2.138728323699422, "percentage": 71.29, "elapsed_time": "8:25:06", "remaining_time": "3:23:24"} +{"current_steps": 3331, "total_steps": 4671, "loss": 0.0183, "learning_rate": 2.305233068720196e-06, "epoch": 2.1393705844572897, "percentage": 71.31, "elapsed_time": "8:25:14", "remaining_time": "3:23:14"} +{"current_steps": 3332, "total_steps": 4671, "loss": 0.0228, "learning_rate": 2.3020857426857927e-06, "epoch": 2.1400128452151574, "percentage": 71.33, "elapsed_time": "8:25:22", "remaining_time": "3:23:05"} +{"current_steps": 3333, "total_steps": 4671, "loss": 0.0384, "learning_rate": 2.298939923983977e-06, "epoch": 2.140655105973025, "percentage": 71.36, "elapsed_time": "8:25:32", "remaining_time": "3:22:56"} +{"current_steps": 3334, "total_steps": 4671, "loss": 0.0245, "learning_rate": 2.2957956143723257e-06, "epoch": 2.1412973667308925, "percentage": 71.38, "elapsed_time": "8:25:42", "remaining_time": "3:22:47"} +{"current_steps": 3335, "total_steps": 4671, "loss": 0.0377, "learning_rate": 2.2926528156075756e-06, "epoch": 2.1419396274887603, "percentage": 71.4, "elapsed_time": "8:25:50", "remaining_time": "3:22:38"} +{"current_steps": 3336, "total_steps": 4671, "loss": 0.0083, "learning_rate": 2.289511529445616e-06, "epoch": 2.142581888246628, "percentage": 71.42, "elapsed_time": "8:25:58", "remaining_time": "3:22:28"} +{"current_steps": 3337, "total_steps": 4671, "loss": 0.0549, "learning_rate": 2.286371757641494e-06, "epoch": 2.143224149004496, "percentage": 71.44, "elapsed_time": "8:26:05", "remaining_time": "3:22:19"} +{"current_steps": 3338, "total_steps": 4671, "loss": 0.0216, "learning_rate": 2.283233501949409e-06, "epoch": 2.1438664097623636, "percentage": 71.46, "elapsed_time": "8:26:15", "remaining_time": "3:22:10"} +{"current_steps": 3339, "total_steps": 4671, "loss": 0.0337, "learning_rate": 2.2800967641227127e-06, "epoch": 2.1445086705202314, "percentage": 71.48, "elapsed_time": "8:26:24", "remaining_time": "3:22:01"} +{"current_steps": 3340, "total_steps": 4671, "loss": 0.052, "learning_rate": 2.2769615459139127e-06, "epoch": 2.1451509312780987, "percentage": 71.51, "elapsed_time": "8:26:34", "remaining_time": "3:21:52"} +{"current_steps": 3341, "total_steps": 4671, "loss": 0.0439, "learning_rate": 2.2738278490746607e-06, "epoch": 2.1457931920359665, "percentage": 71.53, "elapsed_time": "8:26:44", "remaining_time": "3:21:43"} +{"current_steps": 3342, "total_steps": 4671, "loss": 0.0146, "learning_rate": 2.2706956753557617e-06, "epoch": 2.1464354527938343, "percentage": 71.55, "elapsed_time": "8:26:53", "remaining_time": "3:21:34"} +{"current_steps": 3343, "total_steps": 4671, "loss": 0.0179, "learning_rate": 2.267565026507174e-06, "epoch": 2.147077713551702, "percentage": 71.57, "elapsed_time": "8:27:03", "remaining_time": "3:21:25"} +{"current_steps": 3344, "total_steps": 4671, "loss": 0.0385, "learning_rate": 2.2644359042779997e-06, "epoch": 2.14771997430957, "percentage": 71.59, "elapsed_time": "8:27:13", "remaining_time": "3:21:17"} +{"current_steps": 3345, "total_steps": 4671, "loss": 0.0262, "learning_rate": 2.2613083104164867e-06, "epoch": 2.148362235067437, "percentage": 71.61, "elapsed_time": "8:27:22", "remaining_time": "3:21:07"} +{"current_steps": 3346, "total_steps": 4671, "loss": 0.0494, "learning_rate": 2.258182246670032e-06, "epoch": 2.149004495825305, "percentage": 71.63, "elapsed_time": "8:27:31", "remaining_time": "3:20:58"} +{"current_steps": 3347, "total_steps": 4671, "loss": 0.0319, "learning_rate": 2.2550577147851766e-06, "epoch": 2.1496467565831727, "percentage": 71.65, "elapsed_time": "8:27:42", "remaining_time": "3:20:50"} +{"current_steps": 3348, "total_steps": 4671, "loss": 0.0233, "learning_rate": 2.2519347165076067e-06, "epoch": 2.1502890173410405, "percentage": 71.68, "elapsed_time": "8:27:52", "remaining_time": "3:20:41"} +{"current_steps": 3349, "total_steps": 4671, "loss": 0.0253, "learning_rate": 2.248813253582147e-06, "epoch": 2.1509312780989083, "percentage": 71.7, "elapsed_time": "8:28:02", "remaining_time": "3:20:32"} +{"current_steps": 3350, "total_steps": 4671, "loss": 0.0246, "learning_rate": 2.245693327752771e-06, "epoch": 2.151573538856776, "percentage": 71.72, "elapsed_time": "8:28:13", "remaining_time": "3:20:24"} +{"current_steps": 3351, "total_steps": 4671, "loss": 0.016, "learning_rate": 2.242574940762589e-06, "epoch": 2.1522157996146434, "percentage": 71.74, "elapsed_time": "8:28:24", "remaining_time": "3:20:16"} +{"current_steps": 3352, "total_steps": 4671, "loss": 0.0198, "learning_rate": 2.239458094353854e-06, "epoch": 2.152858060372511, "percentage": 71.76, "elapsed_time": "8:28:35", "remaining_time": "3:20:07"} +{"current_steps": 3353, "total_steps": 4671, "loss": 0.0246, "learning_rate": 2.2363427902679564e-06, "epoch": 2.153500321130379, "percentage": 71.78, "elapsed_time": "8:28:44", "remaining_time": "3:19:58"} +{"current_steps": 3354, "total_steps": 4671, "loss": 0.0135, "learning_rate": 2.2332290302454237e-06, "epoch": 2.1541425818882467, "percentage": 71.8, "elapsed_time": "8:28:52", "remaining_time": "3:19:49"} +{"current_steps": 3355, "total_steps": 4671, "loss": 0.0315, "learning_rate": 2.2301168160259273e-06, "epoch": 2.1547848426461145, "percentage": 71.83, "elapsed_time": "8:29:03", "remaining_time": "3:19:40"} +{"current_steps": 3356, "total_steps": 4671, "loss": 0.0296, "learning_rate": 2.2270061493482697e-06, "epoch": 2.155427103403982, "percentage": 71.85, "elapsed_time": "8:29:12", "remaining_time": "3:19:31"} +{"current_steps": 3357, "total_steps": 4671, "loss": 0.0238, "learning_rate": 2.223897031950386e-06, "epoch": 2.1560693641618496, "percentage": 71.87, "elapsed_time": "8:29:22", "remaining_time": "3:19:22"} +{"current_steps": 3358, "total_steps": 4671, "loss": 0.0453, "learning_rate": 2.220789465569351e-06, "epoch": 2.1567116249197174, "percentage": 71.89, "elapsed_time": "8:29:32", "remaining_time": "3:19:13"} +{"current_steps": 3359, "total_steps": 4671, "loss": 0.0441, "learning_rate": 2.2176834519413714e-06, "epoch": 2.157353885677585, "percentage": 71.91, "elapsed_time": "8:29:41", "remaining_time": "3:19:04"} +{"current_steps": 3360, "total_steps": 4671, "loss": 0.0371, "learning_rate": 2.2145789928017865e-06, "epoch": 2.157996146435453, "percentage": 71.93, "elapsed_time": "8:29:49", "remaining_time": "3:18:55"} +{"current_steps": 3361, "total_steps": 4671, "loss": 0.021, "learning_rate": 2.211476089885065e-06, "epoch": 2.1586384071933207, "percentage": 71.95, "elapsed_time": "8:29:56", "remaining_time": "3:18:45"} +{"current_steps": 3362, "total_steps": 4671, "loss": 0.0212, "learning_rate": 2.2083747449248094e-06, "epoch": 2.159280667951188, "percentage": 71.98, "elapsed_time": "8:30:05", "remaining_time": "3:18:36"} +{"current_steps": 3363, "total_steps": 4671, "loss": 0.0332, "learning_rate": 2.205274959653749e-06, "epoch": 2.159922928709056, "percentage": 72.0, "elapsed_time": "8:30:15", "remaining_time": "3:18:27"} +{"current_steps": 3364, "total_steps": 4671, "loss": 0.0242, "learning_rate": 2.2021767358037448e-06, "epoch": 2.1605651894669236, "percentage": 72.02, "elapsed_time": "8:30:25", "remaining_time": "3:18:18"} +{"current_steps": 3365, "total_steps": 4671, "loss": 0.0113, "learning_rate": 2.199080075105782e-06, "epoch": 2.1612074502247913, "percentage": 72.04, "elapsed_time": "8:30:33", "remaining_time": "3:18:09"} +{"current_steps": 3366, "total_steps": 4671, "loss": 0.0398, "learning_rate": 2.195984979289974e-06, "epoch": 2.161849710982659, "percentage": 72.06, "elapsed_time": "8:30:42", "remaining_time": "3:18:00"} +{"current_steps": 3367, "total_steps": 4671, "loss": 0.0279, "learning_rate": 2.1928914500855604e-06, "epoch": 2.1624919717405264, "percentage": 72.08, "elapsed_time": "8:30:51", "remaining_time": "3:17:51"} +{"current_steps": 3368, "total_steps": 4671, "loss": 0.0275, "learning_rate": 2.1897994892209044e-06, "epoch": 2.163134232498394, "percentage": 72.1, "elapsed_time": "8:31:01", "remaining_time": "3:17:42"} +{"current_steps": 3369, "total_steps": 4671, "loss": 0.0381, "learning_rate": 2.1867090984234944e-06, "epoch": 2.163776493256262, "percentage": 72.13, "elapsed_time": "8:31:11", "remaining_time": "3:17:33"} +{"current_steps": 3370, "total_steps": 4671, "loss": 0.033, "learning_rate": 2.183620279419941e-06, "epoch": 2.1644187540141298, "percentage": 72.15, "elapsed_time": "8:31:18", "remaining_time": "3:17:23"} +{"current_steps": 3371, "total_steps": 4671, "loss": 0.0275, "learning_rate": 2.1805330339359765e-06, "epoch": 2.1650610147719975, "percentage": 72.17, "elapsed_time": "8:31:27", "remaining_time": "3:17:14"} +{"current_steps": 3372, "total_steps": 4671, "loss": 0.0114, "learning_rate": 2.177447363696452e-06, "epoch": 2.1657032755298653, "percentage": 72.19, "elapsed_time": "8:31:34", "remaining_time": "3:17:04"} +{"current_steps": 3373, "total_steps": 4671, "loss": 0.0348, "learning_rate": 2.174363270425342e-06, "epoch": 2.1663455362877326, "percentage": 72.21, "elapsed_time": "8:31:42", "remaining_time": "3:16:54"} +{"current_steps": 3374, "total_steps": 4671, "loss": 0.0373, "learning_rate": 2.171280755845738e-06, "epoch": 2.1669877970456004, "percentage": 72.23, "elapsed_time": "8:31:52", "remaining_time": "3:16:46"} +{"current_steps": 3375, "total_steps": 4671, "loss": 0.0302, "learning_rate": 2.1681998216798476e-06, "epoch": 2.167630057803468, "percentage": 72.25, "elapsed_time": "8:32:02", "remaining_time": "3:16:37"} +{"current_steps": 3376, "total_steps": 4671, "loss": 0.0314, "learning_rate": 2.165120469649003e-06, "epoch": 2.168272318561336, "percentage": 72.28, "elapsed_time": "8:32:09", "remaining_time": "3:16:27"} +{"current_steps": 3377, "total_steps": 4671, "loss": 0.0183, "learning_rate": 2.1620427014736443e-06, "epoch": 2.1689145793192037, "percentage": 72.3, "elapsed_time": "8:32:19", "remaining_time": "3:16:18"} +{"current_steps": 3378, "total_steps": 4671, "loss": 0.0272, "learning_rate": 2.1589665188733294e-06, "epoch": 2.169556840077071, "percentage": 72.32, "elapsed_time": "8:32:27", "remaining_time": "3:16:09"} +{"current_steps": 3379, "total_steps": 4671, "loss": 0.0139, "learning_rate": 2.1558919235667332e-06, "epoch": 2.170199100834939, "percentage": 72.34, "elapsed_time": "8:32:36", "remaining_time": "3:16:00"} +{"current_steps": 3380, "total_steps": 4671, "loss": 0.0068, "learning_rate": 2.152818917271636e-06, "epoch": 2.1708413615928066, "percentage": 72.36, "elapsed_time": "8:32:43", "remaining_time": "3:15:50"} +{"current_steps": 3381, "total_steps": 4671, "loss": 0.0286, "learning_rate": 2.149747501704939e-06, "epoch": 2.1714836223506744, "percentage": 72.38, "elapsed_time": "8:32:52", "remaining_time": "3:15:41"} +{"current_steps": 3382, "total_steps": 4671, "loss": 0.0196, "learning_rate": 2.1466776785826497e-06, "epoch": 2.172125883108542, "percentage": 72.4, "elapsed_time": "8:33:01", "remaining_time": "3:15:32"} +{"current_steps": 3383, "total_steps": 4671, "loss": 0.0447, "learning_rate": 2.143609449619888e-06, "epoch": 2.17276814386641, "percentage": 72.43, "elapsed_time": "8:33:11", "remaining_time": "3:15:23"} +{"current_steps": 3384, "total_steps": 4671, "loss": 0.0275, "learning_rate": 2.140542816530882e-06, "epoch": 2.1734104046242773, "percentage": 72.45, "elapsed_time": "8:33:19", "remaining_time": "3:15:13"} +{"current_steps": 3385, "total_steps": 4671, "loss": 0.0306, "learning_rate": 2.1374777810289686e-06, "epoch": 2.174052665382145, "percentage": 72.47, "elapsed_time": "8:33:28", "remaining_time": "3:15:04"} +{"current_steps": 3386, "total_steps": 4671, "loss": 0.0209, "learning_rate": 2.1344143448265926e-06, "epoch": 2.174694926140013, "percentage": 72.49, "elapsed_time": "8:33:37", "remaining_time": "3:14:55"} +{"current_steps": 3387, "total_steps": 4671, "loss": 0.0417, "learning_rate": 2.1313525096353044e-06, "epoch": 2.1753371868978806, "percentage": 72.51, "elapsed_time": "8:33:46", "remaining_time": "3:14:46"} +{"current_steps": 3388, "total_steps": 4671, "loss": 0.018, "learning_rate": 2.12829227716576e-06, "epoch": 2.1759794476557484, "percentage": 72.53, "elapsed_time": "8:33:53", "remaining_time": "3:14:36"} +{"current_steps": 3389, "total_steps": 4671, "loss": 0.0336, "learning_rate": 2.1252336491277207e-06, "epoch": 2.176621708413616, "percentage": 72.55, "elapsed_time": "8:34:02", "remaining_time": "3:14:27"} +{"current_steps": 3390, "total_steps": 4671, "loss": 0.0321, "learning_rate": 2.1221766272300506e-06, "epoch": 2.1772639691714835, "percentage": 72.58, "elapsed_time": "8:34:10", "remaining_time": "3:14:17"} +{"current_steps": 3391, "total_steps": 4671, "loss": 0.0315, "learning_rate": 2.119121213180717e-06, "epoch": 2.1779062299293512, "percentage": 72.6, "elapsed_time": "8:34:17", "remaining_time": "3:14:07"} +{"current_steps": 3392, "total_steps": 4671, "loss": 0.0123, "learning_rate": 2.116067408686788e-06, "epoch": 2.178548490687219, "percentage": 72.62, "elapsed_time": "8:34:27", "remaining_time": "3:13:58"} +{"current_steps": 3393, "total_steps": 4671, "loss": 0.0184, "learning_rate": 2.1130152154544346e-06, "epoch": 2.179190751445087, "percentage": 72.64, "elapsed_time": "8:34:36", "remaining_time": "3:13:49"} +{"current_steps": 3394, "total_steps": 4671, "loss": 0.0311, "learning_rate": 2.1099646351889246e-06, "epoch": 2.1798330122029546, "percentage": 72.66, "elapsed_time": "8:34:46", "remaining_time": "3:13:41"} +{"current_steps": 3395, "total_steps": 4671, "loss": 0.0177, "learning_rate": 2.106915669594629e-06, "epoch": 2.180475272960822, "percentage": 72.68, "elapsed_time": "8:34:54", "remaining_time": "3:13:31"} +{"current_steps": 3396, "total_steps": 4671, "loss": 0.0309, "learning_rate": 2.103868320375009e-06, "epoch": 2.1811175337186897, "percentage": 72.7, "elapsed_time": "8:35:02", "remaining_time": "3:13:22"} +{"current_steps": 3397, "total_steps": 4671, "loss": 0.0446, "learning_rate": 2.100822589232629e-06, "epoch": 2.1817597944765574, "percentage": 72.73, "elapsed_time": "8:35:13", "remaining_time": "3:13:13"} +{"current_steps": 3398, "total_steps": 4671, "loss": 0.039, "learning_rate": 2.09777847786915e-06, "epoch": 2.182402055234425, "percentage": 72.75, "elapsed_time": "8:35:22", "remaining_time": "3:13:04"} +{"current_steps": 3399, "total_steps": 4671, "loss": 0.0289, "learning_rate": 2.0947359879853253e-06, "epoch": 2.183044315992293, "percentage": 72.77, "elapsed_time": "8:35:31", "remaining_time": "3:12:55"} +{"current_steps": 3400, "total_steps": 4671, "loss": 0.0375, "learning_rate": 2.091695121281002e-06, "epoch": 2.1836865767501608, "percentage": 72.79, "elapsed_time": "8:35:39", "remaining_time": "3:12:46"} +{"current_steps": 3401, "total_steps": 4671, "loss": 0.0384, "learning_rate": 2.088655879455122e-06, "epoch": 2.184328837508028, "percentage": 72.81, "elapsed_time": "8:35:49", "remaining_time": "3:12:37"} +{"current_steps": 3402, "total_steps": 4671, "loss": 0.0372, "learning_rate": 2.0856182642057182e-06, "epoch": 2.184971098265896, "percentage": 72.83, "elapsed_time": "8:35:59", "remaining_time": "3:12:28"} +{"current_steps": 3403, "total_steps": 4671, "loss": 0.0193, "learning_rate": 2.082582277229917e-06, "epoch": 2.1856133590237636, "percentage": 72.85, "elapsed_time": "8:36:08", "remaining_time": "3:12:19"} +{"current_steps": 3404, "total_steps": 4671, "loss": 0.0255, "learning_rate": 2.079547920223929e-06, "epoch": 2.1862556197816314, "percentage": 72.88, "elapsed_time": "8:36:18", "remaining_time": "3:12:10"} +{"current_steps": 3405, "total_steps": 4671, "loss": 0.03, "learning_rate": 2.0765151948830613e-06, "epoch": 2.186897880539499, "percentage": 72.9, "elapsed_time": "8:36:27", "remaining_time": "3:12:01"} +{"current_steps": 3406, "total_steps": 4671, "loss": 0.0562, "learning_rate": 2.0734841029017062e-06, "epoch": 2.187540141297367, "percentage": 72.92, "elapsed_time": "8:36:35", "remaining_time": "3:11:51"} +{"current_steps": 3407, "total_steps": 4671, "loss": 0.0279, "learning_rate": 2.0704546459733425e-06, "epoch": 2.1881824020552343, "percentage": 72.94, "elapsed_time": "8:36:43", "remaining_time": "3:11:42"} +{"current_steps": 3408, "total_steps": 4671, "loss": 0.0199, "learning_rate": 2.0674268257905377e-06, "epoch": 2.188824662813102, "percentage": 72.96, "elapsed_time": "8:36:51", "remaining_time": "3:11:32"} +{"current_steps": 3409, "total_steps": 4671, "loss": 0.0254, "learning_rate": 2.064400644044942e-06, "epoch": 2.18946692357097, "percentage": 72.98, "elapsed_time": "8:37:00", "remaining_time": "3:11:23"} +{"current_steps": 3410, "total_steps": 4671, "loss": 0.0136, "learning_rate": 2.061376102427295e-06, "epoch": 2.1901091843288376, "percentage": 73.0, "elapsed_time": "8:37:07", "remaining_time": "3:11:13"} +{"current_steps": 3411, "total_steps": 4671, "loss": 0.0346, "learning_rate": 2.058353202627417e-06, "epoch": 2.1907514450867054, "percentage": 73.03, "elapsed_time": "8:37:15", "remaining_time": "3:11:04"} +{"current_steps": 3412, "total_steps": 4671, "loss": 0.0175, "learning_rate": 2.055331946334209e-06, "epoch": 2.1913937058445727, "percentage": 73.05, "elapsed_time": "8:37:25", "remaining_time": "3:10:55"} +{"current_steps": 3413, "total_steps": 4671, "loss": 0.0296, "learning_rate": 2.0523123352356545e-06, "epoch": 2.1920359666024405, "percentage": 73.07, "elapsed_time": "8:37:36", "remaining_time": "3:10:46"} +{"current_steps": 3414, "total_steps": 4671, "loss": 0.0115, "learning_rate": 2.049294371018821e-06, "epoch": 2.1926782273603083, "percentage": 73.09, "elapsed_time": "8:37:43", "remaining_time": "3:10:37"} +{"current_steps": 3415, "total_steps": 4671, "loss": 0.0501, "learning_rate": 2.0462780553698547e-06, "epoch": 2.193320488118176, "percentage": 73.11, "elapsed_time": "8:37:53", "remaining_time": "3:10:28"} +{"current_steps": 3416, "total_steps": 4671, "loss": 0.0176, "learning_rate": 2.043263389973978e-06, "epoch": 2.193962748876044, "percentage": 73.13, "elapsed_time": "8:38:01", "remaining_time": "3:10:19"} +{"current_steps": 3417, "total_steps": 4671, "loss": 0.0159, "learning_rate": 2.0402503765154947e-06, "epoch": 2.1946050096339116, "percentage": 73.15, "elapsed_time": "8:38:10", "remaining_time": "3:10:09"} +{"current_steps": 3418, "total_steps": 4671, "loss": 0.0463, "learning_rate": 2.0372390166777833e-06, "epoch": 2.195247270391779, "percentage": 73.17, "elapsed_time": "8:38:18", "remaining_time": "3:10:00"} +{"current_steps": 3419, "total_steps": 4671, "loss": 0.0313, "learning_rate": 2.0342293121432997e-06, "epoch": 2.1958895311496467, "percentage": 73.2, "elapsed_time": "8:38:28", "remaining_time": "3:09:51"} +{"current_steps": 3420, "total_steps": 4671, "loss": 0.0339, "learning_rate": 2.0312212645935755e-06, "epoch": 2.1965317919075145, "percentage": 73.22, "elapsed_time": "8:38:37", "remaining_time": "3:09:42"} +{"current_steps": 3421, "total_steps": 4671, "loss": 0.023, "learning_rate": 2.028214875709214e-06, "epoch": 2.1971740526653822, "percentage": 73.24, "elapsed_time": "8:38:48", "remaining_time": "3:09:33"} +{"current_steps": 3422, "total_steps": 4671, "loss": 0.0207, "learning_rate": 2.0252101471698947e-06, "epoch": 2.19781631342325, "percentage": 73.26, "elapsed_time": "8:38:56", "remaining_time": "3:09:24"} +{"current_steps": 3423, "total_steps": 4671, "loss": 0.011, "learning_rate": 2.0222070806543683e-06, "epoch": 2.1984585741811173, "percentage": 73.28, "elapsed_time": "8:39:05", "remaining_time": "3:09:15"} +{"current_steps": 3424, "total_steps": 4671, "loss": 0.0193, "learning_rate": 2.0192056778404556e-06, "epoch": 2.199100834938985, "percentage": 73.3, "elapsed_time": "8:39:14", "remaining_time": "3:09:06"} +{"current_steps": 3425, "total_steps": 4671, "loss": 0.0198, "learning_rate": 2.0162059404050505e-06, "epoch": 2.199743095696853, "percentage": 73.32, "elapsed_time": "8:39:22", "remaining_time": "3:08:56"} +{"current_steps": 3426, "total_steps": 4671, "loss": 0.032, "learning_rate": 2.013207870024116e-06, "epoch": 2.2003853564547207, "percentage": 73.35, "elapsed_time": "8:39:33", "remaining_time": "3:08:48"} +{"current_steps": 3427, "total_steps": 4671, "loss": 0.0379, "learning_rate": 2.0102114683726796e-06, "epoch": 2.2010276172125884, "percentage": 73.37, "elapsed_time": "8:39:44", "remaining_time": "3:08:39"} +{"current_steps": 3428, "total_steps": 4671, "loss": 0.0173, "learning_rate": 2.0072167371248413e-06, "epoch": 2.201669877970456, "percentage": 73.39, "elapsed_time": "8:39:55", "remaining_time": "3:08:31"} +{"current_steps": 3429, "total_steps": 4671, "loss": 0.0641, "learning_rate": 2.0042236779537668e-06, "epoch": 2.2023121387283235, "percentage": 73.41, "elapsed_time": "8:40:04", "remaining_time": "3:08:22"} +{"current_steps": 3430, "total_steps": 4671, "loss": 0.0394, "learning_rate": 2.001232292531686e-06, "epoch": 2.2029543994861913, "percentage": 73.43, "elapsed_time": "8:40:12", "remaining_time": "3:08:13"} +{"current_steps": 3431, "total_steps": 4671, "loss": 0.0411, "learning_rate": 1.9982425825298935e-06, "epoch": 2.203596660244059, "percentage": 73.45, "elapsed_time": "8:40:24", "remaining_time": "3:08:04"} +{"current_steps": 3432, "total_steps": 4671, "loss": 0.0323, "learning_rate": 1.9952545496187524e-06, "epoch": 2.204238921001927, "percentage": 73.47, "elapsed_time": "8:40:34", "remaining_time": "3:07:55"} +{"current_steps": 3433, "total_steps": 4671, "loss": 0.024, "learning_rate": 1.9922681954676836e-06, "epoch": 2.2048811817597946, "percentage": 73.5, "elapsed_time": "8:40:44", "remaining_time": "3:07:47"} +{"current_steps": 3434, "total_steps": 4671, "loss": 0.0246, "learning_rate": 1.9892835217451743e-06, "epoch": 2.205523442517662, "percentage": 73.52, "elapsed_time": "8:40:53", "remaining_time": "3:07:38"} +{"current_steps": 3435, "total_steps": 4671, "loss": 0.0238, "learning_rate": 1.986300530118766e-06, "epoch": 2.2061657032755297, "percentage": 73.54, "elapsed_time": "8:41:00", "remaining_time": "3:07:28"} +{"current_steps": 3436, "total_steps": 4671, "loss": 0.0404, "learning_rate": 1.9833192222550672e-06, "epoch": 2.2068079640333975, "percentage": 73.56, "elapsed_time": "8:41:11", "remaining_time": "3:07:19"} +{"current_steps": 3437, "total_steps": 4671, "loss": 0.0206, "learning_rate": 1.9803395998197433e-06, "epoch": 2.2074502247912653, "percentage": 73.58, "elapsed_time": "8:41:19", "remaining_time": "3:07:10"} +{"current_steps": 3438, "total_steps": 4671, "loss": 0.0072, "learning_rate": 1.977361664477518e-06, "epoch": 2.208092485549133, "percentage": 73.6, "elapsed_time": "8:41:29", "remaining_time": "3:07:01"} +{"current_steps": 3439, "total_steps": 4671, "loss": 0.0179, "learning_rate": 1.9743854178921722e-06, "epoch": 2.208734746307001, "percentage": 73.62, "elapsed_time": "8:41:37", "remaining_time": "3:06:52"} +{"current_steps": 3440, "total_steps": 4671, "loss": 0.0379, "learning_rate": 1.9714108617265436e-06, "epoch": 2.209377007064868, "percentage": 73.65, "elapsed_time": "8:41:48", "remaining_time": "3:06:43"} +{"current_steps": 3441, "total_steps": 4671, "loss": 0.0381, "learning_rate": 1.968437997642526e-06, "epoch": 2.210019267822736, "percentage": 73.67, "elapsed_time": "8:41:57", "remaining_time": "3:06:34"} +{"current_steps": 3442, "total_steps": 4671, "loss": 0.0205, "learning_rate": 1.965466827301066e-06, "epoch": 2.2106615285806037, "percentage": 73.69, "elapsed_time": "8:42:06", "remaining_time": "3:06:25"} +{"current_steps": 3443, "total_steps": 4671, "loss": 0.0271, "learning_rate": 1.962497352362167e-06, "epoch": 2.2113037893384715, "percentage": 73.71, "elapsed_time": "8:42:16", "remaining_time": "3:06:16"} +{"current_steps": 3444, "total_steps": 4671, "loss": 0.0398, "learning_rate": 1.9595295744848823e-06, "epoch": 2.2119460500963393, "percentage": 73.73, "elapsed_time": "8:42:27", "remaining_time": "3:06:08"} +{"current_steps": 3445, "total_steps": 4671, "loss": 0.0242, "learning_rate": 1.9565634953273175e-06, "epoch": 2.2125883108542066, "percentage": 73.75, "elapsed_time": "8:42:35", "remaining_time": "3:05:58"} +{"current_steps": 3446, "total_steps": 4671, "loss": 0.0207, "learning_rate": 1.953599116546631e-06, "epoch": 2.2132305716120744, "percentage": 73.77, "elapsed_time": "8:42:43", "remaining_time": "3:05:49"} +{"current_steps": 3447, "total_steps": 4671, "loss": 0.0253, "learning_rate": 1.950636439799029e-06, "epoch": 2.213872832369942, "percentage": 73.8, "elapsed_time": "8:42:50", "remaining_time": "3:05:39"} +{"current_steps": 3448, "total_steps": 4671, "loss": 0.0393, "learning_rate": 1.947675466739768e-06, "epoch": 2.21451509312781, "percentage": 73.82, "elapsed_time": "8:43:00", "remaining_time": "3:05:30"} +{"current_steps": 3449, "total_steps": 4671, "loss": 0.0184, "learning_rate": 1.944716199023152e-06, "epoch": 2.2151573538856777, "percentage": 73.84, "elapsed_time": "8:43:08", "remaining_time": "3:05:21"} +{"current_steps": 3450, "total_steps": 4671, "loss": 0.0145, "learning_rate": 1.941758638302535e-06, "epoch": 2.2157996146435455, "percentage": 73.86, "elapsed_time": "8:43:18", "remaining_time": "3:05:12"} +{"current_steps": 3451, "total_steps": 4671, "loss": 0.0346, "learning_rate": 1.9388027862303105e-06, "epoch": 2.216441875401413, "percentage": 73.88, "elapsed_time": "8:43:25", "remaining_time": "3:05:02"} +{"current_steps": 3452, "total_steps": 4671, "loss": 0.0354, "learning_rate": 1.9358486444579217e-06, "epoch": 2.2170841361592806, "percentage": 73.9, "elapsed_time": "8:43:34", "remaining_time": "3:04:53"} +{"current_steps": 3453, "total_steps": 4671, "loss": 0.0248, "learning_rate": 1.93289621463586e-06, "epoch": 2.2177263969171483, "percentage": 73.92, "elapsed_time": "8:43:44", "remaining_time": "3:04:44"} +{"current_steps": 3454, "total_steps": 4671, "loss": 0.0398, "learning_rate": 1.9299454984136558e-06, "epoch": 2.218368657675016, "percentage": 73.95, "elapsed_time": "8:43:51", "remaining_time": "3:04:34"} +{"current_steps": 3455, "total_steps": 4671, "loss": 0.0301, "learning_rate": 1.9269964974398814e-06, "epoch": 2.219010918432884, "percentage": 73.97, "elapsed_time": "8:43:59", "remaining_time": "3:04:25"} +{"current_steps": 3456, "total_steps": 4671, "loss": 0.0142, "learning_rate": 1.924049213362153e-06, "epoch": 2.2196531791907512, "percentage": 73.99, "elapsed_time": "8:44:08", "remaining_time": "3:04:16"} +{"current_steps": 3457, "total_steps": 4671, "loss": 0.0393, "learning_rate": 1.9211036478271263e-06, "epoch": 2.220295439948619, "percentage": 74.01, "elapsed_time": "8:44:18", "remaining_time": "3:04:07"} +{"current_steps": 3458, "total_steps": 4671, "loss": 0.0269, "learning_rate": 1.9181598024805e-06, "epoch": 2.2209377007064868, "percentage": 74.03, "elapsed_time": "8:44:28", "remaining_time": "3:03:58"} +{"current_steps": 3459, "total_steps": 4671, "loss": 0.0146, "learning_rate": 1.9152176789670044e-06, "epoch": 2.2215799614643545, "percentage": 74.05, "elapsed_time": "8:44:38", "remaining_time": "3:03:49"} +{"current_steps": 3460, "total_steps": 4671, "loss": 0.0495, "learning_rate": 1.912277278930416e-06, "epoch": 2.2222222222222223, "percentage": 74.07, "elapsed_time": "8:44:47", "remaining_time": "3:03:40"} +{"current_steps": 3461, "total_steps": 4671, "loss": 0.0208, "learning_rate": 1.9093386040135436e-06, "epoch": 2.22286448298009, "percentage": 74.1, "elapsed_time": "8:44:55", "remaining_time": "3:03:31"} +{"current_steps": 3462, "total_steps": 4671, "loss": 0.0319, "learning_rate": 1.9064016558582333e-06, "epoch": 2.2235067437379574, "percentage": 74.12, "elapsed_time": "8:45:05", "remaining_time": "3:03:22"} +{"current_steps": 3463, "total_steps": 4671, "loss": 0.0181, "learning_rate": 1.9034664361053674e-06, "epoch": 2.224149004495825, "percentage": 74.14, "elapsed_time": "8:45:15", "remaining_time": "3:03:13"} +{"current_steps": 3464, "total_steps": 4671, "loss": 0.0155, "learning_rate": 1.9005329463948596e-06, "epoch": 2.224791265253693, "percentage": 74.16, "elapsed_time": "8:45:23", "remaining_time": "3:03:04"} +{"current_steps": 3465, "total_steps": 4671, "loss": 0.0392, "learning_rate": 1.8976011883656632e-06, "epoch": 2.2254335260115607, "percentage": 74.18, "elapsed_time": "8:45:34", "remaining_time": "3:02:55"} +{"current_steps": 3466, "total_steps": 4671, "loss": 0.0266, "learning_rate": 1.894671163655759e-06, "epoch": 2.2260757867694285, "percentage": 74.2, "elapsed_time": "8:45:42", "remaining_time": "3:02:46"} +{"current_steps": 3467, "total_steps": 4671, "loss": 0.0178, "learning_rate": 1.8917428739021577e-06, "epoch": 2.226718047527296, "percentage": 74.22, "elapsed_time": "8:45:51", "remaining_time": "3:02:37"} +{"current_steps": 3468, "total_steps": 4671, "loss": 0.0139, "learning_rate": 1.888816320740905e-06, "epoch": 2.2273603082851636, "percentage": 74.25, "elapsed_time": "8:45:58", "remaining_time": "3:02:27"} +{"current_steps": 3469, "total_steps": 4671, "loss": 0.0229, "learning_rate": 1.8858915058070742e-06, "epoch": 2.2280025690430314, "percentage": 74.27, "elapsed_time": "8:46:07", "remaining_time": "3:02:18"} +{"current_steps": 3470, "total_steps": 4671, "loss": 0.0321, "learning_rate": 1.8829684307347685e-06, "epoch": 2.228644829800899, "percentage": 74.29, "elapsed_time": "8:46:15", "remaining_time": "3:02:08"} +{"current_steps": 3471, "total_steps": 4671, "loss": 0.0301, "learning_rate": 1.8800470971571183e-06, "epoch": 2.229287090558767, "percentage": 74.31, "elapsed_time": "8:46:24", "remaining_time": "3:01:59"} +{"current_steps": 3472, "total_steps": 4671, "loss": 0.0253, "learning_rate": 1.8771275067062817e-06, "epoch": 2.2299293513166347, "percentage": 74.33, "elapsed_time": "8:46:35", "remaining_time": "3:01:50"} +{"current_steps": 3473, "total_steps": 4671, "loss": 0.0111, "learning_rate": 1.8742096610134413e-06, "epoch": 2.230571612074502, "percentage": 74.35, "elapsed_time": "8:46:45", "remaining_time": "3:01:42"} +{"current_steps": 3474, "total_steps": 4671, "loss": 0.0273, "learning_rate": 1.8712935617088067e-06, "epoch": 2.23121387283237, "percentage": 74.37, "elapsed_time": "8:46:55", "remaining_time": "3:01:33"} +{"current_steps": 3475, "total_steps": 4671, "loss": 0.034, "learning_rate": 1.8683792104216114e-06, "epoch": 2.2318561335902376, "percentage": 74.4, "elapsed_time": "8:47:05", "remaining_time": "3:01:24"} +{"current_steps": 3476, "total_steps": 4671, "loss": 0.0221, "learning_rate": 1.8654666087801116e-06, "epoch": 2.2324983943481054, "percentage": 74.42, "elapsed_time": "8:47:12", "remaining_time": "3:01:14"} +{"current_steps": 3477, "total_steps": 4671, "loss": 0.0108, "learning_rate": 1.8625557584115866e-06, "epoch": 2.233140655105973, "percentage": 74.44, "elapsed_time": "8:47:20", "remaining_time": "3:01:05"} +{"current_steps": 3478, "total_steps": 4671, "loss": 0.0242, "learning_rate": 1.8596466609423364e-06, "epoch": 2.233782915863841, "percentage": 74.46, "elapsed_time": "8:47:29", "remaining_time": "3:00:56"} +{"current_steps": 3479, "total_steps": 4671, "loss": 0.0389, "learning_rate": 1.8567393179976834e-06, "epoch": 2.2344251766217083, "percentage": 74.48, "elapsed_time": "8:47:40", "remaining_time": "3:00:47"} +{"current_steps": 3480, "total_steps": 4671, "loss": 0.0211, "learning_rate": 1.8538337312019672e-06, "epoch": 2.235067437379576, "percentage": 74.5, "elapsed_time": "8:47:49", "remaining_time": "3:00:38"} +{"current_steps": 3481, "total_steps": 4671, "loss": 0.0294, "learning_rate": 1.8509299021785505e-06, "epoch": 2.235709698137444, "percentage": 74.52, "elapsed_time": "8:47:58", "remaining_time": "3:00:29"} +{"current_steps": 3482, "total_steps": 4671, "loss": 0.0058, "learning_rate": 1.8480278325498068e-06, "epoch": 2.2363519588953116, "percentage": 74.55, "elapsed_time": "8:48:05", "remaining_time": "3:00:19"} +{"current_steps": 3483, "total_steps": 4671, "loss": 0.0235, "learning_rate": 1.8451275239371337e-06, "epoch": 2.2369942196531793, "percentage": 74.57, "elapsed_time": "8:48:15", "remaining_time": "3:00:10"} +{"current_steps": 3484, "total_steps": 4671, "loss": 0.0185, "learning_rate": 1.842228977960941e-06, "epoch": 2.2376364804110467, "percentage": 74.59, "elapsed_time": "8:48:24", "remaining_time": "3:00:01"} +{"current_steps": 3485, "total_steps": 4671, "loss": 0.0502, "learning_rate": 1.8393321962406552e-06, "epoch": 2.2382787411689145, "percentage": 74.61, "elapsed_time": "8:48:32", "remaining_time": "2:59:52"} +{"current_steps": 3486, "total_steps": 4671, "loss": 0.0384, "learning_rate": 1.8364371803947151e-06, "epoch": 2.2389210019267822, "percentage": 74.63, "elapsed_time": "8:48:41", "remaining_time": "2:59:43"} +{"current_steps": 3487, "total_steps": 4671, "loss": 0.0249, "learning_rate": 1.833543932040578e-06, "epoch": 2.23956326268465, "percentage": 74.65, "elapsed_time": "8:48:49", "remaining_time": "2:59:33"} +{"current_steps": 3488, "total_steps": 4671, "loss": 0.0135, "learning_rate": 1.8306524527947083e-06, "epoch": 2.2402055234425178, "percentage": 74.67, "elapsed_time": "8:48:56", "remaining_time": "2:59:23"} +{"current_steps": 3489, "total_steps": 4671, "loss": 0.0329, "learning_rate": 1.8277627442725858e-06, "epoch": 2.2408477842003856, "percentage": 74.69, "elapsed_time": "8:49:06", "remaining_time": "2:59:15"} +{"current_steps": 3490, "total_steps": 4671, "loss": 0.0228, "learning_rate": 1.8248748080886958e-06, "epoch": 2.241490044958253, "percentage": 74.72, "elapsed_time": "8:49:16", "remaining_time": "2:59:06"} +{"current_steps": 3491, "total_steps": 4671, "loss": 0.0136, "learning_rate": 1.8219886458565378e-06, "epoch": 2.2421323057161207, "percentage": 74.74, "elapsed_time": "8:49:25", "remaining_time": "2:58:57"} +{"current_steps": 3492, "total_steps": 4671, "loss": 0.0439, "learning_rate": 1.8191042591886198e-06, "epoch": 2.2427745664739884, "percentage": 74.76, "elapsed_time": "8:49:35", "remaining_time": "2:58:48"} +{"current_steps": 3493, "total_steps": 4671, "loss": 0.0215, "learning_rate": 1.816221649696457e-06, "epoch": 2.243416827231856, "percentage": 74.78, "elapsed_time": "8:49:44", "remaining_time": "2:58:39"} +{"current_steps": 3494, "total_steps": 4671, "loss": 0.0151, "learning_rate": 1.813340818990571e-06, "epoch": 2.244059087989724, "percentage": 74.8, "elapsed_time": "8:49:54", "remaining_time": "2:58:30"} +{"current_steps": 3495, "total_steps": 4671, "loss": 0.0238, "learning_rate": 1.810461768680491e-06, "epoch": 2.2447013487475918, "percentage": 74.82, "elapsed_time": "8:50:04", "remaining_time": "2:58:21"} +{"current_steps": 3496, "total_steps": 4671, "loss": 0.0261, "learning_rate": 1.807584500374751e-06, "epoch": 2.245343609505459, "percentage": 74.84, "elapsed_time": "8:50:12", "remaining_time": "2:58:12"} +{"current_steps": 3497, "total_steps": 4671, "loss": 0.026, "learning_rate": 1.8047090156808888e-06, "epoch": 2.245985870263327, "percentage": 74.87, "elapsed_time": "8:50:22", "remaining_time": "2:58:03"} +{"current_steps": 3498, "total_steps": 4671, "loss": 0.0437, "learning_rate": 1.8018353162054458e-06, "epoch": 2.2466281310211946, "percentage": 74.89, "elapsed_time": "8:50:31", "remaining_time": "2:57:54"} +{"current_steps": 3499, "total_steps": 4671, "loss": 0.0347, "learning_rate": 1.7989634035539671e-06, "epoch": 2.2472703917790624, "percentage": 74.91, "elapsed_time": "8:50:40", "remaining_time": "2:57:44"} +{"current_steps": 3500, "total_steps": 4671, "loss": 0.0163, "learning_rate": 1.7960932793309988e-06, "epoch": 2.24791265253693, "percentage": 74.93, "elapsed_time": "8:50:48", "remaining_time": "2:57:35"} +{"current_steps": 3501, "total_steps": 4671, "loss": 0.0271, "learning_rate": 1.7932249451400863e-06, "epoch": 2.2485549132947975, "percentage": 74.95, "elapsed_time": "8:50:59", "remaining_time": "2:57:27"} +{"current_steps": 3502, "total_steps": 4671, "loss": 0.0339, "learning_rate": 1.7903584025837778e-06, "epoch": 2.2491971740526653, "percentage": 74.97, "elapsed_time": "8:51:08", "remaining_time": "2:57:17"} +{"current_steps": 3503, "total_steps": 4671, "loss": 0.0257, "learning_rate": 1.7874936532636182e-06, "epoch": 2.249839434810533, "percentage": 74.99, "elapsed_time": "8:51:17", "remaining_time": "2:57:08"} +{"current_steps": 3504, "total_steps": 4671, "loss": 0.0255, "learning_rate": 1.7846306987801514e-06, "epoch": 2.250481695568401, "percentage": 75.02, "elapsed_time": "8:51:28", "remaining_time": "2:57:00"} +{"current_steps": 3505, "total_steps": 4671, "loss": 0.0175, "learning_rate": 1.7817695407329205e-06, "epoch": 2.2511239563262686, "percentage": 75.04, "elapsed_time": "8:51:36", "remaining_time": "2:56:51"} +{"current_steps": 3506, "total_steps": 4671, "loss": 0.0438, "learning_rate": 1.7789101807204594e-06, "epoch": 2.2517662170841364, "percentage": 75.06, "elapsed_time": "8:51:44", "remaining_time": "2:56:41"} +{"current_steps": 3507, "total_steps": 4671, "loss": 0.021, "learning_rate": 1.776052620340301e-06, "epoch": 2.2524084778420037, "percentage": 75.08, "elapsed_time": "8:51:52", "remaining_time": "2:56:32"} +{"current_steps": 3508, "total_steps": 4671, "loss": 0.0348, "learning_rate": 1.7731968611889756e-06, "epoch": 2.2530507385998715, "percentage": 75.1, "elapsed_time": "8:52:01", "remaining_time": "2:56:22"} +{"current_steps": 3509, "total_steps": 4671, "loss": 0.0248, "learning_rate": 1.7703429048620024e-06, "epoch": 2.2536929993577393, "percentage": 75.12, "elapsed_time": "8:52:10", "remaining_time": "2:56:13"} +{"current_steps": 3510, "total_steps": 4671, "loss": 0.0462, "learning_rate": 1.767490752953896e-06, "epoch": 2.254335260115607, "percentage": 75.14, "elapsed_time": "8:52:19", "remaining_time": "2:56:04"} +{"current_steps": 3511, "total_steps": 4671, "loss": 0.0357, "learning_rate": 1.7646404070581613e-06, "epoch": 2.254977520873475, "percentage": 75.17, "elapsed_time": "8:52:28", "remaining_time": "2:55:55"} +{"current_steps": 3512, "total_steps": 4671, "loss": 0.0225, "learning_rate": 1.7617918687672947e-06, "epoch": 2.255619781631342, "percentage": 75.19, "elapsed_time": "8:52:39", "remaining_time": "2:55:47"} +{"current_steps": 3513, "total_steps": 4671, "loss": 0.0182, "learning_rate": 1.7589451396727853e-06, "epoch": 2.25626204238921, "percentage": 75.21, "elapsed_time": "8:52:49", "remaining_time": "2:55:38"} +{"current_steps": 3514, "total_steps": 4671, "loss": 0.0337, "learning_rate": 1.7561002213651052e-06, "epoch": 2.2569043031470777, "percentage": 75.23, "elapsed_time": "8:52:58", "remaining_time": "2:55:29"} +{"current_steps": 3515, "total_steps": 4671, "loss": 0.0326, "learning_rate": 1.7532571154337202e-06, "epoch": 2.2575465639049455, "percentage": 75.25, "elapsed_time": "8:53:06", "remaining_time": "2:55:19"} +{"current_steps": 3516, "total_steps": 4671, "loss": 0.0193, "learning_rate": 1.750415823467082e-06, "epoch": 2.2581888246628132, "percentage": 75.27, "elapsed_time": "8:53:16", "remaining_time": "2:55:10"} +{"current_steps": 3517, "total_steps": 4671, "loss": 0.0231, "learning_rate": 1.7475763470526286e-06, "epoch": 2.258831085420681, "percentage": 75.29, "elapsed_time": "8:53:26", "remaining_time": "2:55:02"} +{"current_steps": 3518, "total_steps": 4671, "loss": 0.0226, "learning_rate": 1.744738687776784e-06, "epoch": 2.2594733461785483, "percentage": 75.32, "elapsed_time": "8:53:34", "remaining_time": "2:54:52"} +{"current_steps": 3519, "total_steps": 4671, "loss": 0.0244, "learning_rate": 1.7419028472249566e-06, "epoch": 2.260115606936416, "percentage": 75.34, "elapsed_time": "8:53:42", "remaining_time": "2:54:43"} +{"current_steps": 3520, "total_steps": 4671, "loss": 0.0186, "learning_rate": 1.7390688269815375e-06, "epoch": 2.260757867694284, "percentage": 75.36, "elapsed_time": "8:53:51", "remaining_time": "2:54:34"} +{"current_steps": 3521, "total_steps": 4671, "loss": 0.0313, "learning_rate": 1.7362366286299065e-06, "epoch": 2.2614001284521517, "percentage": 75.38, "elapsed_time": "8:53:59", "remaining_time": "2:54:24"} +{"current_steps": 3522, "total_steps": 4671, "loss": 0.0376, "learning_rate": 1.7334062537524165e-06, "epoch": 2.2620423892100194, "percentage": 75.4, "elapsed_time": "8:54:10", "remaining_time": "2:54:15"} +{"current_steps": 3523, "total_steps": 4671, "loss": 0.0224, "learning_rate": 1.7305777039304078e-06, "epoch": 2.2626846499678868, "percentage": 75.42, "elapsed_time": "8:54:17", "remaining_time": "2:54:06"} +{"current_steps": 3524, "total_steps": 4671, "loss": 0.0402, "learning_rate": 1.7277509807441994e-06, "epoch": 2.2633269107257545, "percentage": 75.44, "elapsed_time": "8:54:25", "remaining_time": "2:53:56"} +{"current_steps": 3525, "total_steps": 4671, "loss": 0.0608, "learning_rate": 1.7249260857730898e-06, "epoch": 2.2639691714836223, "percentage": 75.47, "elapsed_time": "8:54:34", "remaining_time": "2:53:47"} +{"current_steps": 3526, "total_steps": 4671, "loss": 0.0345, "learning_rate": 1.7221030205953565e-06, "epoch": 2.26461143224149, "percentage": 75.49, "elapsed_time": "8:54:43", "remaining_time": "2:53:38"} +{"current_steps": 3527, "total_steps": 4671, "loss": 0.0268, "learning_rate": 1.7192817867882533e-06, "epoch": 2.265253692999358, "percentage": 75.51, "elapsed_time": "8:54:51", "remaining_time": "2:53:29"} +{"current_steps": 3528, "total_steps": 4671, "loss": 0.0275, "learning_rate": 1.7164623859280144e-06, "epoch": 2.2658959537572256, "percentage": 75.53, "elapsed_time": "8:55:00", "remaining_time": "2:53:19"} +{"current_steps": 3529, "total_steps": 4671, "loss": 0.0276, "learning_rate": 1.713644819589842e-06, "epoch": 2.266538214515093, "percentage": 75.55, "elapsed_time": "8:55:10", "remaining_time": "2:53:11"} +{"current_steps": 3530, "total_steps": 4671, "loss": 0.0357, "learning_rate": 1.7108290893479234e-06, "epoch": 2.2671804752729607, "percentage": 75.57, "elapsed_time": "8:55:20", "remaining_time": "2:53:02"} +{"current_steps": 3531, "total_steps": 4671, "loss": 0.0122, "learning_rate": 1.7080151967754145e-06, "epoch": 2.2678227360308285, "percentage": 75.59, "elapsed_time": "8:55:28", "remaining_time": "2:52:52"} +{"current_steps": 3532, "total_steps": 4671, "loss": 0.0053, "learning_rate": 1.7052031434444438e-06, "epoch": 2.2684649967886963, "percentage": 75.62, "elapsed_time": "8:55:36", "remaining_time": "2:52:43"} +{"current_steps": 3533, "total_steps": 4671, "loss": 0.0199, "learning_rate": 1.702392930926115e-06, "epoch": 2.269107257546564, "percentage": 75.64, "elapsed_time": "8:55:44", "remaining_time": "2:52:34"} +{"current_steps": 3534, "total_steps": 4671, "loss": 0.0221, "learning_rate": 1.699584560790502e-06, "epoch": 2.2697495183044314, "percentage": 75.66, "elapsed_time": "8:55:52", "remaining_time": "2:52:24"} +{"current_steps": 3535, "total_steps": 4671, "loss": 0.0273, "learning_rate": 1.6967780346066487e-06, "epoch": 2.270391779062299, "percentage": 75.68, "elapsed_time": "8:55:59", "remaining_time": "2:52:14"} +{"current_steps": 3536, "total_steps": 4671, "loss": 0.0138, "learning_rate": 1.6939733539425717e-06, "epoch": 2.271034039820167, "percentage": 75.7, "elapsed_time": "8:56:07", "remaining_time": "2:52:05"} +{"current_steps": 3537, "total_steps": 4671, "loss": 0.0273, "learning_rate": 1.6911705203652506e-06, "epoch": 2.2716763005780347, "percentage": 75.72, "elapsed_time": "8:56:18", "remaining_time": "2:51:56"} +{"current_steps": 3538, "total_steps": 4671, "loss": 0.0126, "learning_rate": 1.6883695354406387e-06, "epoch": 2.2723185613359025, "percentage": 75.74, "elapsed_time": "8:56:26", "remaining_time": "2:51:47"} +{"current_steps": 3539, "total_steps": 4671, "loss": 0.0355, "learning_rate": 1.6855704007336544e-06, "epoch": 2.2729608220937703, "percentage": 75.77, "elapsed_time": "8:56:36", "remaining_time": "2:51:38"} +{"current_steps": 3540, "total_steps": 4671, "loss": 0.029, "learning_rate": 1.6827731178081825e-06, "epoch": 2.2736030828516376, "percentage": 75.79, "elapsed_time": "8:56:45", "remaining_time": "2:51:29"} +{"current_steps": 3541, "total_steps": 4671, "loss": 0.0268, "learning_rate": 1.6799776882270707e-06, "epoch": 2.2742453436095054, "percentage": 75.81, "elapsed_time": "8:56:54", "remaining_time": "2:51:20"} +{"current_steps": 3542, "total_steps": 4671, "loss": 0.0172, "learning_rate": 1.6771841135521383e-06, "epoch": 2.274887604367373, "percentage": 75.83, "elapsed_time": "8:57:03", "remaining_time": "2:51:11"} +{"current_steps": 3543, "total_steps": 4671, "loss": 0.0123, "learning_rate": 1.6743923953441616e-06, "epoch": 2.275529865125241, "percentage": 75.85, "elapsed_time": "8:57:11", "remaining_time": "2:51:01"} +{"current_steps": 3544, "total_steps": 4671, "loss": 0.0196, "learning_rate": 1.6716025351628827e-06, "epoch": 2.2761721258831087, "percentage": 75.87, "elapsed_time": "8:57:20", "remaining_time": "2:50:52"} +{"current_steps": 3545, "total_steps": 4671, "loss": 0.0187, "learning_rate": 1.668814534567002e-06, "epoch": 2.276814386640976, "percentage": 75.89, "elapsed_time": "8:57:27", "remaining_time": "2:50:42"} +{"current_steps": 3546, "total_steps": 4671, "loss": 0.0328, "learning_rate": 1.6660283951141847e-06, "epoch": 2.277456647398844, "percentage": 75.92, "elapsed_time": "8:57:34", "remaining_time": "2:50:33"} +{"current_steps": 3547, "total_steps": 4671, "loss": 0.0099, "learning_rate": 1.663244118361056e-06, "epoch": 2.2780989081567116, "percentage": 75.94, "elapsed_time": "8:57:43", "remaining_time": "2:50:23"} +{"current_steps": 3548, "total_steps": 4671, "loss": 0.0211, "learning_rate": 1.6604617058631983e-06, "epoch": 2.2787411689145793, "percentage": 75.96, "elapsed_time": "8:57:50", "remaining_time": "2:50:14"} +{"current_steps": 3549, "total_steps": 4671, "loss": 0.0331, "learning_rate": 1.6576811591751545e-06, "epoch": 2.279383429672447, "percentage": 75.98, "elapsed_time": "8:57:58", "remaining_time": "2:50:04"} +{"current_steps": 3550, "total_steps": 4671, "loss": 0.0163, "learning_rate": 1.6549024798504236e-06, "epoch": 2.280025690430315, "percentage": 76.0, "elapsed_time": "8:58:07", "remaining_time": "2:49:55"} +{"current_steps": 3551, "total_steps": 4671, "loss": 0.024, "learning_rate": 1.6521256694414622e-06, "epoch": 2.280667951188182, "percentage": 76.02, "elapsed_time": "8:58:16", "remaining_time": "2:49:46"} +{"current_steps": 3552, "total_steps": 4671, "loss": 0.0257, "learning_rate": 1.6493507294996825e-06, "epoch": 2.28131021194605, "percentage": 76.04, "elapsed_time": "8:58:27", "remaining_time": "2:49:37"} +{"current_steps": 3553, "total_steps": 4671, "loss": 0.0221, "learning_rate": 1.646577661575451e-06, "epoch": 2.2819524727039178, "percentage": 76.07, "elapsed_time": "8:58:35", "remaining_time": "2:49:28"} +{"current_steps": 3554, "total_steps": 4671, "loss": 0.0159, "learning_rate": 1.6438064672180893e-06, "epoch": 2.2825947334617855, "percentage": 76.09, "elapsed_time": "8:58:44", "remaining_time": "2:49:19"} +{"current_steps": 3555, "total_steps": 4671, "loss": 0.0268, "learning_rate": 1.641037147975872e-06, "epoch": 2.2832369942196533, "percentage": 76.11, "elapsed_time": "8:58:54", "remaining_time": "2:49:10"} +{"current_steps": 3556, "total_steps": 4671, "loss": 0.0339, "learning_rate": 1.6382697053960251e-06, "epoch": 2.2838792549775206, "percentage": 76.13, "elapsed_time": "8:59:04", "remaining_time": "2:49:01"} +{"current_steps": 3557, "total_steps": 4671, "loss": 0.0236, "learning_rate": 1.6355041410247274e-06, "epoch": 2.2845215157353884, "percentage": 76.15, "elapsed_time": "8:59:14", "remaining_time": "2:48:52"} +{"current_steps": 3558, "total_steps": 4671, "loss": 0.0396, "learning_rate": 1.632740456407108e-06, "epoch": 2.285163776493256, "percentage": 76.17, "elapsed_time": "8:59:23", "remaining_time": "2:48:43"} +{"current_steps": 3559, "total_steps": 4671, "loss": 0.0286, "learning_rate": 1.6299786530872453e-06, "epoch": 2.285806037251124, "percentage": 76.19, "elapsed_time": "8:59:33", "remaining_time": "2:48:34"} +{"current_steps": 3560, "total_steps": 4671, "loss": 0.0363, "learning_rate": 1.627218732608169e-06, "epoch": 2.2864482980089917, "percentage": 76.21, "elapsed_time": "8:59:42", "remaining_time": "2:48:25"} +{"current_steps": 3561, "total_steps": 4671, "loss": 0.0211, "learning_rate": 1.6244606965118504e-06, "epoch": 2.2870905587668595, "percentage": 76.24, "elapsed_time": "8:59:51", "remaining_time": "2:48:16"} +{"current_steps": 3562, "total_steps": 4671, "loss": 0.0181, "learning_rate": 1.6217045463392128e-06, "epoch": 2.287732819524727, "percentage": 76.26, "elapsed_time": "8:59:59", "remaining_time": "2:48:07"} +{"current_steps": 3563, "total_steps": 4671, "loss": 0.0195, "learning_rate": 1.618950283630129e-06, "epoch": 2.2883750802825946, "percentage": 76.28, "elapsed_time": "9:00:09", "remaining_time": "2:47:58"} +{"current_steps": 3564, "total_steps": 4671, "loss": 0.029, "learning_rate": 1.616197909923412e-06, "epoch": 2.2890173410404624, "percentage": 76.3, "elapsed_time": "9:00:16", "remaining_time": "2:47:48"} +{"current_steps": 3565, "total_steps": 4671, "loss": 0.0298, "learning_rate": 1.6134474267568207e-06, "epoch": 2.28965960179833, "percentage": 76.32, "elapsed_time": "9:00:24", "remaining_time": "2:47:39"} +{"current_steps": 3566, "total_steps": 4671, "loss": 0.0175, "learning_rate": 1.6106988356670584e-06, "epoch": 2.290301862556198, "percentage": 76.34, "elapsed_time": "9:00:33", "remaining_time": "2:47:30"} +{"current_steps": 3567, "total_steps": 4671, "loss": 0.0211, "learning_rate": 1.6079521381897707e-06, "epoch": 2.2909441233140653, "percentage": 76.36, "elapsed_time": "9:00:44", "remaining_time": "2:47:21"} +{"current_steps": 3568, "total_steps": 4671, "loss": 0.0174, "learning_rate": 1.6052073358595472e-06, "epoch": 2.291586384071933, "percentage": 76.39, "elapsed_time": "9:00:52", "remaining_time": "2:47:12"} +{"current_steps": 3569, "total_steps": 4671, "loss": 0.0229, "learning_rate": 1.602464430209914e-06, "epoch": 2.292228644829801, "percentage": 76.41, "elapsed_time": "9:01:00", "remaining_time": "2:47:02"} +{"current_steps": 3570, "total_steps": 4671, "loss": 0.0321, "learning_rate": 1.5997234227733417e-06, "epoch": 2.2928709055876686, "percentage": 76.43, "elapsed_time": "9:01:11", "remaining_time": "2:46:54"} +{"current_steps": 3571, "total_steps": 4671, "loss": 0.0103, "learning_rate": 1.5969843150812392e-06, "epoch": 2.2935131663455364, "percentage": 76.45, "elapsed_time": "9:01:21", "remaining_time": "2:46:45"} +{"current_steps": 3572, "total_steps": 4671, "loss": 0.0133, "learning_rate": 1.5942471086639543e-06, "epoch": 2.294155427103404, "percentage": 76.47, "elapsed_time": "9:01:30", "remaining_time": "2:46:36"} +{"current_steps": 3573, "total_steps": 4671, "loss": 0.024, "learning_rate": 1.591511805050772e-06, "epoch": 2.294797687861272, "percentage": 76.49, "elapsed_time": "9:01:40", "remaining_time": "2:46:27"} +{"current_steps": 3574, "total_steps": 4671, "loss": 0.0424, "learning_rate": 1.588778405769915e-06, "epoch": 2.2954399486191392, "percentage": 76.51, "elapsed_time": "9:01:50", "remaining_time": "2:46:18"} +{"current_steps": 3575, "total_steps": 4671, "loss": 0.0366, "learning_rate": 1.5860469123485389e-06, "epoch": 2.296082209377007, "percentage": 76.54, "elapsed_time": "9:01:59", "remaining_time": "2:46:09"} +{"current_steps": 3576, "total_steps": 4671, "loss": 0.0219, "learning_rate": 1.5833173263127427e-06, "epoch": 2.296724470134875, "percentage": 76.56, "elapsed_time": "9:02:10", "remaining_time": "2:46:00"} +{"current_steps": 3577, "total_steps": 4671, "loss": 0.02, "learning_rate": 1.580589649187549e-06, "epoch": 2.2973667308927426, "percentage": 76.58, "elapsed_time": "9:02:20", "remaining_time": "2:45:52"} +{"current_steps": 3578, "total_steps": 4671, "loss": 0.0312, "learning_rate": 1.5778638824969206e-06, "epoch": 2.29800899165061, "percentage": 76.6, "elapsed_time": "9:02:29", "remaining_time": "2:45:43"} +{"current_steps": 3579, "total_steps": 4671, "loss": 0.0313, "learning_rate": 1.5751400277637514e-06, "epoch": 2.2986512524084777, "percentage": 76.62, "elapsed_time": "9:02:39", "remaining_time": "2:45:34"} +{"current_steps": 3580, "total_steps": 4671, "loss": 0.019, "learning_rate": 1.5724180865098665e-06, "epoch": 2.2992935131663454, "percentage": 76.64, "elapsed_time": "9:02:46", "remaining_time": "2:45:24"} +{"current_steps": 3581, "total_steps": 4671, "loss": 0.0126, "learning_rate": 1.569698060256023e-06, "epoch": 2.2999357739242132, "percentage": 76.66, "elapsed_time": "9:02:53", "remaining_time": "2:45:14"} +{"current_steps": 3582, "total_steps": 4671, "loss": 0.0584, "learning_rate": 1.5669799505219069e-06, "epoch": 2.300578034682081, "percentage": 76.69, "elapsed_time": "9:03:04", "remaining_time": "2:45:06"} +{"current_steps": 3583, "total_steps": 4671, "loss": 0.0311, "learning_rate": 1.5642637588261367e-06, "epoch": 2.3012202954399488, "percentage": 76.71, "elapsed_time": "9:03:13", "remaining_time": "2:44:57"} +{"current_steps": 3584, "total_steps": 4671, "loss": 0.032, "learning_rate": 1.5615494866862512e-06, "epoch": 2.3018625561978165, "percentage": 76.73, "elapsed_time": "9:03:23", "remaining_time": "2:44:48"} +{"current_steps": 3585, "total_steps": 4671, "loss": 0.0205, "learning_rate": 1.558837135618727e-06, "epoch": 2.302504816955684, "percentage": 76.75, "elapsed_time": "9:03:31", "remaining_time": "2:44:38"} +{"current_steps": 3586, "total_steps": 4671, "loss": 0.023, "learning_rate": 1.5561267071389606e-06, "epoch": 2.3031470777135516, "percentage": 76.77, "elapsed_time": "9:03:41", "remaining_time": "2:44:30"} +{"current_steps": 3587, "total_steps": 4671, "loss": 0.0471, "learning_rate": 1.5534182027612776e-06, "epoch": 2.3037893384714194, "percentage": 76.79, "elapsed_time": "9:03:51", "remaining_time": "2:44:21"} +{"current_steps": 3588, "total_steps": 4671, "loss": 0.0156, "learning_rate": 1.5507116239989262e-06, "epoch": 2.304431599229287, "percentage": 76.81, "elapsed_time": "9:04:01", "remaining_time": "2:44:12"} +{"current_steps": 3589, "total_steps": 4671, "loss": 0.0166, "learning_rate": 1.5480069723640795e-06, "epoch": 2.305073859987155, "percentage": 76.84, "elapsed_time": "9:04:09", "remaining_time": "2:44:03"} +{"current_steps": 3590, "total_steps": 4671, "loss": 0.0271, "learning_rate": 1.5453042493678356e-06, "epoch": 2.3057161207450223, "percentage": 76.86, "elapsed_time": "9:04:19", "remaining_time": "2:43:54"} +{"current_steps": 3591, "total_steps": 4671, "loss": 0.0132, "learning_rate": 1.542603456520214e-06, "epoch": 2.30635838150289, "percentage": 76.88, "elapsed_time": "9:04:26", "remaining_time": "2:43:44"} +{"current_steps": 3592, "total_steps": 4671, "loss": 0.0233, "learning_rate": 1.5399045953301539e-06, "epoch": 2.307000642260758, "percentage": 76.9, "elapsed_time": "9:04:34", "remaining_time": "2:43:35"} +{"current_steps": 3593, "total_steps": 4671, "loss": 0.0367, "learning_rate": 1.537207667305517e-06, "epoch": 2.3076429030186256, "percentage": 76.92, "elapsed_time": "9:04:43", "remaining_time": "2:43:26"} +{"current_steps": 3594, "total_steps": 4671, "loss": 0.0238, "learning_rate": 1.5345126739530857e-06, "epoch": 2.3082851637764934, "percentage": 76.94, "elapsed_time": "9:04:53", "remaining_time": "2:43:17"} +{"current_steps": 3595, "total_steps": 4671, "loss": 0.0206, "learning_rate": 1.531819616778561e-06, "epoch": 2.308927424534361, "percentage": 76.96, "elapsed_time": "9:05:01", "remaining_time": "2:43:07"} +{"current_steps": 3596, "total_steps": 4671, "loss": 0.02, "learning_rate": 1.529128497286559e-06, "epoch": 2.3095696852922285, "percentage": 76.99, "elapsed_time": "9:05:10", "remaining_time": "2:42:58"} +{"current_steps": 3597, "total_steps": 4671, "loss": 0.0194, "learning_rate": 1.5264393169806202e-06, "epoch": 2.3102119460500963, "percentage": 77.01, "elapsed_time": "9:05:18", "remaining_time": "2:42:49"} +{"current_steps": 3598, "total_steps": 4671, "loss": 0.058, "learning_rate": 1.523752077363196e-06, "epoch": 2.310854206807964, "percentage": 77.03, "elapsed_time": "9:05:27", "remaining_time": "2:42:40"} +{"current_steps": 3599, "total_steps": 4671, "loss": 0.0169, "learning_rate": 1.521066779935656e-06, "epoch": 2.311496467565832, "percentage": 77.05, "elapsed_time": "9:05:35", "remaining_time": "2:42:30"} +{"current_steps": 3600, "total_steps": 4671, "loss": 0.0264, "learning_rate": 1.5183834261982804e-06, "epoch": 2.3121387283236996, "percentage": 77.07, "elapsed_time": "9:05:45", "remaining_time": "2:42:21"} +{"current_steps": 3601, "total_steps": 4671, "loss": 0.022, "learning_rate": 1.5157020176502695e-06, "epoch": 2.312780989081567, "percentage": 77.09, "elapsed_time": "9:05:53", "remaining_time": "2:42:12"} +{"current_steps": 3602, "total_steps": 4671, "loss": 0.0267, "learning_rate": 1.5130225557897332e-06, "epoch": 2.3134232498394347, "percentage": 77.11, "elapsed_time": "9:06:01", "remaining_time": "2:42:03"} +{"current_steps": 3603, "total_steps": 4671, "loss": 0.0185, "learning_rate": 1.510345042113695e-06, "epoch": 2.3140655105973025, "percentage": 77.14, "elapsed_time": "9:06:09", "remaining_time": "2:41:53"} +{"current_steps": 3604, "total_steps": 4671, "loss": 0.0148, "learning_rate": 1.5076694781180895e-06, "epoch": 2.3147077713551703, "percentage": 77.16, "elapsed_time": "9:06:19", "remaining_time": "2:41:44"} +{"current_steps": 3605, "total_steps": 4671, "loss": 0.0403, "learning_rate": 1.504995865297762e-06, "epoch": 2.315350032113038, "percentage": 77.18, "elapsed_time": "9:06:30", "remaining_time": "2:41:36"} +{"current_steps": 3606, "total_steps": 4671, "loss": 0.0192, "learning_rate": 1.5023242051464677e-06, "epoch": 2.315992292870906, "percentage": 77.2, "elapsed_time": "9:06:38", "remaining_time": "2:41:26"} +{"current_steps": 3607, "total_steps": 4671, "loss": 0.0244, "learning_rate": 1.4996544991568718e-06, "epoch": 2.316634553628773, "percentage": 77.22, "elapsed_time": "9:06:48", "remaining_time": "2:41:18"} +{"current_steps": 3608, "total_steps": 4671, "loss": 0.0359, "learning_rate": 1.4969867488205458e-06, "epoch": 2.317276814386641, "percentage": 77.24, "elapsed_time": "9:06:56", "remaining_time": "2:41:08"} +{"current_steps": 3609, "total_steps": 4671, "loss": 0.0185, "learning_rate": 1.4943209556279698e-06, "epoch": 2.3179190751445087, "percentage": 77.26, "elapsed_time": "9:07:05", "remaining_time": "2:40:59"} +{"current_steps": 3610, "total_steps": 4671, "loss": 0.0135, "learning_rate": 1.491657121068531e-06, "epoch": 2.3185613359023765, "percentage": 77.29, "elapsed_time": "9:07:13", "remaining_time": "2:40:49"} +{"current_steps": 3611, "total_steps": 4671, "loss": 0.0134, "learning_rate": 1.4889952466305207e-06, "epoch": 2.3192035966602442, "percentage": 77.31, "elapsed_time": "9:07:21", "remaining_time": "2:40:40"} +{"current_steps": 3612, "total_steps": 4671, "loss": 0.0203, "learning_rate": 1.4863353338011367e-06, "epoch": 2.3198458574181116, "percentage": 77.33, "elapsed_time": "9:07:28", "remaining_time": "2:40:30"} +{"current_steps": 3613, "total_steps": 4671, "loss": 0.0201, "learning_rate": 1.4836773840664798e-06, "epoch": 2.3204881181759793, "percentage": 77.35, "elapsed_time": "9:07:36", "remaining_time": "2:40:21"} +{"current_steps": 3614, "total_steps": 4671, "loss": 0.0168, "learning_rate": 1.4810213989115536e-06, "epoch": 2.321130378933847, "percentage": 77.37, "elapsed_time": "9:07:44", "remaining_time": "2:40:12"} +{"current_steps": 3615, "total_steps": 4671, "loss": 0.0159, "learning_rate": 1.4783673798202674e-06, "epoch": 2.321772639691715, "percentage": 77.39, "elapsed_time": "9:07:53", "remaining_time": "2:40:02"} +{"current_steps": 3616, "total_steps": 4671, "loss": 0.0304, "learning_rate": 1.4757153282754255e-06, "epoch": 2.3224149004495827, "percentage": 77.41, "elapsed_time": "9:08:05", "remaining_time": "2:39:54"} +{"current_steps": 3617, "total_steps": 4671, "loss": 0.0227, "learning_rate": 1.4730652457587386e-06, "epoch": 2.3230571612074504, "percentage": 77.44, "elapsed_time": "9:08:14", "remaining_time": "2:39:45"} +{"current_steps": 3618, "total_steps": 4671, "loss": 0.0151, "learning_rate": 1.4704171337508144e-06, "epoch": 2.3236994219653178, "percentage": 77.46, "elapsed_time": "9:08:23", "remaining_time": "2:39:36"} +{"current_steps": 3619, "total_steps": 4671, "loss": 0.0473, "learning_rate": 1.4677709937311636e-06, "epoch": 2.3243416827231855, "percentage": 77.48, "elapsed_time": "9:08:33", "remaining_time": "2:39:27"} +{"current_steps": 3620, "total_steps": 4671, "loss": 0.016, "learning_rate": 1.465126827178191e-06, "epoch": 2.3249839434810533, "percentage": 77.5, "elapsed_time": "9:08:41", "remaining_time": "2:39:18"} +{"current_steps": 3621, "total_steps": 4671, "loss": 0.019, "learning_rate": 1.4624846355692002e-06, "epoch": 2.325626204238921, "percentage": 77.52, "elapsed_time": "9:08:52", "remaining_time": "2:39:09"} +{"current_steps": 3622, "total_steps": 4671, "loss": 0.0348, "learning_rate": 1.4598444203803908e-06, "epoch": 2.326268464996789, "percentage": 77.54, "elapsed_time": "9:09:00", "remaining_time": "2:39:00"} +{"current_steps": 3623, "total_steps": 4671, "loss": 0.0274, "learning_rate": 1.4572061830868612e-06, "epoch": 2.326910725754656, "percentage": 77.56, "elapsed_time": "9:09:09", "remaining_time": "2:38:50"} +{"current_steps": 3624, "total_steps": 4671, "loss": 0.028, "learning_rate": 1.4545699251625982e-06, "epoch": 2.327552986512524, "percentage": 77.59, "elapsed_time": "9:09:16", "remaining_time": "2:38:41"} +{"current_steps": 3625, "total_steps": 4671, "loss": 0.0226, "learning_rate": 1.451935648080489e-06, "epoch": 2.3281952472703917, "percentage": 77.61, "elapsed_time": "9:09:23", "remaining_time": "2:38:31"} +{"current_steps": 3626, "total_steps": 4671, "loss": 0.0327, "learning_rate": 1.4493033533123125e-06, "epoch": 2.3288375080282595, "percentage": 77.63, "elapsed_time": "9:09:30", "remaining_time": "2:38:22"} +{"current_steps": 3627, "total_steps": 4671, "loss": 0.021, "learning_rate": 1.4466730423287385e-06, "epoch": 2.3294797687861273, "percentage": 77.65, "elapsed_time": "9:09:38", "remaining_time": "2:38:12"} +{"current_steps": 3628, "total_steps": 4671, "loss": 0.0258, "learning_rate": 1.4440447165993292e-06, "epoch": 2.330122029543995, "percentage": 77.67, "elapsed_time": "9:09:45", "remaining_time": "2:38:02"} +{"current_steps": 3629, "total_steps": 4671, "loss": 0.0337, "learning_rate": 1.4414183775925389e-06, "epoch": 2.3307642903018624, "percentage": 77.69, "elapsed_time": "9:09:55", "remaining_time": "2:37:54"} +{"current_steps": 3630, "total_steps": 4671, "loss": 0.0318, "learning_rate": 1.4387940267757084e-06, "epoch": 2.33140655105973, "percentage": 77.71, "elapsed_time": "9:10:05", "remaining_time": "2:37:45"} +{"current_steps": 3631, "total_steps": 4671, "loss": 0.038, "learning_rate": 1.4361716656150759e-06, "epoch": 2.332048811817598, "percentage": 77.73, "elapsed_time": "9:10:14", "remaining_time": "2:37:36"} +{"current_steps": 3632, "total_steps": 4671, "loss": 0.0122, "learning_rate": 1.4335512955757568e-06, "epoch": 2.3326910725754657, "percentage": 77.76, "elapsed_time": "9:10:22", "remaining_time": "2:37:26"} +{"current_steps": 3633, "total_steps": 4671, "loss": 0.0132, "learning_rate": 1.4309329181217607e-06, "epoch": 2.3333333333333335, "percentage": 77.78, "elapsed_time": "9:10:31", "remaining_time": "2:37:17"} +{"current_steps": 3634, "total_steps": 4671, "loss": 0.02, "learning_rate": 1.4283165347159838e-06, "epoch": 2.333975594091201, "percentage": 77.8, "elapsed_time": "9:10:38", "remaining_time": "2:37:08"} +{"current_steps": 3635, "total_steps": 4671, "loss": 0.0234, "learning_rate": 1.4257021468202065e-06, "epoch": 2.3346178548490686, "percentage": 77.82, "elapsed_time": "9:10:49", "remaining_time": "2:36:59"} +{"current_steps": 3636, "total_steps": 4671, "loss": 0.0267, "learning_rate": 1.423089755895095e-06, "epoch": 2.3352601156069364, "percentage": 77.84, "elapsed_time": "9:10:58", "remaining_time": "2:36:50"} +{"current_steps": 3637, "total_steps": 4671, "loss": 0.041, "learning_rate": 1.4204793634002006e-06, "epoch": 2.335902376364804, "percentage": 77.86, "elapsed_time": "9:11:08", "remaining_time": "2:36:41"} +{"current_steps": 3638, "total_steps": 4671, "loss": 0.0266, "learning_rate": 1.4178709707939576e-06, "epoch": 2.336544637122672, "percentage": 77.88, "elapsed_time": "9:11:17", "remaining_time": "2:36:32"} +{"current_steps": 3639, "total_steps": 4671, "loss": 0.022, "learning_rate": 1.4152645795336777e-06, "epoch": 2.3371868978805397, "percentage": 77.91, "elapsed_time": "9:11:25", "remaining_time": "2:36:22"} +{"current_steps": 3640, "total_steps": 4671, "loss": 0.0289, "learning_rate": 1.4126601910755655e-06, "epoch": 2.337829158638407, "percentage": 77.93, "elapsed_time": "9:11:35", "remaining_time": "2:36:14"} +{"current_steps": 3641, "total_steps": 4671, "loss": 0.0206, "learning_rate": 1.4100578068746974e-06, "epoch": 2.338471419396275, "percentage": 77.95, "elapsed_time": "9:11:44", "remaining_time": "2:36:04"} +{"current_steps": 3642, "total_steps": 4671, "loss": 0.0121, "learning_rate": 1.4074574283850339e-06, "epoch": 2.3391136801541426, "percentage": 77.97, "elapsed_time": "9:11:51", "remaining_time": "2:35:55"} +{"current_steps": 3643, "total_steps": 4671, "loss": 0.0217, "learning_rate": 1.404859057059414e-06, "epoch": 2.3397559409120103, "percentage": 77.99, "elapsed_time": "9:12:00", "remaining_time": "2:35:46"} +{"current_steps": 3644, "total_steps": 4671, "loss": 0.0165, "learning_rate": 1.4022626943495553e-06, "epoch": 2.340398201669878, "percentage": 78.01, "elapsed_time": "9:12:08", "remaining_time": "2:35:36"} +{"current_steps": 3645, "total_steps": 4671, "loss": 0.0197, "learning_rate": 1.399668341706053e-06, "epoch": 2.3410404624277454, "percentage": 78.03, "elapsed_time": "9:12:20", "remaining_time": "2:35:28"} +{"current_steps": 3646, "total_steps": 4671, "loss": 0.0275, "learning_rate": 1.3970760005783813e-06, "epoch": 2.341682723185613, "percentage": 78.06, "elapsed_time": "9:12:28", "remaining_time": "2:35:19"} +{"current_steps": 3647, "total_steps": 4671, "loss": 0.0245, "learning_rate": 1.3944856724148853e-06, "epoch": 2.342324983943481, "percentage": 78.08, "elapsed_time": "9:12:38", "remaining_time": "2:35:10"} +{"current_steps": 3648, "total_steps": 4671, "loss": 0.0187, "learning_rate": 1.391897358662791e-06, "epoch": 2.3429672447013488, "percentage": 78.1, "elapsed_time": "9:12:47", "remaining_time": "2:35:01"} +{"current_steps": 3649, "total_steps": 4671, "loss": 0.0256, "learning_rate": 1.389311060768197e-06, "epoch": 2.3436095054592165, "percentage": 78.12, "elapsed_time": "9:12:56", "remaining_time": "2:34:51"} +{"current_steps": 3650, "total_steps": 4671, "loss": 0.0157, "learning_rate": 1.3867267801760748e-06, "epoch": 2.3442517662170843, "percentage": 78.14, "elapsed_time": "9:13:06", "remaining_time": "2:34:43"} +{"current_steps": 3651, "total_steps": 4671, "loss": 0.0405, "learning_rate": 1.3841445183302682e-06, "epoch": 2.3448940269749516, "percentage": 78.16, "elapsed_time": "9:13:15", "remaining_time": "2:34:34"} +{"current_steps": 3652, "total_steps": 4671, "loss": 0.0342, "learning_rate": 1.3815642766734978e-06, "epoch": 2.3455362877328194, "percentage": 78.18, "elapsed_time": "9:13:25", "remaining_time": "2:34:25"} +{"current_steps": 3653, "total_steps": 4671, "loss": 0.0406, "learning_rate": 1.37898605664735e-06, "epoch": 2.346178548490687, "percentage": 78.21, "elapsed_time": "9:13:34", "remaining_time": "2:34:15"} +{"current_steps": 3654, "total_steps": 4671, "loss": 0.0261, "learning_rate": 1.3764098596922865e-06, "epoch": 2.346820809248555, "percentage": 78.23, "elapsed_time": "9:13:43", "remaining_time": "2:34:06"} +{"current_steps": 3655, "total_steps": 4671, "loss": 0.0248, "learning_rate": 1.3738356872476322e-06, "epoch": 2.3474630700064227, "percentage": 78.25, "elapsed_time": "9:13:51", "remaining_time": "2:33:57"} +{"current_steps": 3656, "total_steps": 4671, "loss": 0.0222, "learning_rate": 1.371263540751586e-06, "epoch": 2.34810533076429, "percentage": 78.27, "elapsed_time": "9:14:01", "remaining_time": "2:33:48"} +{"current_steps": 3657, "total_steps": 4671, "loss": 0.0411, "learning_rate": 1.368693421641215e-06, "epoch": 2.348747591522158, "percentage": 78.29, "elapsed_time": "9:14:10", "remaining_time": "2:33:39"} +{"current_steps": 3658, "total_steps": 4671, "loss": 0.021, "learning_rate": 1.3661253313524509e-06, "epoch": 2.3493898522800256, "percentage": 78.31, "elapsed_time": "9:14:17", "remaining_time": "2:33:29"} +{"current_steps": 3659, "total_steps": 4671, "loss": 0.013, "learning_rate": 1.363559271320094e-06, "epoch": 2.3500321130378934, "percentage": 78.33, "elapsed_time": "9:14:28", "remaining_time": "2:33:21"} +{"current_steps": 3660, "total_steps": 4671, "loss": 0.0219, "learning_rate": 1.3609952429778094e-06, "epoch": 2.350674373795761, "percentage": 78.36, "elapsed_time": "9:14:40", "remaining_time": "2:33:13"} +{"current_steps": 3661, "total_steps": 4671, "loss": 0.0237, "learning_rate": 1.3584332477581269e-06, "epoch": 2.351316634553629, "percentage": 78.38, "elapsed_time": "9:14:47", "remaining_time": "2:33:03"} +{"current_steps": 3662, "total_steps": 4671, "loss": 0.0268, "learning_rate": 1.3558732870924414e-06, "epoch": 2.3519588953114967, "percentage": 78.4, "elapsed_time": "9:14:55", "remaining_time": "2:32:54"} +{"current_steps": 3663, "total_steps": 4671, "loss": 0.0155, "learning_rate": 1.3533153624110097e-06, "epoch": 2.352601156069364, "percentage": 78.42, "elapsed_time": "9:15:04", "remaining_time": "2:32:44"} +{"current_steps": 3664, "total_steps": 4671, "loss": 0.0219, "learning_rate": 1.3507594751429515e-06, "epoch": 2.353243416827232, "percentage": 78.44, "elapsed_time": "9:15:13", "remaining_time": "2:32:35"} +{"current_steps": 3665, "total_steps": 4671, "loss": 0.0232, "learning_rate": 1.3482056267162497e-06, "epoch": 2.3538856775850996, "percentage": 78.46, "elapsed_time": "9:15:21", "remaining_time": "2:32:26"} +{"current_steps": 3666, "total_steps": 4671, "loss": 0.0166, "learning_rate": 1.3456538185577467e-06, "epoch": 2.3545279383429674, "percentage": 78.48, "elapsed_time": "9:15:31", "remaining_time": "2:32:17"} +{"current_steps": 3667, "total_steps": 4671, "loss": 0.024, "learning_rate": 1.3431040520931438e-06, "epoch": 2.3551701991008347, "percentage": 78.51, "elapsed_time": "9:15:40", "remaining_time": "2:32:08"} +{"current_steps": 3668, "total_steps": 4671, "loss": 0.0294, "learning_rate": 1.3405563287470046e-06, "epoch": 2.3558124598587025, "percentage": 78.53, "elapsed_time": "9:15:47", "remaining_time": "2:31:58"} +{"current_steps": 3669, "total_steps": 4671, "loss": 0.0282, "learning_rate": 1.3380106499427486e-06, "epoch": 2.3564547206165702, "percentage": 78.55, "elapsed_time": "9:15:56", "remaining_time": "2:31:49"} +{"current_steps": 3670, "total_steps": 4671, "loss": 0.0271, "learning_rate": 1.3354670171026562e-06, "epoch": 2.357096981374438, "percentage": 78.57, "elapsed_time": "9:16:05", "remaining_time": "2:31:40"} +{"current_steps": 3671, "total_steps": 4671, "loss": 0.0282, "learning_rate": 1.332925431647859e-06, "epoch": 2.357739242132306, "percentage": 78.59, "elapsed_time": "9:16:13", "remaining_time": "2:31:31"} +{"current_steps": 3672, "total_steps": 4671, "loss": 0.0105, "learning_rate": 1.3303858949983495e-06, "epoch": 2.3583815028901736, "percentage": 78.61, "elapsed_time": "9:16:22", "remaining_time": "2:31:21"} +{"current_steps": 3673, "total_steps": 4671, "loss": 0.0199, "learning_rate": 1.3278484085729736e-06, "epoch": 2.3590237636480413, "percentage": 78.63, "elapsed_time": "9:16:32", "remaining_time": "2:31:13"} +{"current_steps": 3674, "total_steps": 4671, "loss": 0.0176, "learning_rate": 1.325312973789435e-06, "epoch": 2.3596660244059087, "percentage": 78.66, "elapsed_time": "9:16:41", "remaining_time": "2:31:04"} +{"current_steps": 3675, "total_steps": 4671, "loss": 0.034, "learning_rate": 1.3227795920642861e-06, "epoch": 2.3603082851637764, "percentage": 78.68, "elapsed_time": "9:16:53", "remaining_time": "2:30:55"} +{"current_steps": 3676, "total_steps": 4671, "loss": 0.0301, "learning_rate": 1.320248264812936e-06, "epoch": 2.360950545921644, "percentage": 78.7, "elapsed_time": "9:17:04", "remaining_time": "2:30:47"} +{"current_steps": 3677, "total_steps": 4671, "loss": 0.0133, "learning_rate": 1.3177189934496443e-06, "epoch": 2.361592806679512, "percentage": 78.72, "elapsed_time": "9:17:11", "remaining_time": "2:30:37"} +{"current_steps": 3678, "total_steps": 4671, "loss": 0.027, "learning_rate": 1.3151917793875236e-06, "epoch": 2.3622350674373798, "percentage": 78.74, "elapsed_time": "9:17:22", "remaining_time": "2:30:28"} +{"current_steps": 3679, "total_steps": 4671, "loss": 0.0367, "learning_rate": 1.3126666240385328e-06, "epoch": 2.362877328195247, "percentage": 78.76, "elapsed_time": "9:17:32", "remaining_time": "2:30:20"} +{"current_steps": 3680, "total_steps": 4671, "loss": 0.0321, "learning_rate": 1.310143528813485e-06, "epoch": 2.363519588953115, "percentage": 78.78, "elapsed_time": "9:17:39", "remaining_time": "2:30:10"} +{"current_steps": 3681, "total_steps": 4671, "loss": 0.0274, "learning_rate": 1.3076224951220413e-06, "epoch": 2.3641618497109826, "percentage": 78.81, "elapsed_time": "9:17:50", "remaining_time": "2:30:01"} +{"current_steps": 3682, "total_steps": 4671, "loss": 0.0209, "learning_rate": 1.30510352437271e-06, "epoch": 2.3648041104688504, "percentage": 78.83, "elapsed_time": "9:18:00", "remaining_time": "2:29:52"} +{"current_steps": 3683, "total_steps": 4671, "loss": 0.0161, "learning_rate": 1.3025866179728481e-06, "epoch": 2.365446371226718, "percentage": 78.85, "elapsed_time": "9:18:08", "remaining_time": "2:29:43"} +{"current_steps": 3684, "total_steps": 4671, "loss": 0.0395, "learning_rate": 1.3000717773286582e-06, "epoch": 2.366088631984586, "percentage": 78.87, "elapsed_time": "9:18:17", "remaining_time": "2:29:34"} +{"current_steps": 3685, "total_steps": 4671, "loss": 0.0169, "learning_rate": 1.2975590038451874e-06, "epoch": 2.3667308927424533, "percentage": 78.89, "elapsed_time": "9:18:27", "remaining_time": "2:29:25"} +{"current_steps": 3686, "total_steps": 4671, "loss": 0.0506, "learning_rate": 1.295048298926334e-06, "epoch": 2.367373153500321, "percentage": 78.91, "elapsed_time": "9:18:37", "remaining_time": "2:29:16"} +{"current_steps": 3687, "total_steps": 4671, "loss": 0.031, "learning_rate": 1.2925396639748321e-06, "epoch": 2.368015414258189, "percentage": 78.93, "elapsed_time": "9:18:46", "remaining_time": "2:29:07"} +{"current_steps": 3688, "total_steps": 4671, "loss": 0.0232, "learning_rate": 1.2900331003922656e-06, "epoch": 2.3686576750160566, "percentage": 78.96, "elapsed_time": "9:18:56", "remaining_time": "2:28:58"} +{"current_steps": 3689, "total_steps": 4671, "loss": 0.0472, "learning_rate": 1.2875286095790574e-06, "epoch": 2.3692999357739244, "percentage": 78.98, "elapsed_time": "9:19:03", "remaining_time": "2:28:49"} +{"current_steps": 3690, "total_steps": 4671, "loss": 0.0136, "learning_rate": 1.2850261929344748e-06, "epoch": 2.3699421965317917, "percentage": 79.0, "elapsed_time": "9:19:12", "remaining_time": "2:28:39"} +{"current_steps": 3691, "total_steps": 4671, "loss": 0.0179, "learning_rate": 1.2825258518566246e-06, "epoch": 2.3705844572896595, "percentage": 79.02, "elapsed_time": "9:19:20", "remaining_time": "2:28:30"} +{"current_steps": 3692, "total_steps": 4671, "loss": 0.0247, "learning_rate": 1.2800275877424555e-06, "epoch": 2.3712267180475273, "percentage": 79.04, "elapsed_time": "9:19:28", "remaining_time": "2:28:21"} +{"current_steps": 3693, "total_steps": 4671, "loss": 0.0198, "learning_rate": 1.277531401987756e-06, "epoch": 2.371868978805395, "percentage": 79.06, "elapsed_time": "9:19:39", "remaining_time": "2:28:12"} +{"current_steps": 3694, "total_steps": 4671, "loss": 0.0415, "learning_rate": 1.2750372959871482e-06, "epoch": 2.372511239563263, "percentage": 79.08, "elapsed_time": "9:19:48", "remaining_time": "2:28:03"} +{"current_steps": 3695, "total_steps": 4671, "loss": 0.0207, "learning_rate": 1.2725452711341002e-06, "epoch": 2.3731535003211306, "percentage": 79.11, "elapsed_time": "9:19:56", "remaining_time": "2:27:54"} +{"current_steps": 3696, "total_steps": 4671, "loss": 0.0329, "learning_rate": 1.2700553288209129e-06, "epoch": 2.373795761078998, "percentage": 79.13, "elapsed_time": "9:20:03", "remaining_time": "2:27:44"} +{"current_steps": 3697, "total_steps": 4671, "loss": 0.0311, "learning_rate": 1.2675674704387242e-06, "epoch": 2.3744380218368657, "percentage": 79.15, "elapsed_time": "9:20:13", "remaining_time": "2:27:35"} +{"current_steps": 3698, "total_steps": 4671, "loss": 0.0269, "learning_rate": 1.265081697377507e-06, "epoch": 2.3750802825947335, "percentage": 79.17, "elapsed_time": "9:20:24", "remaining_time": "2:27:27"} +{"current_steps": 3699, "total_steps": 4671, "loss": 0.0337, "learning_rate": 1.2625980110260711e-06, "epoch": 2.3757225433526012, "percentage": 79.19, "elapsed_time": "9:20:33", "remaining_time": "2:27:17"} +{"current_steps": 3700, "total_steps": 4671, "loss": 0.0257, "learning_rate": 1.260116412772059e-06, "epoch": 2.376364804110469, "percentage": 79.21, "elapsed_time": "9:20:42", "remaining_time": "2:27:08"} +{"current_steps": 3701, "total_steps": 4671, "loss": 0.0233, "learning_rate": 1.2576369040019483e-06, "epoch": 2.3770070648683364, "percentage": 79.23, "elapsed_time": "9:20:49", "remaining_time": "2:26:59"} +{"current_steps": 3702, "total_steps": 4671, "loss": 0.0145, "learning_rate": 1.2551594861010441e-06, "epoch": 2.377649325626204, "percentage": 79.25, "elapsed_time": "9:20:58", "remaining_time": "2:26:50"} +{"current_steps": 3703, "total_steps": 4671, "loss": 0.0085, "learning_rate": 1.25268416045349e-06, "epoch": 2.378291586384072, "percentage": 79.28, "elapsed_time": "9:21:06", "remaining_time": "2:26:40"} +{"current_steps": 3704, "total_steps": 4671, "loss": 0.0509, "learning_rate": 1.2502109284422564e-06, "epoch": 2.3789338471419397, "percentage": 79.3, "elapsed_time": "9:21:14", "remaining_time": "2:26:31"} +{"current_steps": 3705, "total_steps": 4671, "loss": 0.0145, "learning_rate": 1.2477397914491462e-06, "epoch": 2.3795761078998074, "percentage": 79.32, "elapsed_time": "9:21:22", "remaining_time": "2:26:22"} +{"current_steps": 3706, "total_steps": 4671, "loss": 0.0317, "learning_rate": 1.24527075085479e-06, "epoch": 2.380218368657675, "percentage": 79.34, "elapsed_time": "9:21:31", "remaining_time": "2:26:12"} +{"current_steps": 3707, "total_steps": 4671, "loss": 0.0096, "learning_rate": 1.2428038080386474e-06, "epoch": 2.3808606294155426, "percentage": 79.36, "elapsed_time": "9:21:39", "remaining_time": "2:26:03"} +{"current_steps": 3708, "total_steps": 4671, "loss": 0.0213, "learning_rate": 1.2403389643790086e-06, "epoch": 2.3815028901734103, "percentage": 79.38, "elapsed_time": "9:21:48", "remaining_time": "2:25:54"} +{"current_steps": 3709, "total_steps": 4671, "loss": 0.0197, "learning_rate": 1.2378762212529893e-06, "epoch": 2.382145150931278, "percentage": 79.4, "elapsed_time": "9:21:56", "remaining_time": "2:25:45"} +{"current_steps": 3710, "total_steps": 4671, "loss": 0.022, "learning_rate": 1.2354155800365292e-06, "epoch": 2.382787411689146, "percentage": 79.43, "elapsed_time": "9:22:05", "remaining_time": "2:25:35"} +{"current_steps": 3711, "total_steps": 4671, "loss": 0.0274, "learning_rate": 1.2329570421043957e-06, "epoch": 2.3834296724470136, "percentage": 79.45, "elapsed_time": "9:22:14", "remaining_time": "2:25:26"} +{"current_steps": 3712, "total_steps": 4671, "loss": 0.0137, "learning_rate": 1.2305006088301825e-06, "epoch": 2.384071933204881, "percentage": 79.47, "elapsed_time": "9:22:24", "remaining_time": "2:25:17"} +{"current_steps": 3713, "total_steps": 4671, "loss": 0.0583, "learning_rate": 1.2280462815863048e-06, "epoch": 2.3847141939627488, "percentage": 79.49, "elapsed_time": "9:22:35", "remaining_time": "2:25:09"} +{"current_steps": 3714, "total_steps": 4671, "loss": 0.0262, "learning_rate": 1.2255940617440038e-06, "epoch": 2.3853564547206165, "percentage": 79.51, "elapsed_time": "9:22:44", "remaining_time": "2:25:00"} +{"current_steps": 3715, "total_steps": 4671, "loss": 0.0376, "learning_rate": 1.2231439506733412e-06, "epoch": 2.3859987154784843, "percentage": 79.53, "elapsed_time": "9:22:53", "remaining_time": "2:24:51"} +{"current_steps": 3716, "total_steps": 4671, "loss": 0.0188, "learning_rate": 1.2206959497432007e-06, "epoch": 2.386640976236352, "percentage": 79.55, "elapsed_time": "9:23:02", "remaining_time": "2:24:42"} +{"current_steps": 3717, "total_steps": 4671, "loss": 0.0128, "learning_rate": 1.2182500603212882e-06, "epoch": 2.38728323699422, "percentage": 79.58, "elapsed_time": "9:23:11", "remaining_time": "2:24:32"} +{"current_steps": 3718, "total_steps": 4671, "loss": 0.0297, "learning_rate": 1.2158062837741291e-06, "epoch": 2.387925497752087, "percentage": 79.6, "elapsed_time": "9:23:20", "remaining_time": "2:24:23"} +{"current_steps": 3719, "total_steps": 4671, "loss": 0.0272, "learning_rate": 1.2133646214670686e-06, "epoch": 2.388567758509955, "percentage": 79.62, "elapsed_time": "9:23:29", "remaining_time": "2:24:14"} +{"current_steps": 3720, "total_steps": 4671, "loss": 0.0096, "learning_rate": 1.2109250747642709e-06, "epoch": 2.3892100192678227, "percentage": 79.64, "elapsed_time": "9:23:37", "remaining_time": "2:24:05"} +{"current_steps": 3721, "total_steps": 4671, "loss": 0.034, "learning_rate": 1.2084876450287175e-06, "epoch": 2.3898522800256905, "percentage": 79.66, "elapsed_time": "9:23:46", "remaining_time": "2:23:56"} +{"current_steps": 3722, "total_steps": 4671, "loss": 0.0489, "learning_rate": 1.2060523336222069e-06, "epoch": 2.3904945407835583, "percentage": 79.68, "elapsed_time": "9:23:54", "remaining_time": "2:23:46"} +{"current_steps": 3723, "total_steps": 4671, "loss": 0.0128, "learning_rate": 1.2036191419053561e-06, "epoch": 2.3911368015414256, "percentage": 79.7, "elapsed_time": "9:24:01", "remaining_time": "2:23:37"} +{"current_steps": 3724, "total_steps": 4671, "loss": 0.0265, "learning_rate": 1.2011880712375951e-06, "epoch": 2.3917790622992934, "percentage": 79.73, "elapsed_time": "9:24:11", "remaining_time": "2:23:28"} +{"current_steps": 3725, "total_steps": 4671, "loss": 0.0285, "learning_rate": 1.1987591229771728e-06, "epoch": 2.392421323057161, "percentage": 79.75, "elapsed_time": "9:24:20", "remaining_time": "2:23:19"} +{"current_steps": 3726, "total_steps": 4671, "loss": 0.0283, "learning_rate": 1.1963322984811454e-06, "epoch": 2.393063583815029, "percentage": 79.77, "elapsed_time": "9:24:27", "remaining_time": "2:23:09"} +{"current_steps": 3727, "total_steps": 4671, "loss": 0.0096, "learning_rate": 1.19390759910539e-06, "epoch": 2.3937058445728967, "percentage": 79.79, "elapsed_time": "9:24:36", "remaining_time": "2:23:00"} +{"current_steps": 3728, "total_steps": 4671, "loss": 0.0387, "learning_rate": 1.1914850262045903e-06, "epoch": 2.3943481053307645, "percentage": 79.81, "elapsed_time": "9:24:45", "remaining_time": "2:22:51"} +{"current_steps": 3729, "total_steps": 4671, "loss": 0.0196, "learning_rate": 1.1890645811322487e-06, "epoch": 2.394990366088632, "percentage": 79.83, "elapsed_time": "9:24:55", "remaining_time": "2:22:42"} +{"current_steps": 3730, "total_steps": 4671, "loss": 0.0177, "learning_rate": 1.186646265240673e-06, "epoch": 2.3956326268464996, "percentage": 79.85, "elapsed_time": "9:25:03", "remaining_time": "2:22:33"} +{"current_steps": 3731, "total_steps": 4671, "loss": 0.0413, "learning_rate": 1.1842300798809837e-06, "epoch": 2.3962748876043674, "percentage": 79.88, "elapsed_time": "9:25:13", "remaining_time": "2:22:24"} +{"current_steps": 3732, "total_steps": 4671, "loss": 0.0344, "learning_rate": 1.1818160264031097e-06, "epoch": 2.396917148362235, "percentage": 79.9, "elapsed_time": "9:25:24", "remaining_time": "2:22:15"} +{"current_steps": 3733, "total_steps": 4671, "loss": 0.0111, "learning_rate": 1.1794041061557926e-06, "epoch": 2.397559409120103, "percentage": 79.92, "elapsed_time": "9:25:33", "remaining_time": "2:22:06"} +{"current_steps": 3734, "total_steps": 4671, "loss": 0.016, "learning_rate": 1.1769943204865758e-06, "epoch": 2.3982016698779702, "percentage": 79.94, "elapsed_time": "9:25:43", "remaining_time": "2:21:57"} +{"current_steps": 3735, "total_steps": 4671, "loss": 0.0312, "learning_rate": 1.1745866707418146e-06, "epoch": 2.398843930635838, "percentage": 79.96, "elapsed_time": "9:25:53", "remaining_time": "2:21:48"} +{"current_steps": 3736, "total_steps": 4671, "loss": 0.0316, "learning_rate": 1.172181158266671e-06, "epoch": 2.399486191393706, "percentage": 79.98, "elapsed_time": "9:26:03", "remaining_time": "2:21:39"} +{"current_steps": 3737, "total_steps": 4671, "loss": 0.0102, "learning_rate": 1.1697777844051105e-06, "epoch": 2.4001284521515736, "percentage": 80.0, "elapsed_time": "9:26:14", "remaining_time": "2:21:31"} +{"current_steps": 3738, "total_steps": 4671, "loss": 0.0275, "learning_rate": 1.1673765504999062e-06, "epoch": 2.4007707129094413, "percentage": 80.03, "elapsed_time": "9:26:23", "remaining_time": "2:21:22"} +{"current_steps": 3739, "total_steps": 4671, "loss": 0.0416, "learning_rate": 1.1649774578926337e-06, "epoch": 2.401412973667309, "percentage": 80.05, "elapsed_time": "9:26:32", "remaining_time": "2:21:13"} +{"current_steps": 3740, "total_steps": 4671, "loss": 0.025, "learning_rate": 1.162580507923674e-06, "epoch": 2.4020552344251764, "percentage": 80.07, "elapsed_time": "9:26:42", "remaining_time": "2:21:04"} +{"current_steps": 3741, "total_steps": 4671, "loss": 0.0171, "learning_rate": 1.1601857019322093e-06, "epoch": 2.402697495183044, "percentage": 80.09, "elapsed_time": "9:26:50", "remaining_time": "2:20:54"} +{"current_steps": 3742, "total_steps": 4671, "loss": 0.0127, "learning_rate": 1.157793041256225e-06, "epoch": 2.403339755940912, "percentage": 80.11, "elapsed_time": "9:27:01", "remaining_time": "2:20:46"} +{"current_steps": 3743, "total_steps": 4671, "loss": 0.0203, "learning_rate": 1.155402527232507e-06, "epoch": 2.4039820166987798, "percentage": 80.13, "elapsed_time": "9:27:09", "remaining_time": "2:20:36"} +{"current_steps": 3744, "total_steps": 4671, "loss": 0.0367, "learning_rate": 1.1530141611966438e-06, "epoch": 2.4046242774566475, "percentage": 80.15, "elapsed_time": "9:27:19", "remaining_time": "2:20:28"} +{"current_steps": 3745, "total_steps": 4671, "loss": 0.0171, "learning_rate": 1.1506279444830216e-06, "epoch": 2.405266538214515, "percentage": 80.18, "elapsed_time": "9:27:28", "remaining_time": "2:20:18"} +{"current_steps": 3746, "total_steps": 4671, "loss": 0.0059, "learning_rate": 1.1482438784248262e-06, "epoch": 2.4059087989723826, "percentage": 80.2, "elapsed_time": "9:27:38", "remaining_time": "2:20:10"} +{"current_steps": 3747, "total_steps": 4671, "loss": 0.0341, "learning_rate": 1.1458619643540437e-06, "epoch": 2.4065510597302504, "percentage": 80.22, "elapsed_time": "9:27:50", "remaining_time": "2:20:01"} +{"current_steps": 3748, "total_steps": 4671, "loss": 0.0622, "learning_rate": 1.1434822036014564e-06, "epoch": 2.407193320488118, "percentage": 80.24, "elapsed_time": "9:27:59", "remaining_time": "2:19:52"} +{"current_steps": 3749, "total_steps": 4671, "loss": 0.0407, "learning_rate": 1.1411045974966417e-06, "epoch": 2.407835581245986, "percentage": 80.26, "elapsed_time": "9:28:08", "remaining_time": "2:19:43"} +{"current_steps": 3750, "total_steps": 4671, "loss": 0.0363, "learning_rate": 1.1387291473679746e-06, "epoch": 2.4084778420038537, "percentage": 80.28, "elapsed_time": "9:28:18", "remaining_time": "2:19:34"} +{"current_steps": 3751, "total_steps": 4671, "loss": 0.0368, "learning_rate": 1.136355854542629e-06, "epoch": 2.4091201027617215, "percentage": 80.3, "elapsed_time": "9:28:27", "remaining_time": "2:19:25"} +{"current_steps": 3752, "total_steps": 4671, "loss": 0.0214, "learning_rate": 1.1339847203465692e-06, "epoch": 2.409762363519589, "percentage": 80.33, "elapsed_time": "9:28:34", "remaining_time": "2:19:15"} +{"current_steps": 3753, "total_steps": 4671, "loss": 0.0144, "learning_rate": 1.1316157461045553e-06, "epoch": 2.4104046242774566, "percentage": 80.35, "elapsed_time": "9:28:41", "remaining_time": "2:19:06"} +{"current_steps": 3754, "total_steps": 4671, "loss": 0.0263, "learning_rate": 1.1292489331401391e-06, "epoch": 2.4110468850353244, "percentage": 80.37, "elapsed_time": "9:28:50", "remaining_time": "2:18:57"} +{"current_steps": 3755, "total_steps": 4671, "loss": 0.0089, "learning_rate": 1.1268842827756665e-06, "epoch": 2.411689145793192, "percentage": 80.39, "elapsed_time": "9:28:59", "remaining_time": "2:18:47"} +{"current_steps": 3756, "total_steps": 4671, "loss": 0.0294, "learning_rate": 1.1245217963322763e-06, "epoch": 2.4123314065510595, "percentage": 80.41, "elapsed_time": "9:29:07", "remaining_time": "2:18:38"} +{"current_steps": 3757, "total_steps": 4671, "loss": 0.0312, "learning_rate": 1.122161475129893e-06, "epoch": 2.4129736673089273, "percentage": 80.43, "elapsed_time": "9:29:17", "remaining_time": "2:18:29"} +{"current_steps": 3758, "total_steps": 4671, "loss": 0.019, "learning_rate": 1.119803320487237e-06, "epoch": 2.413615928066795, "percentage": 80.45, "elapsed_time": "9:29:27", "remaining_time": "2:18:20"} +{"current_steps": 3759, "total_steps": 4671, "loss": 0.0156, "learning_rate": 1.1174473337218162e-06, "epoch": 2.414258188824663, "percentage": 80.48, "elapsed_time": "9:29:36", "remaining_time": "2:18:11"} +{"current_steps": 3760, "total_steps": 4671, "loss": 0.0174, "learning_rate": 1.1150935161499266e-06, "epoch": 2.4149004495825306, "percentage": 80.5, "elapsed_time": "9:29:45", "remaining_time": "2:18:02"} +{"current_steps": 3761, "total_steps": 4671, "loss": 0.0306, "learning_rate": 1.1127418690866537e-06, "epoch": 2.4155427103403984, "percentage": 80.52, "elapsed_time": "9:29:56", "remaining_time": "2:17:53"} +{"current_steps": 3762, "total_steps": 4671, "loss": 0.0387, "learning_rate": 1.1103923938458677e-06, "epoch": 2.416184971098266, "percentage": 80.54, "elapsed_time": "9:30:05", "remaining_time": "2:17:45"} +{"current_steps": 3763, "total_steps": 4671, "loss": 0.0239, "learning_rate": 1.1080450917402308e-06, "epoch": 2.4168272318561335, "percentage": 80.56, "elapsed_time": "9:30:15", "remaining_time": "2:17:35"} +{"current_steps": 3764, "total_steps": 4671, "loss": 0.0461, "learning_rate": 1.1056999640811866e-06, "epoch": 2.4174694926140012, "percentage": 80.58, "elapsed_time": "9:30:23", "remaining_time": "2:17:26"} +{"current_steps": 3765, "total_steps": 4671, "loss": 0.03, "learning_rate": 1.1033570121789628e-06, "epoch": 2.418111753371869, "percentage": 80.6, "elapsed_time": "9:30:33", "remaining_time": "2:17:17"} +{"current_steps": 3766, "total_steps": 4671, "loss": 0.0154, "learning_rate": 1.1010162373425743e-06, "epoch": 2.418754014129737, "percentage": 80.63, "elapsed_time": "9:30:41", "remaining_time": "2:17:08"} +{"current_steps": 3767, "total_steps": 4671, "loss": 0.0154, "learning_rate": 1.0986776408798188e-06, "epoch": 2.4193962748876046, "percentage": 80.65, "elapsed_time": "9:30:51", "remaining_time": "2:16:59"} +{"current_steps": 3768, "total_steps": 4671, "loss": 0.0132, "learning_rate": 1.0963412240972775e-06, "epoch": 2.420038535645472, "percentage": 80.67, "elapsed_time": "9:30:59", "remaining_time": "2:16:50"} +{"current_steps": 3769, "total_steps": 4671, "loss": 0.0234, "learning_rate": 1.0940069883003136e-06, "epoch": 2.4206807964033397, "percentage": 80.69, "elapsed_time": "9:31:06", "remaining_time": "2:16:40"} +{"current_steps": 3770, "total_steps": 4671, "loss": 0.0079, "learning_rate": 1.0916749347930706e-06, "epoch": 2.4213230571612074, "percentage": 80.71, "elapsed_time": "9:31:14", "remaining_time": "2:16:31"} +{"current_steps": 3771, "total_steps": 4671, "loss": 0.0189, "learning_rate": 1.0893450648784736e-06, "epoch": 2.421965317919075, "percentage": 80.73, "elapsed_time": "9:31:22", "remaining_time": "2:16:21"} +{"current_steps": 3772, "total_steps": 4671, "loss": 0.0113, "learning_rate": 1.0870173798582284e-06, "epoch": 2.422607578676943, "percentage": 80.75, "elapsed_time": "9:31:30", "remaining_time": "2:16:12"} +{"current_steps": 3773, "total_steps": 4671, "loss": 0.017, "learning_rate": 1.0846918810328188e-06, "epoch": 2.4232498394348108, "percentage": 80.77, "elapsed_time": "9:31:39", "remaining_time": "2:16:03"} +{"current_steps": 3774, "total_steps": 4671, "loss": 0.0253, "learning_rate": 1.0823685697015085e-06, "epoch": 2.423892100192678, "percentage": 80.8, "elapsed_time": "9:31:46", "remaining_time": "2:15:54"} +{"current_steps": 3775, "total_steps": 4671, "loss": 0.0163, "learning_rate": 1.080047447162338e-06, "epoch": 2.424534360950546, "percentage": 80.82, "elapsed_time": "9:31:58", "remaining_time": "2:15:45"} +{"current_steps": 3776, "total_steps": 4671, "loss": 0.0158, "learning_rate": 1.0777285147121247e-06, "epoch": 2.4251766217084136, "percentage": 80.84, "elapsed_time": "9:32:06", "remaining_time": "2:15:36"} +{"current_steps": 3777, "total_steps": 4671, "loss": 0.0293, "learning_rate": 1.0754117736464637e-06, "epoch": 2.4258188824662814, "percentage": 80.86, "elapsed_time": "9:32:16", "remaining_time": "2:15:27"} +{"current_steps": 3778, "total_steps": 4671, "loss": 0.018, "learning_rate": 1.073097225259725e-06, "epoch": 2.426461143224149, "percentage": 80.88, "elapsed_time": "9:32:25", "remaining_time": "2:15:18"} +{"current_steps": 3779, "total_steps": 4671, "loss": 0.0064, "learning_rate": 1.070784870845053e-06, "epoch": 2.4271034039820165, "percentage": 80.9, "elapsed_time": "9:32:33", "remaining_time": "2:15:08"} +{"current_steps": 3780, "total_steps": 4671, "loss": 0.0313, "learning_rate": 1.0684747116943683e-06, "epoch": 2.4277456647398843, "percentage": 80.92, "elapsed_time": "9:32:41", "remaining_time": "2:14:59"} +{"current_steps": 3781, "total_steps": 4671, "loss": 0.0125, "learning_rate": 1.0661667490983613e-06, "epoch": 2.428387925497752, "percentage": 80.95, "elapsed_time": "9:32:50", "remaining_time": "2:14:50"} +{"current_steps": 3782, "total_steps": 4671, "loss": 0.0271, "learning_rate": 1.0638609843464988e-06, "epoch": 2.42903018625562, "percentage": 80.97, "elapsed_time": "9:33:01", "remaining_time": "2:14:41"} +{"current_steps": 3783, "total_steps": 4671, "loss": 0.0145, "learning_rate": 1.0615574187270167e-06, "epoch": 2.4296724470134876, "percentage": 80.99, "elapsed_time": "9:33:10", "remaining_time": "2:14:32"} +{"current_steps": 3784, "total_steps": 4671, "loss": 0.0344, "learning_rate": 1.0592560535269264e-06, "epoch": 2.4303147077713554, "percentage": 81.01, "elapsed_time": "9:33:19", "remaining_time": "2:14:23"} +{"current_steps": 3785, "total_steps": 4671, "loss": 0.0182, "learning_rate": 1.0569568900320065e-06, "epoch": 2.4309569685292227, "percentage": 81.03, "elapsed_time": "9:33:30", "remaining_time": "2:14:14"} +{"current_steps": 3786, "total_steps": 4671, "loss": 0.0158, "learning_rate": 1.0546599295268063e-06, "epoch": 2.4315992292870905, "percentage": 81.05, "elapsed_time": "9:33:41", "remaining_time": "2:14:06"} +{"current_steps": 3787, "total_steps": 4671, "loss": 0.0523, "learning_rate": 1.0523651732946439e-06, "epoch": 2.4322414900449583, "percentage": 81.07, "elapsed_time": "9:33:50", "remaining_time": "2:13:57"} +{"current_steps": 3788, "total_steps": 4671, "loss": 0.0276, "learning_rate": 1.0500726226176078e-06, "epoch": 2.432883750802826, "percentage": 81.1, "elapsed_time": "9:33:58", "remaining_time": "2:13:47"} +{"current_steps": 3789, "total_steps": 4671, "loss": 0.0338, "learning_rate": 1.04778227877655e-06, "epoch": 2.433526011560694, "percentage": 81.12, "elapsed_time": "9:34:08", "remaining_time": "2:13:38"} +{"current_steps": 3790, "total_steps": 4671, "loss": 0.0417, "learning_rate": 1.0454941430510945e-06, "epoch": 2.434168272318561, "percentage": 81.14, "elapsed_time": "9:34:18", "remaining_time": "2:13:29"} +{"current_steps": 3791, "total_steps": 4671, "loss": 0.0322, "learning_rate": 1.0432082167196284e-06, "epoch": 2.434810533076429, "percentage": 81.16, "elapsed_time": "9:34:28", "remaining_time": "2:13:21"} +{"current_steps": 3792, "total_steps": 4671, "loss": 0.0213, "learning_rate": 1.0409245010593055e-06, "epoch": 2.4354527938342967, "percentage": 81.18, "elapsed_time": "9:34:37", "remaining_time": "2:13:11"} +{"current_steps": 3793, "total_steps": 4671, "loss": 0.0314, "learning_rate": 1.0386429973460455e-06, "epoch": 2.4360950545921645, "percentage": 81.2, "elapsed_time": "9:34:45", "remaining_time": "2:13:02"} +{"current_steps": 3794, "total_steps": 4671, "loss": 0.0273, "learning_rate": 1.0363637068545296e-06, "epoch": 2.4367373153500322, "percentage": 81.22, "elapsed_time": "9:34:55", "remaining_time": "2:12:53"} +{"current_steps": 3795, "total_steps": 4671, "loss": 0.0225, "learning_rate": 1.0340866308582053e-06, "epoch": 2.4373795761079, "percentage": 81.25, "elapsed_time": "9:35:06", "remaining_time": "2:12:45"} +{"current_steps": 3796, "total_steps": 4671, "loss": 0.038, "learning_rate": 1.0318117706292813e-06, "epoch": 2.4380218368657673, "percentage": 81.27, "elapsed_time": "9:35:16", "remaining_time": "2:12:36"} +{"current_steps": 3797, "total_steps": 4671, "loss": 0.0499, "learning_rate": 1.0295391274387283e-06, "epoch": 2.438664097623635, "percentage": 81.29, "elapsed_time": "9:35:25", "remaining_time": "2:12:27"} +{"current_steps": 3798, "total_steps": 4671, "loss": 0.0274, "learning_rate": 1.0272687025562794e-06, "epoch": 2.439306358381503, "percentage": 81.31, "elapsed_time": "9:35:33", "remaining_time": "2:12:17"} +{"current_steps": 3799, "total_steps": 4671, "loss": 0.007, "learning_rate": 1.025000497250427e-06, "epoch": 2.4399486191393707, "percentage": 81.33, "elapsed_time": "9:35:42", "remaining_time": "2:12:08"} +{"current_steps": 3800, "total_steps": 4671, "loss": 0.0144, "learning_rate": 1.0227345127884242e-06, "epoch": 2.4405908798972384, "percentage": 81.35, "elapsed_time": "9:35:51", "remaining_time": "2:11:59"} +{"current_steps": 3801, "total_steps": 4671, "loss": 0.0401, "learning_rate": 1.0204707504362825e-06, "epoch": 2.4412331406551058, "percentage": 81.37, "elapsed_time": "9:36:01", "remaining_time": "2:11:50"} +{"current_steps": 3802, "total_steps": 4671, "loss": 0.0182, "learning_rate": 1.0182092114587743e-06, "epoch": 2.4418754014129735, "percentage": 81.4, "elapsed_time": "9:36:09", "remaining_time": "2:11:41"} +{"current_steps": 3803, "total_steps": 4671, "loss": 0.0424, "learning_rate": 1.0159498971194276e-06, "epoch": 2.4425176621708413, "percentage": 81.42, "elapsed_time": "9:36:19", "remaining_time": "2:11:32"} +{"current_steps": 3804, "total_steps": 4671, "loss": 0.0261, "learning_rate": 1.0136928086805265e-06, "epoch": 2.443159922928709, "percentage": 81.44, "elapsed_time": "9:36:27", "remaining_time": "2:11:23"} +{"current_steps": 3805, "total_steps": 4671, "loss": 0.03, "learning_rate": 1.0114379474031122e-06, "epoch": 2.443802183686577, "percentage": 81.46, "elapsed_time": "9:36:35", "remaining_time": "2:11:13"} +{"current_steps": 3806, "total_steps": 4671, "loss": 0.0293, "learning_rate": 1.009185314546985e-06, "epoch": 2.4444444444444446, "percentage": 81.48, "elapsed_time": "9:36:43", "remaining_time": "2:11:04"} +{"current_steps": 3807, "total_steps": 4671, "loss": 0.0207, "learning_rate": 1.006934911370696e-06, "epoch": 2.445086705202312, "percentage": 81.5, "elapsed_time": "9:36:51", "remaining_time": "2:10:55"} +{"current_steps": 3808, "total_steps": 4671, "loss": 0.0256, "learning_rate": 1.0046867391315529e-06, "epoch": 2.4457289659601797, "percentage": 81.52, "elapsed_time": "9:36:59", "remaining_time": "2:10:45"} +{"current_steps": 3809, "total_steps": 4671, "loss": 0.0162, "learning_rate": 1.002440799085615e-06, "epoch": 2.4463712267180475, "percentage": 81.55, "elapsed_time": "9:37:07", "remaining_time": "2:10:36"} +{"current_steps": 3810, "total_steps": 4671, "loss": 0.0251, "learning_rate": 1.0001970924876964e-06, "epoch": 2.4470134874759153, "percentage": 81.57, "elapsed_time": "9:37:16", "remaining_time": "2:10:27"} +{"current_steps": 3811, "total_steps": 4671, "loss": 0.0117, "learning_rate": 9.979556205913632e-07, "epoch": 2.447655748233783, "percentage": 81.59, "elapsed_time": "9:37:25", "remaining_time": "2:10:18"} +{"current_steps": 3812, "total_steps": 4671, "loss": 0.0211, "learning_rate": 9.957163846489303e-07, "epoch": 2.4482980089916504, "percentage": 81.61, "elapsed_time": "9:37:36", "remaining_time": "2:10:09"} +{"current_steps": 3813, "total_steps": 4671, "loss": 0.0137, "learning_rate": 9.934793859114667e-07, "epoch": 2.448940269749518, "percentage": 81.63, "elapsed_time": "9:37:44", "remaining_time": "2:10:00"} +{"current_steps": 3814, "total_steps": 4671, "loss": 0.0711, "learning_rate": 9.912446256287895e-07, "epoch": 2.449582530507386, "percentage": 81.65, "elapsed_time": "9:37:53", "remaining_time": "2:09:51"} +{"current_steps": 3815, "total_steps": 4671, "loss": 0.0105, "learning_rate": 9.89012105049466e-07, "epoch": 2.4502247912652537, "percentage": 81.67, "elapsed_time": "9:38:01", "remaining_time": "2:09:41"} +{"current_steps": 3816, "total_steps": 4671, "loss": 0.0178, "learning_rate": 9.867818254208122e-07, "epoch": 2.4508670520231215, "percentage": 81.7, "elapsed_time": "9:38:11", "remaining_time": "2:09:32"} +{"current_steps": 3817, "total_steps": 4671, "loss": 0.0275, "learning_rate": 9.845537879888905e-07, "epoch": 2.4515093127809893, "percentage": 81.72, "elapsed_time": "9:38:19", "remaining_time": "2:09:23"} +{"current_steps": 3818, "total_steps": 4671, "loss": 0.0426, "learning_rate": 9.823279939985147e-07, "epoch": 2.4521515735388566, "percentage": 81.74, "elapsed_time": "9:38:28", "remaining_time": "2:09:14"} +{"current_steps": 3819, "total_steps": 4671, "loss": 0.0302, "learning_rate": 9.801044446932418e-07, "epoch": 2.4527938342967244, "percentage": 81.76, "elapsed_time": "9:38:38", "remaining_time": "2:09:05"} +{"current_steps": 3820, "total_steps": 4671, "loss": 0.0311, "learning_rate": 9.778831413153734e-07, "epoch": 2.453436095054592, "percentage": 81.78, "elapsed_time": "9:38:47", "remaining_time": "2:08:56"} +{"current_steps": 3821, "total_steps": 4671, "loss": 0.0314, "learning_rate": 9.756640851059595e-07, "epoch": 2.45407835581246, "percentage": 81.8, "elapsed_time": "9:38:56", "remaining_time": "2:08:47"} +{"current_steps": 3822, "total_steps": 4671, "loss": 0.0309, "learning_rate": 9.734472773047927e-07, "epoch": 2.4547206165703277, "percentage": 81.82, "elapsed_time": "9:39:05", "remaining_time": "2:08:38"} +{"current_steps": 3823, "total_steps": 4671, "loss": 0.0158, "learning_rate": 9.7123271915041e-07, "epoch": 2.455362877328195, "percentage": 81.85, "elapsed_time": "9:39:14", "remaining_time": "2:08:29"} +{"current_steps": 3824, "total_steps": 4671, "loss": 0.0475, "learning_rate": 9.690204118800922e-07, "epoch": 2.456005138086063, "percentage": 81.87, "elapsed_time": "9:39:23", "remaining_time": "2:08:19"} +{"current_steps": 3825, "total_steps": 4671, "loss": 0.0115, "learning_rate": 9.668103567298615e-07, "epoch": 2.4566473988439306, "percentage": 81.89, "elapsed_time": "9:39:31", "remaining_time": "2:08:10"} +{"current_steps": 3826, "total_steps": 4671, "loss": 0.0124, "learning_rate": 9.646025549344823e-07, "epoch": 2.4572896596017983, "percentage": 81.91, "elapsed_time": "9:39:39", "remaining_time": "2:08:01"} +{"current_steps": 3827, "total_steps": 4671, "loss": 0.0319, "learning_rate": 9.623970077274598e-07, "epoch": 2.457931920359666, "percentage": 81.93, "elapsed_time": "9:39:48", "remaining_time": "2:07:52"} +{"current_steps": 3828, "total_steps": 4671, "loss": 0.04, "learning_rate": 9.601937163410392e-07, "epoch": 2.458574181117534, "percentage": 81.95, "elapsed_time": "9:39:56", "remaining_time": "2:07:42"} +{"current_steps": 3829, "total_steps": 4671, "loss": 0.0184, "learning_rate": 9.579926820062063e-07, "epoch": 2.4592164418754012, "percentage": 81.97, "elapsed_time": "9:40:06", "remaining_time": "2:07:33"} +{"current_steps": 3830, "total_steps": 4671, "loss": 0.0185, "learning_rate": 9.557939059526862e-07, "epoch": 2.459858702633269, "percentage": 82.0, "elapsed_time": "9:40:14", "remaining_time": "2:07:24"} +{"current_steps": 3831, "total_steps": 4671, "loss": 0.0131, "learning_rate": 9.535973894089401e-07, "epoch": 2.4605009633911368, "percentage": 82.02, "elapsed_time": "9:40:23", "remaining_time": "2:07:15"} +{"current_steps": 3832, "total_steps": 4671, "loss": 0.0149, "learning_rate": 9.514031336021684e-07, "epoch": 2.4611432241490045, "percentage": 82.04, "elapsed_time": "9:40:33", "remaining_time": "2:07:06"} +{"current_steps": 3833, "total_steps": 4671, "loss": 0.0355, "learning_rate": 9.492111397583092e-07, "epoch": 2.4617854849068723, "percentage": 82.06, "elapsed_time": "9:40:43", "remaining_time": "2:06:57"} +{"current_steps": 3834, "total_steps": 4671, "loss": 0.015, "learning_rate": 9.470214091020358e-07, "epoch": 2.4624277456647397, "percentage": 82.08, "elapsed_time": "9:40:51", "remaining_time": "2:06:48"} +{"current_steps": 3835, "total_steps": 4671, "loss": 0.0222, "learning_rate": 9.448339428567571e-07, "epoch": 2.4630700064226074, "percentage": 82.1, "elapsed_time": "9:41:00", "remaining_time": "2:06:39"} +{"current_steps": 3836, "total_steps": 4671, "loss": 0.0497, "learning_rate": 9.426487422446157e-07, "epoch": 2.463712267180475, "percentage": 82.12, "elapsed_time": "9:41:08", "remaining_time": "2:06:30"} +{"current_steps": 3837, "total_steps": 4671, "loss": 0.0313, "learning_rate": 9.404658084864904e-07, "epoch": 2.464354527938343, "percentage": 82.15, "elapsed_time": "9:41:17", "remaining_time": "2:06:20"} +{"current_steps": 3838, "total_steps": 4671, "loss": 0.027, "learning_rate": 9.382851428019924e-07, "epoch": 2.4649967886962107, "percentage": 82.17, "elapsed_time": "9:41:26", "remaining_time": "2:06:11"} +{"current_steps": 3839, "total_steps": 4671, "loss": 0.0269, "learning_rate": 9.361067464094653e-07, "epoch": 2.4656390494540785, "percentage": 82.19, "elapsed_time": "9:41:36", "remaining_time": "2:06:02"} +{"current_steps": 3840, "total_steps": 4671, "loss": 0.0103, "learning_rate": 9.339306205259874e-07, "epoch": 2.4662813102119463, "percentage": 82.21, "elapsed_time": "9:41:45", "remaining_time": "2:05:53"} +{"current_steps": 3841, "total_steps": 4671, "loss": 0.0127, "learning_rate": 9.317567663673655e-07, "epoch": 2.4669235709698136, "percentage": 82.23, "elapsed_time": "9:41:55", "remaining_time": "2:05:44"} +{"current_steps": 3842, "total_steps": 4671, "loss": 0.0184, "learning_rate": 9.295851851481385e-07, "epoch": 2.4675658317276814, "percentage": 82.25, "elapsed_time": "9:42:03", "remaining_time": "2:05:35"} +{"current_steps": 3843, "total_steps": 4671, "loss": 0.0215, "learning_rate": 9.274158780815767e-07, "epoch": 2.468208092485549, "percentage": 82.27, "elapsed_time": "9:42:12", "remaining_time": "2:05:26"} +{"current_steps": 3844, "total_steps": 4671, "loss": 0.0242, "learning_rate": 9.252488463796749e-07, "epoch": 2.468850353243417, "percentage": 82.3, "elapsed_time": "9:42:23", "remaining_time": "2:05:17"} +{"current_steps": 3845, "total_steps": 4671, "loss": 0.016, "learning_rate": 9.230840912531625e-07, "epoch": 2.4694926140012843, "percentage": 82.32, "elapsed_time": "9:42:30", "remaining_time": "2:05:08"} +{"current_steps": 3846, "total_steps": 4671, "loss": 0.0336, "learning_rate": 9.209216139114935e-07, "epoch": 2.470134874759152, "percentage": 82.34, "elapsed_time": "9:42:39", "remaining_time": "2:04:59"} +{"current_steps": 3847, "total_steps": 4671, "loss": 0.0232, "learning_rate": 9.187614155628504e-07, "epoch": 2.47077713551702, "percentage": 82.36, "elapsed_time": "9:42:49", "remaining_time": "2:04:50"} +{"current_steps": 3848, "total_steps": 4671, "loss": 0.0394, "learning_rate": 9.166034974141435e-07, "epoch": 2.4714193962748876, "percentage": 82.38, "elapsed_time": "9:42:59", "remaining_time": "2:04:41"} +{"current_steps": 3849, "total_steps": 4671, "loss": 0.0372, "learning_rate": 9.144478606710066e-07, "epoch": 2.4720616570327554, "percentage": 82.4, "elapsed_time": "9:43:08", "remaining_time": "2:04:32"} +{"current_steps": 3850, "total_steps": 4671, "loss": 0.0449, "learning_rate": 9.122945065378008e-07, "epoch": 2.472703917790623, "percentage": 82.42, "elapsed_time": "9:43:17", "remaining_time": "2:04:23"} +{"current_steps": 3851, "total_steps": 4671, "loss": 0.0068, "learning_rate": 9.101434362176109e-07, "epoch": 2.473346178548491, "percentage": 82.44, "elapsed_time": "9:43:27", "remaining_time": "2:04:14"} +{"current_steps": 3852, "total_steps": 4671, "loss": 0.0142, "learning_rate": 9.079946509122473e-07, "epoch": 2.4739884393063583, "percentage": 82.47, "elapsed_time": "9:43:37", "remaining_time": "2:04:05"} +{"current_steps": 3853, "total_steps": 4671, "loss": 0.0324, "learning_rate": 9.058481518222417e-07, "epoch": 2.474630700064226, "percentage": 82.49, "elapsed_time": "9:43:46", "remaining_time": "2:03:56"} +{"current_steps": 3854, "total_steps": 4671, "loss": 0.0228, "learning_rate": 9.037039401468495e-07, "epoch": 2.475272960822094, "percentage": 82.51, "elapsed_time": "9:43:56", "remaining_time": "2:03:47"} +{"current_steps": 3855, "total_steps": 4671, "loss": 0.0148, "learning_rate": 9.015620170840484e-07, "epoch": 2.4759152215799616, "percentage": 82.53, "elapsed_time": "9:44:05", "remaining_time": "2:03:38"} +{"current_steps": 3856, "total_steps": 4671, "loss": 0.028, "learning_rate": 8.994223838305366e-07, "epoch": 2.4765574823378294, "percentage": 82.55, "elapsed_time": "9:44:14", "remaining_time": "2:03:29"} +{"current_steps": 3857, "total_steps": 4671, "loss": 0.016, "learning_rate": 8.972850415817341e-07, "epoch": 2.4771997430956967, "percentage": 82.57, "elapsed_time": "9:44:24", "remaining_time": "2:03:20"} +{"current_steps": 3858, "total_steps": 4671, "loss": 0.0302, "learning_rate": 8.951499915317807e-07, "epoch": 2.4778420038535645, "percentage": 82.59, "elapsed_time": "9:44:34", "remaining_time": "2:03:11"} +{"current_steps": 3859, "total_steps": 4671, "loss": 0.0151, "learning_rate": 8.930172348735339e-07, "epoch": 2.4784842646114322, "percentage": 82.62, "elapsed_time": "9:44:43", "remaining_time": "2:03:02"} +{"current_steps": 3860, "total_steps": 4671, "loss": 0.0402, "learning_rate": 8.908867727985693e-07, "epoch": 2.4791265253693, "percentage": 82.64, "elapsed_time": "9:44:55", "remaining_time": "2:02:53"} +{"current_steps": 3861, "total_steps": 4671, "loss": 0.0305, "learning_rate": 8.887586064971859e-07, "epoch": 2.479768786127168, "percentage": 82.66, "elapsed_time": "9:45:03", "remaining_time": "2:02:44"} +{"current_steps": 3862, "total_steps": 4671, "loss": 0.0322, "learning_rate": 8.866327371583954e-07, "epoch": 2.4804110468850356, "percentage": 82.68, "elapsed_time": "9:45:14", "remaining_time": "2:02:35"} +{"current_steps": 3863, "total_steps": 4671, "loss": 0.0499, "learning_rate": 8.845091659699268e-07, "epoch": 2.481053307642903, "percentage": 82.7, "elapsed_time": "9:45:22", "remaining_time": "2:02:26"} +{"current_steps": 3864, "total_steps": 4671, "loss": 0.0163, "learning_rate": 8.823878941182251e-07, "epoch": 2.4816955684007707, "percentage": 82.72, "elapsed_time": "9:45:31", "remaining_time": "2:02:17"} +{"current_steps": 3865, "total_steps": 4671, "loss": 0.0408, "learning_rate": 8.80268922788452e-07, "epoch": 2.4823378291586384, "percentage": 82.74, "elapsed_time": "9:45:38", "remaining_time": "2:02:07"} +{"current_steps": 3866, "total_steps": 4671, "loss": 0.026, "learning_rate": 8.781522531644837e-07, "epoch": 2.482980089916506, "percentage": 82.77, "elapsed_time": "9:45:47", "remaining_time": "2:01:58"} +{"current_steps": 3867, "total_steps": 4671, "loss": 0.0166, "learning_rate": 8.760378864289076e-07, "epoch": 2.483622350674374, "percentage": 82.79, "elapsed_time": "9:45:56", "remaining_time": "2:01:49"} +{"current_steps": 3868, "total_steps": 4671, "loss": 0.0202, "learning_rate": 8.739258237630272e-07, "epoch": 2.4842646114322413, "percentage": 82.81, "elapsed_time": "9:46:06", "remaining_time": "2:01:40"} +{"current_steps": 3869, "total_steps": 4671, "loss": 0.0183, "learning_rate": 8.718160663468583e-07, "epoch": 2.484906872190109, "percentage": 82.83, "elapsed_time": "9:46:15", "remaining_time": "2:01:31"} +{"current_steps": 3870, "total_steps": 4671, "loss": 0.0141, "learning_rate": 8.697086153591289e-07, "epoch": 2.485549132947977, "percentage": 82.85, "elapsed_time": "9:46:24", "remaining_time": "2:01:22"} +{"current_steps": 3871, "total_steps": 4671, "loss": 0.0245, "learning_rate": 8.676034719772774e-07, "epoch": 2.4861913937058446, "percentage": 82.87, "elapsed_time": "9:46:32", "remaining_time": "2:01:13"} +{"current_steps": 3872, "total_steps": 4671, "loss": 0.0236, "learning_rate": 8.655006373774532e-07, "epoch": 2.4868336544637124, "percentage": 82.89, "elapsed_time": "9:46:40", "remaining_time": "2:01:03"} +{"current_steps": 3873, "total_steps": 4671, "loss": 0.0389, "learning_rate": 8.634001127345182e-07, "epoch": 2.48747591522158, "percentage": 82.92, "elapsed_time": "9:46:48", "remaining_time": "2:00:54"} +{"current_steps": 3874, "total_steps": 4671, "loss": 0.0365, "learning_rate": 8.613018992220412e-07, "epoch": 2.4881181759794475, "percentage": 82.94, "elapsed_time": "9:46:57", "remaining_time": "2:00:45"} +{"current_steps": 3875, "total_steps": 4671, "loss": 0.0348, "learning_rate": 8.592059980122985e-07, "epoch": 2.4887604367373153, "percentage": 82.96, "elapsed_time": "9:47:05", "remaining_time": "2:00:36"} +{"current_steps": 3876, "total_steps": 4671, "loss": 0.0249, "learning_rate": 8.571124102762768e-07, "epoch": 2.489402697495183, "percentage": 82.98, "elapsed_time": "9:47:16", "remaining_time": "2:00:27"} +{"current_steps": 3877, "total_steps": 4671, "loss": 0.0208, "learning_rate": 8.550211371836703e-07, "epoch": 2.490044958253051, "percentage": 83.0, "elapsed_time": "9:47:25", "remaining_time": "2:00:18"} +{"current_steps": 3878, "total_steps": 4671, "loss": 0.0038, "learning_rate": 8.52932179902879e-07, "epoch": 2.4906872190109186, "percentage": 83.02, "elapsed_time": "9:47:32", "remaining_time": "2:00:08"} +{"current_steps": 3879, "total_steps": 4671, "loss": 0.0325, "learning_rate": 8.508455396010096e-07, "epoch": 2.491329479768786, "percentage": 83.04, "elapsed_time": "9:47:41", "remaining_time": "1:59:59"} +{"current_steps": 3880, "total_steps": 4671, "loss": 0.0547, "learning_rate": 8.487612174438742e-07, "epoch": 2.4919717405266537, "percentage": 83.07, "elapsed_time": "9:47:52", "remaining_time": "1:59:50"} +{"current_steps": 3881, "total_steps": 4671, "loss": 0.016, "learning_rate": 8.46679214595989e-07, "epoch": 2.4926140012845215, "percentage": 83.09, "elapsed_time": "9:48:02", "remaining_time": "1:59:41"} +{"current_steps": 3882, "total_steps": 4671, "loss": 0.02, "learning_rate": 8.445995322205763e-07, "epoch": 2.4932562620423893, "percentage": 83.11, "elapsed_time": "9:48:10", "remaining_time": "1:59:32"} +{"current_steps": 3883, "total_steps": 4671, "loss": 0.0194, "learning_rate": 8.4252217147956e-07, "epoch": 2.493898522800257, "percentage": 83.13, "elapsed_time": "9:48:19", "remaining_time": "1:59:23"} +{"current_steps": 3884, "total_steps": 4671, "loss": 0.0238, "learning_rate": 8.404471335335673e-07, "epoch": 2.494540783558125, "percentage": 83.15, "elapsed_time": "9:48:28", "remaining_time": "1:59:14"} +{"current_steps": 3885, "total_steps": 4671, "loss": 0.0143, "learning_rate": 8.383744195419286e-07, "epoch": 2.495183044315992, "percentage": 83.17, "elapsed_time": "9:48:36", "remaining_time": "1:59:05"} +{"current_steps": 3886, "total_steps": 4671, "loss": 0.0268, "learning_rate": 8.363040306626752e-07, "epoch": 2.49582530507386, "percentage": 83.19, "elapsed_time": "9:48:47", "remaining_time": "1:58:56"} +{"current_steps": 3887, "total_steps": 4671, "loss": 0.0453, "learning_rate": 8.342359680525391e-07, "epoch": 2.4964675658317277, "percentage": 83.22, "elapsed_time": "9:48:57", "remaining_time": "1:58:47"} +{"current_steps": 3888, "total_steps": 4671, "loss": 0.0168, "learning_rate": 8.321702328669534e-07, "epoch": 2.4971098265895955, "percentage": 83.24, "elapsed_time": "9:49:04", "remaining_time": "1:58:38"} +{"current_steps": 3889, "total_steps": 4671, "loss": 0.0237, "learning_rate": 8.301068262600498e-07, "epoch": 2.4977520873474632, "percentage": 83.26, "elapsed_time": "9:49:12", "remaining_time": "1:58:28"} +{"current_steps": 3890, "total_steps": 4671, "loss": 0.0305, "learning_rate": 8.280457493846617e-07, "epoch": 2.4983943481053306, "percentage": 83.28, "elapsed_time": "9:49:22", "remaining_time": "1:58:19"} +{"current_steps": 3891, "total_steps": 4671, "loss": 0.0241, "learning_rate": 8.25987003392315e-07, "epoch": 2.4990366088631983, "percentage": 83.3, "elapsed_time": "9:49:31", "remaining_time": "1:58:10"} +{"current_steps": 3892, "total_steps": 4671, "loss": 0.0382, "learning_rate": 8.239305894332394e-07, "epoch": 2.499678869621066, "percentage": 83.32, "elapsed_time": "9:49:42", "remaining_time": "1:58:02"} +{"current_steps": 3893, "total_steps": 4671, "loss": 0.0185, "learning_rate": 8.218765086563591e-07, "epoch": 2.500321130378934, "percentage": 83.34, "elapsed_time": "9:49:52", "remaining_time": "1:57:52"} +{"current_steps": 3894, "total_steps": 4671, "loss": 0.0173, "learning_rate": 8.198247622092942e-07, "epoch": 2.5009633911368017, "percentage": 83.37, "elapsed_time": "9:50:00", "remaining_time": "1:57:43"} +{"current_steps": 3895, "total_steps": 4671, "loss": 0.0204, "learning_rate": 8.177753512383629e-07, "epoch": 2.5016056518946694, "percentage": 83.39, "elapsed_time": "9:50:09", "remaining_time": "1:57:34"} +{"current_steps": 3896, "total_steps": 4671, "loss": 0.0207, "learning_rate": 8.157282768885766e-07, "epoch": 2.5022479126525368, "percentage": 83.41, "elapsed_time": "9:50:17", "remaining_time": "1:57:25"} +{"current_steps": 3897, "total_steps": 4671, "loss": 0.016, "learning_rate": 8.136835403036413e-07, "epoch": 2.5028901734104045, "percentage": 83.43, "elapsed_time": "9:50:27", "remaining_time": "1:57:16"} +{"current_steps": 3898, "total_steps": 4671, "loss": 0.0228, "learning_rate": 8.116411426259596e-07, "epoch": 2.5035324341682723, "percentage": 83.45, "elapsed_time": "9:50:37", "remaining_time": "1:57:07"} +{"current_steps": 3899, "total_steps": 4671, "loss": 0.0124, "learning_rate": 8.096010849966213e-07, "epoch": 2.50417469492614, "percentage": 83.47, "elapsed_time": "9:50:46", "remaining_time": "1:56:58"} +{"current_steps": 3900, "total_steps": 4671, "loss": 0.0301, "learning_rate": 8.075633685554146e-07, "epoch": 2.504816955684008, "percentage": 83.49, "elapsed_time": "9:50:57", "remaining_time": "1:56:49"} +{"current_steps": 3901, "total_steps": 4671, "loss": 0.009, "learning_rate": 8.055279944408173e-07, "epoch": 2.505459216441875, "percentage": 83.52, "elapsed_time": "9:51:05", "remaining_time": "1:56:40"} +{"current_steps": 3902, "total_steps": 4671, "loss": 0.0242, "learning_rate": 8.034949637899986e-07, "epoch": 2.506101477199743, "percentage": 83.54, "elapsed_time": "9:51:13", "remaining_time": "1:56:31"} +{"current_steps": 3903, "total_steps": 4671, "loss": 0.0291, "learning_rate": 8.014642777388193e-07, "epoch": 2.5067437379576107, "percentage": 83.56, "elapsed_time": "9:51:21", "remaining_time": "1:56:21"} +{"current_steps": 3904, "total_steps": 4671, "loss": 0.0305, "learning_rate": 7.994359374218297e-07, "epoch": 2.5073859987154785, "percentage": 83.58, "elapsed_time": "9:51:30", "remaining_time": "1:56:12"} +{"current_steps": 3905, "total_steps": 4671, "loss": 0.0212, "learning_rate": 7.974099439722682e-07, "epoch": 2.5080282594733463, "percentage": 83.6, "elapsed_time": "9:51:40", "remaining_time": "1:56:03"} +{"current_steps": 3906, "total_steps": 4671, "loss": 0.0349, "learning_rate": 7.95386298522065e-07, "epoch": 2.508670520231214, "percentage": 83.62, "elapsed_time": "9:51:47", "remaining_time": "1:55:54"} +{"current_steps": 3907, "total_steps": 4671, "loss": 0.0095, "learning_rate": 7.933650022018358e-07, "epoch": 2.509312780989082, "percentage": 83.64, "elapsed_time": "9:51:55", "remaining_time": "1:55:44"} +{"current_steps": 3908, "total_steps": 4671, "loss": 0.0278, "learning_rate": 7.913460561408848e-07, "epoch": 2.509955041746949, "percentage": 83.67, "elapsed_time": "9:52:05", "remaining_time": "1:55:35"} +{"current_steps": 3909, "total_steps": 4671, "loss": 0.0257, "learning_rate": 7.893294614672026e-07, "epoch": 2.510597302504817, "percentage": 83.69, "elapsed_time": "9:52:13", "remaining_time": "1:55:26"} +{"current_steps": 3910, "total_steps": 4671, "loss": 0.0285, "learning_rate": 7.873152193074679e-07, "epoch": 2.5112395632626847, "percentage": 83.71, "elapsed_time": "9:52:21", "remaining_time": "1:55:17"} +{"current_steps": 3911, "total_steps": 4671, "loss": 0.0339, "learning_rate": 7.853033307870422e-07, "epoch": 2.5118818240205525, "percentage": 83.73, "elapsed_time": "9:52:28", "remaining_time": "1:55:07"} +{"current_steps": 3912, "total_steps": 4671, "loss": 0.0223, "learning_rate": 7.832937970299747e-07, "epoch": 2.51252408477842, "percentage": 83.75, "elapsed_time": "9:52:37", "remaining_time": "1:54:58"} +{"current_steps": 3913, "total_steps": 4671, "loss": 0.0161, "learning_rate": 7.812866191589985e-07, "epoch": 2.5131663455362876, "percentage": 83.77, "elapsed_time": "9:52:46", "remaining_time": "1:54:49"} +{"current_steps": 3914, "total_steps": 4671, "loss": 0.0236, "learning_rate": 7.79281798295527e-07, "epoch": 2.5138086062941554, "percentage": 83.79, "elapsed_time": "9:52:55", "remaining_time": "1:54:40"} +{"current_steps": 3915, "total_steps": 4671, "loss": 0.0302, "learning_rate": 7.772793355596597e-07, "epoch": 2.514450867052023, "percentage": 83.82, "elapsed_time": "9:53:03", "remaining_time": "1:54:31"} +{"current_steps": 3916, "total_steps": 4671, "loss": 0.0257, "learning_rate": 7.752792320701813e-07, "epoch": 2.515093127809891, "percentage": 83.84, "elapsed_time": "9:53:12", "remaining_time": "1:54:22"} +{"current_steps": 3917, "total_steps": 4671, "loss": 0.0179, "learning_rate": 7.732814889445539e-07, "epoch": 2.5157353885677587, "percentage": 83.86, "elapsed_time": "9:53:22", "remaining_time": "1:54:13"} +{"current_steps": 3918, "total_steps": 4671, "loss": 0.0247, "learning_rate": 7.71286107298922e-07, "epoch": 2.5163776493256265, "percentage": 83.88, "elapsed_time": "9:53:33", "remaining_time": "1:54:04"} +{"current_steps": 3919, "total_steps": 4671, "loss": 0.0262, "learning_rate": 7.692930882481114e-07, "epoch": 2.517019910083494, "percentage": 83.9, "elapsed_time": "9:53:43", "remaining_time": "1:53:55"} +{"current_steps": 3920, "total_steps": 4671, "loss": 0.02, "learning_rate": 7.673024329056283e-07, "epoch": 2.5176621708413616, "percentage": 83.92, "elapsed_time": "9:53:52", "remaining_time": "1:53:46"} +{"current_steps": 3921, "total_steps": 4671, "loss": 0.0331, "learning_rate": 7.653141423836585e-07, "epoch": 2.5183044315992293, "percentage": 83.94, "elapsed_time": "9:54:01", "remaining_time": "1:53:37"} +{"current_steps": 3922, "total_steps": 4671, "loss": 0.0541, "learning_rate": 7.633282177930629e-07, "epoch": 2.518946692357097, "percentage": 83.96, "elapsed_time": "9:54:10", "remaining_time": "1:53:28"} +{"current_steps": 3923, "total_steps": 4671, "loss": 0.026, "learning_rate": 7.613446602433849e-07, "epoch": 2.5195889531149644, "percentage": 83.99, "elapsed_time": "9:54:17", "remaining_time": "1:53:18"} +{"current_steps": 3924, "total_steps": 4671, "loss": 0.0312, "learning_rate": 7.593634708428438e-07, "epoch": 2.520231213872832, "percentage": 84.01, "elapsed_time": "9:54:25", "remaining_time": "1:53:09"} +{"current_steps": 3925, "total_steps": 4671, "loss": 0.0136, "learning_rate": 7.573846506983363e-07, "epoch": 2.5208734746307, "percentage": 84.03, "elapsed_time": "9:54:33", "remaining_time": "1:53:00"} +{"current_steps": 3926, "total_steps": 4671, "loss": 0.0156, "learning_rate": 7.554082009154346e-07, "epoch": 2.5215157353885678, "percentage": 84.05, "elapsed_time": "9:54:43", "remaining_time": "1:52:51"} +{"current_steps": 3927, "total_steps": 4671, "loss": 0.0272, "learning_rate": 7.534341225983866e-07, "epoch": 2.5221579961464355, "percentage": 84.07, "elapsed_time": "9:54:54", "remaining_time": "1:52:42"} +{"current_steps": 3928, "total_steps": 4671, "loss": 0.0489, "learning_rate": 7.514624168501156e-07, "epoch": 2.5228002569043033, "percentage": 84.09, "elapsed_time": "9:55:02", "remaining_time": "1:52:33"} +{"current_steps": 3929, "total_steps": 4671, "loss": 0.0281, "learning_rate": 7.49493084772222e-07, "epoch": 2.523442517662171, "percentage": 84.11, "elapsed_time": "9:55:11", "remaining_time": "1:52:24"} +{"current_steps": 3930, "total_steps": 4671, "loss": 0.0463, "learning_rate": 7.475261274649742e-07, "epoch": 2.5240847784200384, "percentage": 84.14, "elapsed_time": "9:55:20", "remaining_time": "1:52:15"} +{"current_steps": 3931, "total_steps": 4671, "loss": 0.0287, "learning_rate": 7.45561546027318e-07, "epoch": 2.524727039177906, "percentage": 84.16, "elapsed_time": "9:55:27", "remaining_time": "1:52:05"} +{"current_steps": 3932, "total_steps": 4671, "loss": 0.0171, "learning_rate": 7.43599341556871e-07, "epoch": 2.525369299935774, "percentage": 84.18, "elapsed_time": "9:55:38", "remaining_time": "1:51:56"} +{"current_steps": 3933, "total_steps": 4671, "loss": 0.0176, "learning_rate": 7.416395151499223e-07, "epoch": 2.5260115606936417, "percentage": 84.2, "elapsed_time": "9:55:49", "remaining_time": "1:51:48"} +{"current_steps": 3934, "total_steps": 4671, "loss": 0.0089, "learning_rate": 7.396820679014327e-07, "epoch": 2.526653821451509, "percentage": 84.22, "elapsed_time": "9:55:58", "remaining_time": "1:51:39"} +{"current_steps": 3935, "total_steps": 4671, "loss": 0.0435, "learning_rate": 7.377270009050341e-07, "epoch": 2.527296082209377, "percentage": 84.24, "elapsed_time": "9:56:08", "remaining_time": "1:51:30"} +{"current_steps": 3936, "total_steps": 4671, "loss": 0.0381, "learning_rate": 7.357743152530272e-07, "epoch": 2.5279383429672446, "percentage": 84.26, "elapsed_time": "9:56:18", "remaining_time": "1:51:21"} +{"current_steps": 3937, "total_steps": 4671, "loss": 0.0233, "learning_rate": 7.338240120363849e-07, "epoch": 2.5285806037251124, "percentage": 84.29, "elapsed_time": "9:56:28", "remaining_time": "1:51:12"} +{"current_steps": 3938, "total_steps": 4671, "loss": 0.0246, "learning_rate": 7.318760923447454e-07, "epoch": 2.52922286448298, "percentage": 84.31, "elapsed_time": "9:56:37", "remaining_time": "1:51:03"} +{"current_steps": 3939, "total_steps": 4671, "loss": 0.0098, "learning_rate": 7.299305572664184e-07, "epoch": 2.529865125240848, "percentage": 84.33, "elapsed_time": "9:56:46", "remaining_time": "1:50:53"} +{"current_steps": 3940, "total_steps": 4671, "loss": 0.0472, "learning_rate": 7.279874078883792e-07, "epoch": 2.5305073859987157, "percentage": 84.35, "elapsed_time": "9:56:55", "remaining_time": "1:50:45"} +{"current_steps": 3941, "total_steps": 4671, "loss": 0.0426, "learning_rate": 7.260466452962717e-07, "epoch": 2.531149646756583, "percentage": 84.37, "elapsed_time": "9:57:04", "remaining_time": "1:50:35"} +{"current_steps": 3942, "total_steps": 4671, "loss": 0.0269, "learning_rate": 7.241082705744057e-07, "epoch": 2.531791907514451, "percentage": 84.39, "elapsed_time": "9:57:14", "remaining_time": "1:50:26"} +{"current_steps": 3943, "total_steps": 4671, "loss": 0.0223, "learning_rate": 7.221722848057561e-07, "epoch": 2.5324341682723186, "percentage": 84.41, "elapsed_time": "9:57:21", "remaining_time": "1:50:17"} +{"current_steps": 3944, "total_steps": 4671, "loss": 0.0155, "learning_rate": 7.202386890719648e-07, "epoch": 2.5330764290301864, "percentage": 84.44, "elapsed_time": "9:57:31", "remaining_time": "1:50:08"} +{"current_steps": 3945, "total_steps": 4671, "loss": 0.0239, "learning_rate": 7.183074844533372e-07, "epoch": 2.5337186897880537, "percentage": 84.46, "elapsed_time": "9:57:42", "remaining_time": "1:49:59"} +{"current_steps": 3946, "total_steps": 4671, "loss": 0.0197, "learning_rate": 7.163786720288424e-07, "epoch": 2.5343609505459215, "percentage": 84.48, "elapsed_time": "9:57:51", "remaining_time": "1:49:50"} +{"current_steps": 3947, "total_steps": 4671, "loss": 0.0103, "learning_rate": 7.144522528761128e-07, "epoch": 2.5350032113037893, "percentage": 84.5, "elapsed_time": "9:58:02", "remaining_time": "1:49:41"} +{"current_steps": 3948, "total_steps": 4671, "loss": 0.0311, "learning_rate": 7.125282280714457e-07, "epoch": 2.535645472061657, "percentage": 84.52, "elapsed_time": "9:58:09", "remaining_time": "1:49:32"} +{"current_steps": 3949, "total_steps": 4671, "loss": 0.0377, "learning_rate": 7.10606598689798e-07, "epoch": 2.536287732819525, "percentage": 84.54, "elapsed_time": "9:58:19", "remaining_time": "1:49:23"} +{"current_steps": 3950, "total_steps": 4671, "loss": 0.033, "learning_rate": 7.086873658047922e-07, "epoch": 2.5369299935773926, "percentage": 84.56, "elapsed_time": "9:58:30", "remaining_time": "1:49:14"} +{"current_steps": 3951, "total_steps": 4671, "loss": 0.0227, "learning_rate": 7.067705304887074e-07, "epoch": 2.5375722543352603, "percentage": 84.59, "elapsed_time": "9:58:40", "remaining_time": "1:49:05"} +{"current_steps": 3952, "total_steps": 4671, "loss": 0.0302, "learning_rate": 7.048560938124854e-07, "epoch": 2.5382145150931277, "percentage": 84.61, "elapsed_time": "9:58:48", "remaining_time": "1:48:56"} +{"current_steps": 3953, "total_steps": 4671, "loss": 0.0214, "learning_rate": 7.029440568457291e-07, "epoch": 2.5388567758509955, "percentage": 84.63, "elapsed_time": "9:58:57", "remaining_time": "1:48:47"} +{"current_steps": 3954, "total_steps": 4671, "loss": 0.0151, "learning_rate": 7.010344206566966e-07, "epoch": 2.5394990366088632, "percentage": 84.65, "elapsed_time": "9:59:05", "remaining_time": "1:48:38"} +{"current_steps": 3955, "total_steps": 4671, "loss": 0.027, "learning_rate": 6.991271863123084e-07, "epoch": 2.540141297366731, "percentage": 84.67, "elapsed_time": "9:59:14", "remaining_time": "1:48:29"} +{"current_steps": 3956, "total_steps": 4671, "loss": 0.0198, "learning_rate": 6.972223548781415e-07, "epoch": 2.5407835581245983, "percentage": 84.69, "elapsed_time": "9:59:22", "remaining_time": "1:48:19"} +{"current_steps": 3957, "total_steps": 4671, "loss": 0.0331, "learning_rate": 6.953199274184313e-07, "epoch": 2.541425818882466, "percentage": 84.71, "elapsed_time": "9:59:33", "remaining_time": "1:48:10"} +{"current_steps": 3958, "total_steps": 4671, "loss": 0.0129, "learning_rate": 6.9341990499607e-07, "epoch": 2.542068079640334, "percentage": 84.74, "elapsed_time": "9:59:40", "remaining_time": "1:48:01"} +{"current_steps": 3959, "total_steps": 4671, "loss": 0.0368, "learning_rate": 6.915222886726048e-07, "epoch": 2.5427103403982017, "percentage": 84.76, "elapsed_time": "9:59:47", "remaining_time": "1:47:52"} +{"current_steps": 3960, "total_steps": 4671, "loss": 0.0237, "learning_rate": 6.896270795082394e-07, "epoch": 2.5433526011560694, "percentage": 84.78, "elapsed_time": "9:59:56", "remaining_time": "1:47:43"} +{"current_steps": 3961, "total_steps": 4671, "loss": 0.0279, "learning_rate": 6.877342785618335e-07, "epoch": 2.543994861913937, "percentage": 84.8, "elapsed_time": "10:00:06", "remaining_time": "1:47:33"} +{"current_steps": 3962, "total_steps": 4671, "loss": 0.0285, "learning_rate": 6.858438868909007e-07, "epoch": 2.544637122671805, "percentage": 84.82, "elapsed_time": "10:00:16", "remaining_time": "1:47:25"} +{"current_steps": 3963, "total_steps": 4671, "loss": 0.0089, "learning_rate": 6.839559055516071e-07, "epoch": 2.5452793834296723, "percentage": 84.84, "elapsed_time": "10:00:26", "remaining_time": "1:47:16"} +{"current_steps": 3964, "total_steps": 4671, "loss": 0.0184, "learning_rate": 6.82070335598774e-07, "epoch": 2.54592164418754, "percentage": 84.86, "elapsed_time": "10:00:36", "remaining_time": "1:47:07"} +{"current_steps": 3965, "total_steps": 4671, "loss": 0.0228, "learning_rate": 6.801871780858754e-07, "epoch": 2.546563904945408, "percentage": 84.89, "elapsed_time": "10:00:46", "remaining_time": "1:46:58"} +{"current_steps": 3966, "total_steps": 4671, "loss": 0.0332, "learning_rate": 6.783064340650363e-07, "epoch": 2.5472061657032756, "percentage": 84.91, "elapsed_time": "10:00:57", "remaining_time": "1:46:49"} +{"current_steps": 3967, "total_steps": 4671, "loss": 0.0204, "learning_rate": 6.764281045870342e-07, "epoch": 2.547848426461143, "percentage": 84.93, "elapsed_time": "10:01:06", "remaining_time": "1:46:40"} +{"current_steps": 3968, "total_steps": 4671, "loss": 0.0186, "learning_rate": 6.74552190701298e-07, "epoch": 2.5484906872190107, "percentage": 84.95, "elapsed_time": "10:01:16", "remaining_time": "1:46:31"} +{"current_steps": 3969, "total_steps": 4671, "loss": 0.039, "learning_rate": 6.726786934559048e-07, "epoch": 2.5491329479768785, "percentage": 84.97, "elapsed_time": "10:01:24", "remaining_time": "1:46:22"} +{"current_steps": 3970, "total_steps": 4671, "loss": 0.0216, "learning_rate": 6.708076138975822e-07, "epoch": 2.5497752087347463, "percentage": 84.99, "elapsed_time": "10:01:33", "remaining_time": "1:46:13"} +{"current_steps": 3971, "total_steps": 4671, "loss": 0.0246, "learning_rate": 6.689389530717106e-07, "epoch": 2.550417469492614, "percentage": 85.01, "elapsed_time": "10:01:43", "remaining_time": "1:46:04"} +{"current_steps": 3972, "total_steps": 4671, "loss": 0.0169, "learning_rate": 6.670727120223142e-07, "epoch": 2.551059730250482, "percentage": 85.04, "elapsed_time": "10:01:54", "remaining_time": "1:45:55"} +{"current_steps": 3973, "total_steps": 4671, "loss": 0.0359, "learning_rate": 6.652088917920685e-07, "epoch": 2.5517019910083496, "percentage": 85.06, "elapsed_time": "10:02:05", "remaining_time": "1:45:46"} +{"current_steps": 3974, "total_steps": 4671, "loss": 0.0376, "learning_rate": 6.63347493422295e-07, "epoch": 2.552344251766217, "percentage": 85.08, "elapsed_time": "10:02:13", "remaining_time": "1:45:37"} +{"current_steps": 3975, "total_steps": 4671, "loss": 0.02, "learning_rate": 6.614885179529617e-07, "epoch": 2.5529865125240847, "percentage": 85.1, "elapsed_time": "10:02:25", "remaining_time": "1:45:28"} +{"current_steps": 3976, "total_steps": 4671, "loss": 0.0316, "learning_rate": 6.596319664226858e-07, "epoch": 2.5536287732819525, "percentage": 85.12, "elapsed_time": "10:02:34", "remaining_time": "1:45:19"} +{"current_steps": 3977, "total_steps": 4671, "loss": 0.016, "learning_rate": 6.577778398687251e-07, "epoch": 2.5542710340398203, "percentage": 85.14, "elapsed_time": "10:02:42", "remaining_time": "1:45:10"} +{"current_steps": 3978, "total_steps": 4671, "loss": 0.0057, "learning_rate": 6.559261393269872e-07, "epoch": 2.5549132947976876, "percentage": 85.16, "elapsed_time": "10:02:50", "remaining_time": "1:45:01"} +{"current_steps": 3979, "total_steps": 4671, "loss": 0.0258, "learning_rate": 6.540768658320218e-07, "epoch": 2.5555555555555554, "percentage": 85.19, "elapsed_time": "10:02:57", "remaining_time": "1:44:51"} +{"current_steps": 3980, "total_steps": 4671, "loss": 0.0331, "learning_rate": 6.522300204170245e-07, "epoch": 2.556197816313423, "percentage": 85.21, "elapsed_time": "10:03:04", "remaining_time": "1:44:42"} +{"current_steps": 3981, "total_steps": 4671, "loss": 0.034, "learning_rate": 6.503856041138324e-07, "epoch": 2.556840077071291, "percentage": 85.23, "elapsed_time": "10:03:13", "remaining_time": "1:44:33"} +{"current_steps": 3982, "total_steps": 4671, "loss": 0.0297, "learning_rate": 6.485436179529264e-07, "epoch": 2.5574823378291587, "percentage": 85.25, "elapsed_time": "10:03:22", "remaining_time": "1:44:24"} +{"current_steps": 3983, "total_steps": 4671, "loss": 0.0165, "learning_rate": 6.467040629634286e-07, "epoch": 2.5581245985870265, "percentage": 85.27, "elapsed_time": "10:03:30", "remaining_time": "1:44:14"} +{"current_steps": 3984, "total_steps": 4671, "loss": 0.0395, "learning_rate": 6.448669401731067e-07, "epoch": 2.5587668593448942, "percentage": 85.29, "elapsed_time": "10:03:41", "remaining_time": "1:44:06"} +{"current_steps": 3985, "total_steps": 4671, "loss": 0.026, "learning_rate": 6.430322506083642e-07, "epoch": 2.5594091201027616, "percentage": 85.31, "elapsed_time": "10:03:51", "remaining_time": "1:43:57"} +{"current_steps": 3986, "total_steps": 4671, "loss": 0.0181, "learning_rate": 6.411999952942477e-07, "epoch": 2.5600513808606293, "percentage": 85.34, "elapsed_time": "10:03:59", "remaining_time": "1:43:47"} +{"current_steps": 3987, "total_steps": 4671, "loss": 0.0258, "learning_rate": 6.39370175254444e-07, "epoch": 2.560693641618497, "percentage": 85.36, "elapsed_time": "10:04:11", "remaining_time": "1:43:39"} +{"current_steps": 3988, "total_steps": 4671, "loss": 0.0422, "learning_rate": 6.375427915112792e-07, "epoch": 2.561335902376365, "percentage": 85.38, "elapsed_time": "10:04:20", "remaining_time": "1:43:30"} +{"current_steps": 3989, "total_steps": 4671, "loss": 0.0217, "learning_rate": 6.357178450857171e-07, "epoch": 2.5619781631342327, "percentage": 85.4, "elapsed_time": "10:04:28", "remaining_time": "1:43:20"} +{"current_steps": 3990, "total_steps": 4671, "loss": 0.0212, "learning_rate": 6.338953369973616e-07, "epoch": 2.5626204238921, "percentage": 85.42, "elapsed_time": "10:04:37", "remaining_time": "1:43:11"} +{"current_steps": 3991, "total_steps": 4671, "loss": 0.0139, "learning_rate": 6.320752682644526e-07, "epoch": 2.5632626846499678, "percentage": 85.44, "elapsed_time": "10:04:47", "remaining_time": "1:43:02"} +{"current_steps": 3992, "total_steps": 4671, "loss": 0.0194, "learning_rate": 6.302576399038679e-07, "epoch": 2.5639049454078355, "percentage": 85.46, "elapsed_time": "10:04:56", "remaining_time": "1:42:53"} +{"current_steps": 3993, "total_steps": 4671, "loss": 0.0219, "learning_rate": 6.284424529311218e-07, "epoch": 2.5645472061657033, "percentage": 85.48, "elapsed_time": "10:05:03", "remaining_time": "1:42:44"} +{"current_steps": 3994, "total_steps": 4671, "loss": 0.016, "learning_rate": 6.26629708360365e-07, "epoch": 2.565189466923571, "percentage": 85.51, "elapsed_time": "10:05:11", "remaining_time": "1:42:34"} +{"current_steps": 3995, "total_steps": 4671, "loss": 0.016, "learning_rate": 6.248194072043828e-07, "epoch": 2.565831727681439, "percentage": 85.53, "elapsed_time": "10:05:22", "remaining_time": "1:42:26"} +{"current_steps": 3996, "total_steps": 4671, "loss": 0.0345, "learning_rate": 6.230115504745954e-07, "epoch": 2.5664739884393066, "percentage": 85.55, "elapsed_time": "10:05:31", "remaining_time": "1:42:16"} +{"current_steps": 3997, "total_steps": 4671, "loss": 0.014, "learning_rate": 6.212061391810587e-07, "epoch": 2.567116249197174, "percentage": 85.57, "elapsed_time": "10:05:40", "remaining_time": "1:42:07"} +{"current_steps": 3998, "total_steps": 4671, "loss": 0.019, "learning_rate": 6.194031743324602e-07, "epoch": 2.5677585099550417, "percentage": 85.59, "elapsed_time": "10:05:49", "remaining_time": "1:41:58"} +{"current_steps": 3999, "total_steps": 4671, "loss": 0.0321, "learning_rate": 6.176026569361221e-07, "epoch": 2.5684007707129095, "percentage": 85.61, "elapsed_time": "10:06:00", "remaining_time": "1:41:50"} +{"current_steps": 4000, "total_steps": 4671, "loss": 0.0211, "learning_rate": 6.158045879980002e-07, "epoch": 2.5690430314707773, "percentage": 85.63, "elapsed_time": "10:06:09", "remaining_time": "1:41:41"} +{"current_steps": 4001, "total_steps": 4671, "loss": 0.0139, "learning_rate": 6.14008968522678e-07, "epoch": 2.5696852922286446, "percentage": 85.66, "elapsed_time": "10:06:19", "remaining_time": "1:41:32"} +{"current_steps": 4002, "total_steps": 4671, "loss": 0.0249, "learning_rate": 6.122157995133749e-07, "epoch": 2.5703275529865124, "percentage": 85.68, "elapsed_time": "10:06:29", "remaining_time": "1:41:23"} +{"current_steps": 4003, "total_steps": 4671, "loss": 0.0283, "learning_rate": 6.104250819719393e-07, "epoch": 2.57096981374438, "percentage": 85.7, "elapsed_time": "10:06:39", "remaining_time": "1:41:14"} +{"current_steps": 4004, "total_steps": 4671, "loss": 0.0215, "learning_rate": 6.086368168988494e-07, "epoch": 2.571612074502248, "percentage": 85.72, "elapsed_time": "10:06:48", "remaining_time": "1:41:05"} +{"current_steps": 4005, "total_steps": 4671, "loss": 0.0313, "learning_rate": 6.06851005293217e-07, "epoch": 2.5722543352601157, "percentage": 85.74, "elapsed_time": "10:06:59", "remaining_time": "1:40:56"} +{"current_steps": 4006, "total_steps": 4671, "loss": 0.0243, "learning_rate": 6.050676481527778e-07, "epoch": 2.5728965960179835, "percentage": 85.76, "elapsed_time": "10:07:10", "remaining_time": "1:40:47"} +{"current_steps": 4007, "total_steps": 4671, "loss": 0.0271, "learning_rate": 6.032867464738995e-07, "epoch": 2.5735388567758513, "percentage": 85.78, "elapsed_time": "10:07:20", "remaining_time": "1:40:38"} +{"current_steps": 4008, "total_steps": 4671, "loss": 0.0262, "learning_rate": 6.015083012515782e-07, "epoch": 2.5741811175337186, "percentage": 85.81, "elapsed_time": "10:07:29", "remaining_time": "1:40:29"} +{"current_steps": 4009, "total_steps": 4671, "loss": 0.0161, "learning_rate": 5.997323134794342e-07, "epoch": 2.5748233782915864, "percentage": 85.83, "elapsed_time": "10:07:38", "remaining_time": "1:40:20"} +{"current_steps": 4010, "total_steps": 4671, "loss": 0.0372, "learning_rate": 5.979587841497181e-07, "epoch": 2.575465639049454, "percentage": 85.85, "elapsed_time": "10:07:45", "remaining_time": "1:40:10"} +{"current_steps": 4011, "total_steps": 4671, "loss": 0.017, "learning_rate": 5.961877142533056e-07, "epoch": 2.576107899807322, "percentage": 85.87, "elapsed_time": "10:07:56", "remaining_time": "1:40:02"} +{"current_steps": 4012, "total_steps": 4671, "loss": 0.0215, "learning_rate": 5.944191047796987e-07, "epoch": 2.5767501605651892, "percentage": 85.89, "elapsed_time": "10:08:05", "remaining_time": "1:39:52"} +{"current_steps": 4013, "total_steps": 4671, "loss": 0.0354, "learning_rate": 5.926529567170259e-07, "epoch": 2.577392421323057, "percentage": 85.91, "elapsed_time": "10:08:13", "remaining_time": "1:39:43"} +{"current_steps": 4014, "total_steps": 4671, "loss": 0.0177, "learning_rate": 5.908892710520375e-07, "epoch": 2.578034682080925, "percentage": 85.93, "elapsed_time": "10:08:21", "remaining_time": "1:39:34"} +{"current_steps": 4015, "total_steps": 4671, "loss": 0.03, "learning_rate": 5.891280487701106e-07, "epoch": 2.5786769428387926, "percentage": 85.96, "elapsed_time": "10:08:31", "remaining_time": "1:39:25"} +{"current_steps": 4016, "total_steps": 4671, "loss": 0.0456, "learning_rate": 5.873692908552458e-07, "epoch": 2.5793192035966603, "percentage": 85.98, "elapsed_time": "10:08:41", "remaining_time": "1:39:16"} +{"current_steps": 4017, "total_steps": 4671, "loss": 0.0298, "learning_rate": 5.856129982900655e-07, "epoch": 2.579961464354528, "percentage": 86.0, "elapsed_time": "10:08:50", "remaining_time": "1:39:07"} +{"current_steps": 4018, "total_steps": 4671, "loss": 0.0296, "learning_rate": 5.838591720558156e-07, "epoch": 2.580603725112396, "percentage": 86.02, "elapsed_time": "10:08:58", "remaining_time": "1:38:58"} +{"current_steps": 4019, "total_steps": 4671, "loss": 0.0348, "learning_rate": 5.821078131323643e-07, "epoch": 2.581245985870263, "percentage": 86.04, "elapsed_time": "10:09:05", "remaining_time": "1:38:48"} +{"current_steps": 4020, "total_steps": 4671, "loss": 0.0232, "learning_rate": 5.803589224982009e-07, "epoch": 2.581888246628131, "percentage": 86.06, "elapsed_time": "10:09:14", "remaining_time": "1:38:39"} +{"current_steps": 4021, "total_steps": 4671, "loss": 0.0434, "learning_rate": 5.786125011304355e-07, "epoch": 2.5825305073859988, "percentage": 86.08, "elapsed_time": "10:09:22", "remaining_time": "1:38:30"} +{"current_steps": 4022, "total_steps": 4671, "loss": 0.0187, "learning_rate": 5.768685500047988e-07, "epoch": 2.5831727681438665, "percentage": 86.11, "elapsed_time": "10:09:31", "remaining_time": "1:38:21"} +{"current_steps": 4023, "total_steps": 4671, "loss": 0.0417, "learning_rate": 5.75127070095643e-07, "epoch": 2.583815028901734, "percentage": 86.13, "elapsed_time": "10:09:42", "remaining_time": "1:38:12"} +{"current_steps": 4024, "total_steps": 4671, "loss": 0.018, "learning_rate": 5.733880623759352e-07, "epoch": 2.5844572896596016, "percentage": 86.15, "elapsed_time": "10:09:51", "remaining_time": "1:38:03"} +{"current_steps": 4025, "total_steps": 4671, "loss": 0.0232, "learning_rate": 5.716515278172651e-07, "epoch": 2.5850995504174694, "percentage": 86.17, "elapsed_time": "10:10:01", "remaining_time": "1:37:54"} +{"current_steps": 4026, "total_steps": 4671, "loss": 0.0303, "learning_rate": 5.699174673898395e-07, "epoch": 2.585741811175337, "percentage": 86.19, "elapsed_time": "10:10:10", "remaining_time": "1:37:45"} +{"current_steps": 4027, "total_steps": 4671, "loss": 0.0243, "learning_rate": 5.681858820624842e-07, "epoch": 2.586384071933205, "percentage": 86.21, "elapsed_time": "10:10:19", "remaining_time": "1:37:36"} +{"current_steps": 4028, "total_steps": 4671, "loss": 0.0267, "learning_rate": 5.664567728026398e-07, "epoch": 2.5870263326910727, "percentage": 86.23, "elapsed_time": "10:10:27", "remaining_time": "1:37:26"} +{"current_steps": 4029, "total_steps": 4671, "loss": 0.0238, "learning_rate": 5.647301405763661e-07, "epoch": 2.5876685934489405, "percentage": 86.26, "elapsed_time": "10:10:37", "remaining_time": "1:37:17"} +{"current_steps": 4030, "total_steps": 4671, "loss": 0.0165, "learning_rate": 5.630059863483361e-07, "epoch": 2.588310854206808, "percentage": 86.28, "elapsed_time": "10:10:45", "remaining_time": "1:37:08"} +{"current_steps": 4031, "total_steps": 4671, "loss": 0.0264, "learning_rate": 5.612843110818417e-07, "epoch": 2.5889531149646756, "percentage": 86.3, "elapsed_time": "10:10:54", "remaining_time": "1:36:59"} +{"current_steps": 4032, "total_steps": 4671, "loss": 0.0338, "learning_rate": 5.595651157387855e-07, "epoch": 2.5895953757225434, "percentage": 86.32, "elapsed_time": "10:11:01", "remaining_time": "1:36:50"} +{"current_steps": 4033, "total_steps": 4671, "loss": 0.0415, "learning_rate": 5.578484012796875e-07, "epoch": 2.590237636480411, "percentage": 86.34, "elapsed_time": "10:11:11", "remaining_time": "1:36:41"} +{"current_steps": 4034, "total_steps": 4671, "loss": 0.028, "learning_rate": 5.561341686636823e-07, "epoch": 2.5908798972382785, "percentage": 86.36, "elapsed_time": "10:11:20", "remaining_time": "1:36:32"} +{"current_steps": 4035, "total_steps": 4671, "loss": 0.0193, "learning_rate": 5.544224188485159e-07, "epoch": 2.5915221579961463, "percentage": 86.38, "elapsed_time": "10:11:29", "remaining_time": "1:36:23"} +{"current_steps": 4036, "total_steps": 4671, "loss": 0.0263, "learning_rate": 5.527131527905477e-07, "epoch": 2.592164418754014, "percentage": 86.41, "elapsed_time": "10:11:38", "remaining_time": "1:36:13"} +{"current_steps": 4037, "total_steps": 4671, "loss": 0.0197, "learning_rate": 5.510063714447506e-07, "epoch": 2.592806679511882, "percentage": 86.43, "elapsed_time": "10:11:48", "remaining_time": "1:36:04"} +{"current_steps": 4038, "total_steps": 4671, "loss": 0.0227, "learning_rate": 5.493020757647061e-07, "epoch": 2.5934489402697496, "percentage": 86.45, "elapsed_time": "10:11:59", "remaining_time": "1:35:56"} +{"current_steps": 4039, "total_steps": 4671, "loss": 0.0309, "learning_rate": 5.476002667026132e-07, "epoch": 2.5940912010276174, "percentage": 86.47, "elapsed_time": "10:12:09", "remaining_time": "1:35:47"} +{"current_steps": 4040, "total_steps": 4671, "loss": 0.0214, "learning_rate": 5.45900945209274e-07, "epoch": 2.594733461785485, "percentage": 86.49, "elapsed_time": "10:12:18", "remaining_time": "1:35:38"} +{"current_steps": 4041, "total_steps": 4671, "loss": 0.0446, "learning_rate": 5.442041122341057e-07, "epoch": 2.5953757225433525, "percentage": 86.51, "elapsed_time": "10:12:28", "remaining_time": "1:35:29"} +{"current_steps": 4042, "total_steps": 4671, "loss": 0.0316, "learning_rate": 5.425097687251335e-07, "epoch": 2.5960179833012202, "percentage": 86.53, "elapsed_time": "10:12:38", "remaining_time": "1:35:20"} +{"current_steps": 4043, "total_steps": 4671, "loss": 0.0256, "learning_rate": 5.408179156289927e-07, "epoch": 2.596660244059088, "percentage": 86.56, "elapsed_time": "10:12:45", "remaining_time": "1:35:10"} +{"current_steps": 4044, "total_steps": 4671, "loss": 0.0346, "learning_rate": 5.391285538909257e-07, "epoch": 2.597302504816956, "percentage": 86.58, "elapsed_time": "10:12:54", "remaining_time": "1:35:01"} +{"current_steps": 4045, "total_steps": 4671, "loss": 0.0321, "learning_rate": 5.374416844547847e-07, "epoch": 2.597944765574823, "percentage": 86.6, "elapsed_time": "10:13:03", "remaining_time": "1:34:52"} +{"current_steps": 4046, "total_steps": 4671, "loss": 0.0231, "learning_rate": 5.357573082630279e-07, "epoch": 2.598587026332691, "percentage": 86.62, "elapsed_time": "10:13:12", "remaining_time": "1:34:43"} +{"current_steps": 4047, "total_steps": 4671, "loss": 0.0341, "learning_rate": 5.340754262567221e-07, "epoch": 2.5992292870905587, "percentage": 86.64, "elapsed_time": "10:13:21", "remaining_time": "1:34:34"} +{"current_steps": 4048, "total_steps": 4671, "loss": 0.0133, "learning_rate": 5.323960393755389e-07, "epoch": 2.5998715478484264, "percentage": 86.66, "elapsed_time": "10:13:30", "remaining_time": "1:34:25"} +{"current_steps": 4049, "total_steps": 4671, "loss": 0.0274, "learning_rate": 5.307191485577568e-07, "epoch": 2.600513808606294, "percentage": 86.68, "elapsed_time": "10:13:38", "remaining_time": "1:34:16"} +{"current_steps": 4050, "total_steps": 4671, "loss": 0.0311, "learning_rate": 5.290447547402594e-07, "epoch": 2.601156069364162, "percentage": 86.71, "elapsed_time": "10:13:47", "remaining_time": "1:34:06"} +{"current_steps": 4051, "total_steps": 4671, "loss": 0.0225, "learning_rate": 5.273728588585358e-07, "epoch": 2.6017983301220298, "percentage": 86.73, "elapsed_time": "10:13:55", "remaining_time": "1:33:57"} +{"current_steps": 4052, "total_steps": 4671, "loss": 0.0202, "learning_rate": 5.257034618466794e-07, "epoch": 2.602440590879897, "percentage": 86.75, "elapsed_time": "10:14:05", "remaining_time": "1:33:48"} +{"current_steps": 4053, "total_steps": 4671, "loss": 0.021, "learning_rate": 5.240365646373868e-07, "epoch": 2.603082851637765, "percentage": 86.77, "elapsed_time": "10:14:15", "remaining_time": "1:33:39"} +{"current_steps": 4054, "total_steps": 4671, "loss": 0.0117, "learning_rate": 5.223721681619581e-07, "epoch": 2.6037251123956326, "percentage": 86.79, "elapsed_time": "10:14:23", "remaining_time": "1:33:30"} +{"current_steps": 4055, "total_steps": 4671, "loss": 0.0149, "learning_rate": 5.207102733502978e-07, "epoch": 2.6043673731535004, "percentage": 86.81, "elapsed_time": "10:14:31", "remaining_time": "1:33:21"} +{"current_steps": 4056, "total_steps": 4671, "loss": 0.027, "learning_rate": 5.190508811309092e-07, "epoch": 2.6050096339113678, "percentage": 86.83, "elapsed_time": "10:14:39", "remaining_time": "1:33:11"} +{"current_steps": 4057, "total_steps": 4671, "loss": 0.0172, "learning_rate": 5.173939924309013e-07, "epoch": 2.6056518946692355, "percentage": 86.86, "elapsed_time": "10:14:49", "remaining_time": "1:33:02"} +{"current_steps": 4058, "total_steps": 4671, "loss": 0.0302, "learning_rate": 5.157396081759814e-07, "epoch": 2.6062941554271033, "percentage": 86.88, "elapsed_time": "10:14:59", "remaining_time": "1:32:54"} +{"current_steps": 4059, "total_steps": 4671, "loss": 0.0107, "learning_rate": 5.14087729290459e-07, "epoch": 2.606936416184971, "percentage": 86.9, "elapsed_time": "10:15:09", "remaining_time": "1:32:45"} +{"current_steps": 4060, "total_steps": 4671, "loss": 0.0338, "learning_rate": 5.124383566972452e-07, "epoch": 2.607578676942839, "percentage": 86.92, "elapsed_time": "10:15:19", "remaining_time": "1:32:36"} +{"current_steps": 4061, "total_steps": 4671, "loss": 0.0104, "learning_rate": 5.10791491317848e-07, "epoch": 2.6082209377007066, "percentage": 86.94, "elapsed_time": "10:15:27", "remaining_time": "1:32:26"} +{"current_steps": 4062, "total_steps": 4671, "loss": 0.0156, "learning_rate": 5.091471340723763e-07, "epoch": 2.6088631984585744, "percentage": 86.96, "elapsed_time": "10:15:37", "remaining_time": "1:32:17"} +{"current_steps": 4063, "total_steps": 4671, "loss": 0.0175, "learning_rate": 5.075052858795382e-07, "epoch": 2.6095054592164417, "percentage": 86.98, "elapsed_time": "10:15:45", "remaining_time": "1:32:08"} +{"current_steps": 4064, "total_steps": 4671, "loss": 0.0297, "learning_rate": 5.058659476566369e-07, "epoch": 2.6101477199743095, "percentage": 87.0, "elapsed_time": "10:15:57", "remaining_time": "1:31:59"} +{"current_steps": 4065, "total_steps": 4671, "loss": 0.0429, "learning_rate": 5.042291203195765e-07, "epoch": 2.6107899807321773, "percentage": 87.03, "elapsed_time": "10:16:06", "remaining_time": "1:31:50"} +{"current_steps": 4066, "total_steps": 4671, "loss": 0.0459, "learning_rate": 5.025948047828577e-07, "epoch": 2.611432241490045, "percentage": 87.05, "elapsed_time": "10:16:16", "remaining_time": "1:31:41"} +{"current_steps": 4067, "total_steps": 4671, "loss": 0.028, "learning_rate": 5.009630019595774e-07, "epoch": 2.6120745022479124, "percentage": 87.07, "elapsed_time": "10:16:24", "remaining_time": "1:31:32"} +{"current_steps": 4068, "total_steps": 4671, "loss": 0.016, "learning_rate": 4.993337127614273e-07, "epoch": 2.61271676300578, "percentage": 87.09, "elapsed_time": "10:16:33", "remaining_time": "1:31:23"} +{"current_steps": 4069, "total_steps": 4671, "loss": 0.027, "learning_rate": 4.977069380986976e-07, "epoch": 2.613359023763648, "percentage": 87.11, "elapsed_time": "10:16:43", "remaining_time": "1:31:14"} +{"current_steps": 4070, "total_steps": 4671, "loss": 0.0124, "learning_rate": 4.960826788802714e-07, "epoch": 2.6140012845215157, "percentage": 87.13, "elapsed_time": "10:16:51", "remaining_time": "1:31:05"} +{"current_steps": 4071, "total_steps": 4671, "loss": 0.0266, "learning_rate": 4.944609360136271e-07, "epoch": 2.6146435452793835, "percentage": 87.15, "elapsed_time": "10:16:58", "remaining_time": "1:30:55"} +{"current_steps": 4072, "total_steps": 4671, "loss": 0.0151, "learning_rate": 4.928417104048371e-07, "epoch": 2.6152858060372512, "percentage": 87.18, "elapsed_time": "10:17:06", "remaining_time": "1:30:46"} +{"current_steps": 4073, "total_steps": 4671, "loss": 0.0537, "learning_rate": 4.912250029585675e-07, "epoch": 2.615928066795119, "percentage": 87.2, "elapsed_time": "10:17:16", "remaining_time": "1:30:37"} +{"current_steps": 4074, "total_steps": 4671, "loss": 0.0208, "learning_rate": 4.896108145780775e-07, "epoch": 2.6165703275529864, "percentage": 87.22, "elapsed_time": "10:17:24", "remaining_time": "1:30:28"} +{"current_steps": 4075, "total_steps": 4671, "loss": 0.0217, "learning_rate": 4.879991461652195e-07, "epoch": 2.617212588310854, "percentage": 87.24, "elapsed_time": "10:17:34", "remaining_time": "1:30:19"} +{"current_steps": 4076, "total_steps": 4671, "loss": 0.0156, "learning_rate": 4.863899986204362e-07, "epoch": 2.617854849068722, "percentage": 87.26, "elapsed_time": "10:17:43", "remaining_time": "1:30:10"} +{"current_steps": 4077, "total_steps": 4671, "loss": 0.011, "learning_rate": 4.847833728427636e-07, "epoch": 2.6184971098265897, "percentage": 87.28, "elapsed_time": "10:17:51", "remaining_time": "1:30:01"} +{"current_steps": 4078, "total_steps": 4671, "loss": 0.0409, "learning_rate": 4.831792697298293e-07, "epoch": 2.6191393705844574, "percentage": 87.3, "elapsed_time": "10:18:01", "remaining_time": "1:29:52"} +{"current_steps": 4079, "total_steps": 4671, "loss": 0.0386, "learning_rate": 4.815776901778485e-07, "epoch": 2.619781631342325, "percentage": 87.33, "elapsed_time": "10:18:11", "remaining_time": "1:29:43"} +{"current_steps": 4080, "total_steps": 4671, "loss": 0.0233, "learning_rate": 4.799786350816294e-07, "epoch": 2.6204238921001926, "percentage": 87.35, "elapsed_time": "10:18:20", "remaining_time": "1:29:34"} +{"current_steps": 4081, "total_steps": 4671, "loss": 0.0243, "learning_rate": 4.783821053345678e-07, "epoch": 2.6210661528580603, "percentage": 87.37, "elapsed_time": "10:18:30", "remaining_time": "1:29:25"} +{"current_steps": 4082, "total_steps": 4671, "loss": 0.0363, "learning_rate": 4.7678810182865076e-07, "epoch": 2.621708413615928, "percentage": 87.39, "elapsed_time": "10:18:40", "remaining_time": "1:29:16"} +{"current_steps": 4083, "total_steps": 4671, "loss": 0.0184, "learning_rate": 4.7519662545445266e-07, "epoch": 2.622350674373796, "percentage": 87.41, "elapsed_time": "10:18:48", "remaining_time": "1:29:06"} +{"current_steps": 4084, "total_steps": 4671, "loss": 0.0408, "learning_rate": 4.73607677101135e-07, "epoch": 2.6229929351316636, "percentage": 87.43, "elapsed_time": "10:18:59", "remaining_time": "1:28:58"} +{"current_steps": 4085, "total_steps": 4671, "loss": 0.0194, "learning_rate": 4.7202125765644923e-07, "epoch": 2.6236351958895314, "percentage": 87.45, "elapsed_time": "10:19:07", "remaining_time": "1:28:48"} +{"current_steps": 4086, "total_steps": 4671, "loss": 0.0191, "learning_rate": 4.7043736800673254e-07, "epoch": 2.6242774566473988, "percentage": 87.48, "elapsed_time": "10:19:17", "remaining_time": "1:28:39"} +{"current_steps": 4087, "total_steps": 4671, "loss": 0.0216, "learning_rate": 4.6885600903690655e-07, "epoch": 2.6249197174052665, "percentage": 87.5, "elapsed_time": "10:19:26", "remaining_time": "1:28:30"} +{"current_steps": 4088, "total_steps": 4671, "loss": 0.0148, "learning_rate": 4.672771816304833e-07, "epoch": 2.6255619781631343, "percentage": 87.52, "elapsed_time": "10:19:36", "remaining_time": "1:28:21"} +{"current_steps": 4089, "total_steps": 4671, "loss": 0.0212, "learning_rate": 4.657008866695567e-07, "epoch": 2.626204238921002, "percentage": 87.54, "elapsed_time": "10:19:45", "remaining_time": "1:28:12"} +{"current_steps": 4090, "total_steps": 4671, "loss": 0.0207, "learning_rate": 4.6412712503480894e-07, "epoch": 2.6268464996788694, "percentage": 87.56, "elapsed_time": "10:19:53", "remaining_time": "1:28:03"} +{"current_steps": 4091, "total_steps": 4671, "loss": 0.0252, "learning_rate": 4.625558976055039e-07, "epoch": 2.627488760436737, "percentage": 87.58, "elapsed_time": "10:20:04", "remaining_time": "1:27:54"} +{"current_steps": 4092, "total_steps": 4671, "loss": 0.0148, "learning_rate": 4.6098720525949217e-07, "epoch": 2.628131021194605, "percentage": 87.6, "elapsed_time": "10:20:12", "remaining_time": "1:27:45"} +{"current_steps": 4093, "total_steps": 4671, "loss": 0.0376, "learning_rate": 4.5942104887320485e-07, "epoch": 2.6287732819524727, "percentage": 87.63, "elapsed_time": "10:20:21", "remaining_time": "1:27:36"} +{"current_steps": 4094, "total_steps": 4671, "loss": 0.0358, "learning_rate": 4.5785742932166144e-07, "epoch": 2.6294155427103405, "percentage": 87.65, "elapsed_time": "10:20:30", "remaining_time": "1:27:27"} +{"current_steps": 4095, "total_steps": 4671, "loss": 0.0138, "learning_rate": 4.5629634747845764e-07, "epoch": 2.6300578034682083, "percentage": 87.67, "elapsed_time": "10:20:38", "remaining_time": "1:27:17"} +{"current_steps": 4096, "total_steps": 4671, "loss": 0.0171, "learning_rate": 4.5473780421577517e-07, "epoch": 2.630700064226076, "percentage": 87.69, "elapsed_time": "10:20:49", "remaining_time": "1:27:09"} +{"current_steps": 4097, "total_steps": 4671, "loss": 0.0256, "learning_rate": 4.5318180040437756e-07, "epoch": 2.6313423249839434, "percentage": 87.71, "elapsed_time": "10:20:57", "remaining_time": "1:26:59"} +{"current_steps": 4098, "total_steps": 4671, "loss": 0.0358, "learning_rate": 4.5162833691360765e-07, "epoch": 2.631984585741811, "percentage": 87.73, "elapsed_time": "10:21:08", "remaining_time": "1:26:51"} +{"current_steps": 4099, "total_steps": 4671, "loss": 0.0097, "learning_rate": 4.5007741461139066e-07, "epoch": 2.632626846499679, "percentage": 87.75, "elapsed_time": "10:21:18", "remaining_time": "1:26:42"} +{"current_steps": 4100, "total_steps": 4671, "loss": 0.0295, "learning_rate": 4.485290343642318e-07, "epoch": 2.6332691072575467, "percentage": 87.78, "elapsed_time": "10:21:28", "remaining_time": "1:26:33"} +{"current_steps": 4101, "total_steps": 4671, "loss": 0.0201, "learning_rate": 4.469831970372146e-07, "epoch": 2.633911368015414, "percentage": 87.8, "elapsed_time": "10:21:38", "remaining_time": "1:26:24"} +{"current_steps": 4102, "total_steps": 4671, "loss": 0.0368, "learning_rate": 4.4543990349400377e-07, "epoch": 2.634553628773282, "percentage": 87.82, "elapsed_time": "10:21:46", "remaining_time": "1:26:14"} +{"current_steps": 4103, "total_steps": 4671, "loss": 0.0203, "learning_rate": 4.438991545968413e-07, "epoch": 2.6351958895311496, "percentage": 87.84, "elapsed_time": "10:21:56", "remaining_time": "1:26:05"} +{"current_steps": 4104, "total_steps": 4671, "loss": 0.0145, "learning_rate": 4.423609512065485e-07, "epoch": 2.6358381502890174, "percentage": 87.86, "elapsed_time": "10:22:06", "remaining_time": "1:25:56"} +{"current_steps": 4105, "total_steps": 4671, "loss": 0.0134, "learning_rate": 4.4082529418252415e-07, "epoch": 2.636480411046885, "percentage": 87.88, "elapsed_time": "10:22:15", "remaining_time": "1:25:47"} +{"current_steps": 4106, "total_steps": 4671, "loss": 0.0288, "learning_rate": 4.392921843827441e-07, "epoch": 2.637122671804753, "percentage": 87.9, "elapsed_time": "10:22:23", "remaining_time": "1:25:38"} +{"current_steps": 4107, "total_steps": 4671, "loss": 0.0264, "learning_rate": 4.377616226637615e-07, "epoch": 2.6377649325626207, "percentage": 87.93, "elapsed_time": "10:22:32", "remaining_time": "1:25:29"} +{"current_steps": 4108, "total_steps": 4671, "loss": 0.0203, "learning_rate": 4.3623360988070515e-07, "epoch": 2.638407193320488, "percentage": 87.95, "elapsed_time": "10:22:41", "remaining_time": "1:25:20"} +{"current_steps": 4109, "total_steps": 4671, "loss": 0.0133, "learning_rate": 4.3470814688728105e-07, "epoch": 2.639049454078356, "percentage": 87.97, "elapsed_time": "10:22:49", "remaining_time": "1:25:11"} +{"current_steps": 4110, "total_steps": 4671, "loss": 0.0247, "learning_rate": 4.331852345357701e-07, "epoch": 2.6396917148362236, "percentage": 87.99, "elapsed_time": "10:22:57", "remaining_time": "1:25:01"} +{"current_steps": 4111, "total_steps": 4671, "loss": 0.0121, "learning_rate": 4.3166487367702627e-07, "epoch": 2.6403339755940913, "percentage": 88.01, "elapsed_time": "10:23:04", "remaining_time": "1:24:52"} +{"current_steps": 4112, "total_steps": 4671, "loss": 0.0221, "learning_rate": 4.301470651604806e-07, "epoch": 2.6409762363519587, "percentage": 88.03, "elapsed_time": "10:23:12", "remaining_time": "1:24:43"} +{"current_steps": 4113, "total_steps": 4671, "loss": 0.0181, "learning_rate": 4.2863180983413744e-07, "epoch": 2.6416184971098264, "percentage": 88.05, "elapsed_time": "10:23:21", "remaining_time": "1:24:34"} +{"current_steps": 4114, "total_steps": 4671, "loss": 0.038, "learning_rate": 4.271191085445736e-07, "epoch": 2.642260757867694, "percentage": 88.08, "elapsed_time": "10:23:29", "remaining_time": "1:24:24"} +{"current_steps": 4115, "total_steps": 4671, "loss": 0.0524, "learning_rate": 4.2560896213693913e-07, "epoch": 2.642903018625562, "percentage": 88.1, "elapsed_time": "10:23:39", "remaining_time": "1:24:15"} +{"current_steps": 4116, "total_steps": 4671, "loss": 0.0381, "learning_rate": 4.2410137145495965e-07, "epoch": 2.6435452793834298, "percentage": 88.12, "elapsed_time": "10:23:48", "remaining_time": "1:24:06"} +{"current_steps": 4117, "total_steps": 4671, "loss": 0.0225, "learning_rate": 4.2259633734092863e-07, "epoch": 2.6441875401412975, "percentage": 88.14, "elapsed_time": "10:23:55", "remaining_time": "1:23:57"} +{"current_steps": 4118, "total_steps": 4671, "loss": 0.0244, "learning_rate": 4.210938606357146e-07, "epoch": 2.6448298008991653, "percentage": 88.16, "elapsed_time": "10:24:03", "remaining_time": "1:23:48"} +{"current_steps": 4119, "total_steps": 4671, "loss": 0.0181, "learning_rate": 4.195939421787537e-07, "epoch": 2.6454720616570326, "percentage": 88.18, "elapsed_time": "10:24:13", "remaining_time": "1:23:39"} +{"current_steps": 4120, "total_steps": 4671, "loss": 0.0328, "learning_rate": 4.180965828080558e-07, "epoch": 2.6461143224149004, "percentage": 88.2, "elapsed_time": "10:24:23", "remaining_time": "1:23:30"} +{"current_steps": 4121, "total_steps": 4671, "loss": 0.0164, "learning_rate": 4.1660178336019983e-07, "epoch": 2.646756583172768, "percentage": 88.23, "elapsed_time": "10:24:31", "remaining_time": "1:23:21"} +{"current_steps": 4122, "total_steps": 4671, "loss": 0.0355, "learning_rate": 4.1510954467033457e-07, "epoch": 2.647398843930636, "percentage": 88.25, "elapsed_time": "10:24:41", "remaining_time": "1:23:12"} +{"current_steps": 4123, "total_steps": 4671, "loss": 0.0233, "learning_rate": 4.136198675721781e-07, "epoch": 2.6480411046885033, "percentage": 88.27, "elapsed_time": "10:24:51", "remaining_time": "1:23:03"} +{"current_steps": 4124, "total_steps": 4671, "loss": 0.0183, "learning_rate": 4.1213275289801734e-07, "epoch": 2.648683365446371, "percentage": 88.29, "elapsed_time": "10:25:00", "remaining_time": "1:22:53"} +{"current_steps": 4125, "total_steps": 4671, "loss": 0.0457, "learning_rate": 4.106482014787078e-07, "epoch": 2.649325626204239, "percentage": 88.31, "elapsed_time": "10:25:09", "remaining_time": "1:22:44"} +{"current_steps": 4126, "total_steps": 4671, "loss": 0.0367, "learning_rate": 4.0916621414367255e-07, "epoch": 2.6499678869621066, "percentage": 88.33, "elapsed_time": "10:25:19", "remaining_time": "1:22:35"} +{"current_steps": 4127, "total_steps": 4671, "loss": 0.022, "learning_rate": 4.076867917209021e-07, "epoch": 2.6506101477199744, "percentage": 88.35, "elapsed_time": "10:25:29", "remaining_time": "1:22:26"} +{"current_steps": 4128, "total_steps": 4671, "loss": 0.0349, "learning_rate": 4.0620993503695474e-07, "epoch": 2.651252408477842, "percentage": 88.38, "elapsed_time": "10:25:37", "remaining_time": "1:22:17"} +{"current_steps": 4129, "total_steps": 4671, "loss": 0.0246, "learning_rate": 4.047356449169537e-07, "epoch": 2.65189466923571, "percentage": 88.4, "elapsed_time": "10:25:46", "remaining_time": "1:22:08"} +{"current_steps": 4130, "total_steps": 4671, "loss": 0.0199, "learning_rate": 4.032639221845902e-07, "epoch": 2.6525369299935773, "percentage": 88.42, "elapsed_time": "10:25:54", "remaining_time": "1:21:59"} +{"current_steps": 4131, "total_steps": 4671, "loss": 0.025, "learning_rate": 4.0179476766211865e-07, "epoch": 2.653179190751445, "percentage": 88.44, "elapsed_time": "10:26:02", "remaining_time": "1:21:50"} +{"current_steps": 4132, "total_steps": 4671, "loss": 0.0417, "learning_rate": 4.003281821703614e-07, "epoch": 2.653821451509313, "percentage": 88.46, "elapsed_time": "10:26:13", "remaining_time": "1:21:41"} +{"current_steps": 4133, "total_steps": 4671, "loss": 0.0126, "learning_rate": 3.988641665287046e-07, "epoch": 2.6544637122671806, "percentage": 88.48, "elapsed_time": "10:26:21", "remaining_time": "1:21:32"} +{"current_steps": 4134, "total_steps": 4671, "loss": 0.0157, "learning_rate": 3.9740272155509576e-07, "epoch": 2.655105973025048, "percentage": 88.5, "elapsed_time": "10:26:29", "remaining_time": "1:21:22"} +{"current_steps": 4135, "total_steps": 4671, "loss": 0.0441, "learning_rate": 3.9594384806604937e-07, "epoch": 2.6557482337829157, "percentage": 88.52, "elapsed_time": "10:26:38", "remaining_time": "1:21:13"} +{"current_steps": 4136, "total_steps": 4671, "loss": 0.0223, "learning_rate": 3.944875468766424e-07, "epoch": 2.6563904945407835, "percentage": 88.55, "elapsed_time": "10:26:46", "remaining_time": "1:21:04"} +{"current_steps": 4137, "total_steps": 4671, "loss": 0.0591, "learning_rate": 3.9303381880051506e-07, "epoch": 2.6570327552986512, "percentage": 88.57, "elapsed_time": "10:26:56", "remaining_time": "1:20:55"} +{"current_steps": 4138, "total_steps": 4671, "loss": 0.0082, "learning_rate": 3.915826646498694e-07, "epoch": 2.657675016056519, "percentage": 88.59, "elapsed_time": "10:27:05", "remaining_time": "1:20:46"} +{"current_steps": 4139, "total_steps": 4671, "loss": 0.0317, "learning_rate": 3.9013408523546903e-07, "epoch": 2.658317276814387, "percentage": 88.61, "elapsed_time": "10:27:15", "remaining_time": "1:20:37"} +{"current_steps": 4140, "total_steps": 4671, "loss": 0.0311, "learning_rate": 3.8868808136663995e-07, "epoch": 2.6589595375722546, "percentage": 88.63, "elapsed_time": "10:27:26", "remaining_time": "1:20:28"} +{"current_steps": 4141, "total_steps": 4671, "loss": 0.0195, "learning_rate": 3.8724465385126976e-07, "epoch": 2.659601798330122, "percentage": 88.65, "elapsed_time": "10:27:38", "remaining_time": "1:20:19"} +{"current_steps": 4142, "total_steps": 4671, "loss": 0.0245, "learning_rate": 3.858038034958034e-07, "epoch": 2.6602440590879897, "percentage": 88.67, "elapsed_time": "10:27:49", "remaining_time": "1:20:10"} +{"current_steps": 4143, "total_steps": 4671, "loss": 0.0342, "learning_rate": 3.843655311052491e-07, "epoch": 2.6608863198458574, "percentage": 88.7, "elapsed_time": "10:27:56", "remaining_time": "1:20:01"} +{"current_steps": 4144, "total_steps": 4671, "loss": 0.0172, "learning_rate": 3.829298374831736e-07, "epoch": 2.661528580603725, "percentage": 88.72, "elapsed_time": "10:28:06", "remaining_time": "1:19:52"} +{"current_steps": 4145, "total_steps": 4671, "loss": 0.0213, "learning_rate": 3.814967234317041e-07, "epoch": 2.6621708413615925, "percentage": 88.74, "elapsed_time": "10:28:18", "remaining_time": "1:19:43"} +{"current_steps": 4146, "total_steps": 4671, "loss": 0.0316, "learning_rate": 3.8006618975152456e-07, "epoch": 2.6628131021194603, "percentage": 88.76, "elapsed_time": "10:28:26", "remaining_time": "1:19:34"} +{"current_steps": 4147, "total_steps": 4671, "loss": 0.021, "learning_rate": 3.7863823724187896e-07, "epoch": 2.663455362877328, "percentage": 88.78, "elapsed_time": "10:28:37", "remaining_time": "1:19:25"} +{"current_steps": 4148, "total_steps": 4671, "loss": 0.0302, "learning_rate": 3.7721286670056866e-07, "epoch": 2.664097623635196, "percentage": 88.8, "elapsed_time": "10:28:46", "remaining_time": "1:19:16"} +{"current_steps": 4149, "total_steps": 4671, "loss": 0.0198, "learning_rate": 3.757900789239516e-07, "epoch": 2.6647398843930636, "percentage": 88.82, "elapsed_time": "10:28:55", "remaining_time": "1:19:07"} +{"current_steps": 4150, "total_steps": 4671, "loss": 0.0327, "learning_rate": 3.743698747069441e-07, "epoch": 2.6653821451509314, "percentage": 88.85, "elapsed_time": "10:29:06", "remaining_time": "1:18:58"} +{"current_steps": 4151, "total_steps": 4671, "loss": 0.0243, "learning_rate": 3.729522548430181e-07, "epoch": 2.666024405908799, "percentage": 88.87, "elapsed_time": "10:29:16", "remaining_time": "1:18:49"} +{"current_steps": 4152, "total_steps": 4671, "loss": 0.0086, "learning_rate": 3.715372201242023e-07, "epoch": 2.6666666666666665, "percentage": 88.89, "elapsed_time": "10:29:24", "remaining_time": "1:18:40"} +{"current_steps": 4153, "total_steps": 4671, "loss": 0.0176, "learning_rate": 3.701247713410805e-07, "epoch": 2.6673089274245343, "percentage": 88.91, "elapsed_time": "10:29:33", "remaining_time": "1:18:31"} +{"current_steps": 4154, "total_steps": 4671, "loss": 0.0346, "learning_rate": 3.6871490928279184e-07, "epoch": 2.667951188182402, "percentage": 88.93, "elapsed_time": "10:29:42", "remaining_time": "1:18:22"} +{"current_steps": 4155, "total_steps": 4671, "loss": 0.0353, "learning_rate": 3.673076347370308e-07, "epoch": 2.66859344894027, "percentage": 88.95, "elapsed_time": "10:29:50", "remaining_time": "1:18:13"} +{"current_steps": 4156, "total_steps": 4671, "loss": 0.029, "learning_rate": 3.659029484900456e-07, "epoch": 2.669235709698137, "percentage": 88.97, "elapsed_time": "10:29:59", "remaining_time": "1:18:03"} +{"current_steps": 4157, "total_steps": 4671, "loss": 0.025, "learning_rate": 3.64500851326639e-07, "epoch": 2.669877970456005, "percentage": 89.0, "elapsed_time": "10:30:07", "remaining_time": "1:17:54"} +{"current_steps": 4158, "total_steps": 4671, "loss": 0.0201, "learning_rate": 3.631013440301645e-07, "epoch": 2.6705202312138727, "percentage": 89.02, "elapsed_time": "10:30:15", "remaining_time": "1:17:45"} +{"current_steps": 4159, "total_steps": 4671, "loss": 0.0233, "learning_rate": 3.6170442738253377e-07, "epoch": 2.6711624919717405, "percentage": 89.04, "elapsed_time": "10:30:24", "remaining_time": "1:17:36"} +{"current_steps": 4160, "total_steps": 4671, "loss": 0.0246, "learning_rate": 3.6031010216420695e-07, "epoch": 2.6718047527296083, "percentage": 89.06, "elapsed_time": "10:30:33", "remaining_time": "1:17:27"} +{"current_steps": 4161, "total_steps": 4671, "loss": 0.0145, "learning_rate": 3.589183691541981e-07, "epoch": 2.672447013487476, "percentage": 89.08, "elapsed_time": "10:30:44", "remaining_time": "1:17:18"} +{"current_steps": 4162, "total_steps": 4671, "loss": 0.0178, "learning_rate": 3.575292291300719e-07, "epoch": 2.673089274245344, "percentage": 89.1, "elapsed_time": "10:30:54", "remaining_time": "1:17:09"} +{"current_steps": 4163, "total_steps": 4671, "loss": 0.0267, "learning_rate": 3.561426828679454e-07, "epoch": 2.673731535003211, "percentage": 89.12, "elapsed_time": "10:31:05", "remaining_time": "1:17:00"} +{"current_steps": 4164, "total_steps": 4671, "loss": 0.0305, "learning_rate": 3.5475873114248607e-07, "epoch": 2.674373795761079, "percentage": 89.15, "elapsed_time": "10:31:14", "remaining_time": "1:16:51"} +{"current_steps": 4165, "total_steps": 4671, "loss": 0.0388, "learning_rate": 3.5337737472691257e-07, "epoch": 2.6750160565189467, "percentage": 89.17, "elapsed_time": "10:31:23", "remaining_time": "1:16:42"} +{"current_steps": 4166, "total_steps": 4671, "loss": 0.0239, "learning_rate": 3.5199861439299097e-07, "epoch": 2.6756583172768145, "percentage": 89.19, "elapsed_time": "10:31:31", "remaining_time": "1:16:33"} +{"current_steps": 4167, "total_steps": 4671, "loss": 0.0197, "learning_rate": 3.50622450911039e-07, "epoch": 2.6763005780346822, "percentage": 89.21, "elapsed_time": "10:31:39", "remaining_time": "1:16:23"} +{"current_steps": 4168, "total_steps": 4671, "loss": 0.0342, "learning_rate": 3.492488850499243e-07, "epoch": 2.6769428387925496, "percentage": 89.23, "elapsed_time": "10:31:47", "remaining_time": "1:16:14"} +{"current_steps": 4169, "total_steps": 4671, "loss": 0.0097, "learning_rate": 3.478779175770619e-07, "epoch": 2.6775850995504173, "percentage": 89.25, "elapsed_time": "10:31:55", "remaining_time": "1:16:05"} +{"current_steps": 4170, "total_steps": 4671, "loss": 0.0155, "learning_rate": 3.465095492584136e-07, "epoch": 2.678227360308285, "percentage": 89.27, "elapsed_time": "10:32:05", "remaining_time": "1:15:56"} +{"current_steps": 4171, "total_steps": 4671, "loss": 0.0211, "learning_rate": 3.4514378085849344e-07, "epoch": 2.678869621066153, "percentage": 89.3, "elapsed_time": "10:32:13", "remaining_time": "1:15:47"} +{"current_steps": 4172, "total_steps": 4671, "loss": 0.0244, "learning_rate": 3.4378061314035926e-07, "epoch": 2.6795118818240207, "percentage": 89.32, "elapsed_time": "10:32:22", "remaining_time": "1:15:38"} +{"current_steps": 4173, "total_steps": 4671, "loss": 0.0159, "learning_rate": 3.4242004686561746e-07, "epoch": 2.6801541425818884, "percentage": 89.34, "elapsed_time": "10:32:30", "remaining_time": "1:15:28"} +{"current_steps": 4174, "total_steps": 4671, "loss": 0.0144, "learning_rate": 3.410620827944183e-07, "epoch": 2.680796403339756, "percentage": 89.36, "elapsed_time": "10:32:39", "remaining_time": "1:15:19"} +{"current_steps": 4175, "total_steps": 4671, "loss": 0.0223, "learning_rate": 3.397067216854616e-07, "epoch": 2.6814386640976235, "percentage": 89.38, "elapsed_time": "10:32:50", "remaining_time": "1:15:10"} +{"current_steps": 4176, "total_steps": 4671, "loss": 0.0236, "learning_rate": 3.383539642959915e-07, "epoch": 2.6820809248554913, "percentage": 89.4, "elapsed_time": "10:32:58", "remaining_time": "1:15:01"} +{"current_steps": 4177, "total_steps": 4671, "loss": 0.027, "learning_rate": 3.3700381138179806e-07, "epoch": 2.682723185613359, "percentage": 89.42, "elapsed_time": "10:33:07", "remaining_time": "1:14:52"} +{"current_steps": 4178, "total_steps": 4671, "loss": 0.0296, "learning_rate": 3.356562636972149e-07, "epoch": 2.683365446371227, "percentage": 89.45, "elapsed_time": "10:33:15", "remaining_time": "1:14:43"} +{"current_steps": 4179, "total_steps": 4671, "loss": 0.0231, "learning_rate": 3.343113219951205e-07, "epoch": 2.684007707129094, "percentage": 89.47, "elapsed_time": "10:33:25", "remaining_time": "1:14:34"} +{"current_steps": 4180, "total_steps": 4671, "loss": 0.0252, "learning_rate": 3.329689870269393e-07, "epoch": 2.684649967886962, "percentage": 89.49, "elapsed_time": "10:33:33", "remaining_time": "1:14:25"} +{"current_steps": 4181, "total_steps": 4671, "loss": 0.0416, "learning_rate": 3.316292595426363e-07, "epoch": 2.6852922286448297, "percentage": 89.51, "elapsed_time": "10:33:42", "remaining_time": "1:14:16"} +{"current_steps": 4182, "total_steps": 4671, "loss": 0.0117, "learning_rate": 3.302921402907211e-07, "epoch": 2.6859344894026975, "percentage": 89.53, "elapsed_time": "10:33:51", "remaining_time": "1:14:06"} +{"current_steps": 4183, "total_steps": 4671, "loss": 0.0154, "learning_rate": 3.289576300182473e-07, "epoch": 2.6865767501605653, "percentage": 89.55, "elapsed_time": "10:33:58", "remaining_time": "1:13:57"} +{"current_steps": 4184, "total_steps": 4671, "loss": 0.0251, "learning_rate": 3.2762572947080907e-07, "epoch": 2.687219010918433, "percentage": 89.57, "elapsed_time": "10:34:07", "remaining_time": "1:13:48"} +{"current_steps": 4185, "total_steps": 4671, "loss": 0.0238, "learning_rate": 3.262964393925433e-07, "epoch": 2.687861271676301, "percentage": 89.6, "elapsed_time": "10:34:16", "remaining_time": "1:13:39"} +{"current_steps": 4186, "total_steps": 4671, "loss": 0.0257, "learning_rate": 3.249697605261276e-07, "epoch": 2.688503532434168, "percentage": 89.62, "elapsed_time": "10:34:24", "remaining_time": "1:13:30"} +{"current_steps": 4187, "total_steps": 4671, "loss": 0.0414, "learning_rate": 3.2364569361278187e-07, "epoch": 2.689145793192036, "percentage": 89.64, "elapsed_time": "10:34:32", "remaining_time": "1:13:21"} +{"current_steps": 4188, "total_steps": 4671, "loss": 0.0228, "learning_rate": 3.223242393922671e-07, "epoch": 2.6897880539499037, "percentage": 89.66, "elapsed_time": "10:34:42", "remaining_time": "1:13:12"} +{"current_steps": 4189, "total_steps": 4671, "loss": 0.0221, "learning_rate": 3.210053986028822e-07, "epoch": 2.6904303147077715, "percentage": 89.68, "elapsed_time": "10:34:52", "remaining_time": "1:13:03"} +{"current_steps": 4190, "total_steps": 4671, "loss": 0.011, "learning_rate": 3.1968917198146765e-07, "epoch": 2.691072575465639, "percentage": 89.7, "elapsed_time": "10:35:02", "remaining_time": "1:12:54"} +{"current_steps": 4191, "total_steps": 4671, "loss": 0.0165, "learning_rate": 3.18375560263402e-07, "epoch": 2.6917148362235066, "percentage": 89.72, "elapsed_time": "10:35:09", "remaining_time": "1:12:44"} +{"current_steps": 4192, "total_steps": 4671, "loss": 0.0149, "learning_rate": 3.1706456418260643e-07, "epoch": 2.6923570969813744, "percentage": 89.75, "elapsed_time": "10:35:18", "remaining_time": "1:12:35"} +{"current_steps": 4193, "total_steps": 4671, "loss": 0.0291, "learning_rate": 3.1575618447153736e-07, "epoch": 2.692999357739242, "percentage": 89.77, "elapsed_time": "10:35:27", "remaining_time": "1:12:26"} +{"current_steps": 4194, "total_steps": 4671, "loss": 0.0362, "learning_rate": 3.144504218611899e-07, "epoch": 2.69364161849711, "percentage": 89.79, "elapsed_time": "10:35:35", "remaining_time": "1:12:17"} +{"current_steps": 4195, "total_steps": 4671, "loss": 0.0295, "learning_rate": 3.1314727708109725e-07, "epoch": 2.6942838792549777, "percentage": 89.81, "elapsed_time": "10:35:45", "remaining_time": "1:12:08"} +{"current_steps": 4196, "total_steps": 4671, "loss": 0.0162, "learning_rate": 3.11846750859332e-07, "epoch": 2.6949261400128455, "percentage": 89.83, "elapsed_time": "10:35:53", "remaining_time": "1:11:59"} +{"current_steps": 4197, "total_steps": 4671, "loss": 0.0488, "learning_rate": 3.1054884392249964e-07, "epoch": 2.695568400770713, "percentage": 89.85, "elapsed_time": "10:36:03", "remaining_time": "1:11:50"} +{"current_steps": 4198, "total_steps": 4671, "loss": 0.0193, "learning_rate": 3.0925355699574554e-07, "epoch": 2.6962106615285806, "percentage": 89.87, "elapsed_time": "10:36:12", "remaining_time": "1:11:40"} +{"current_steps": 4199, "total_steps": 4671, "loss": 0.0094, "learning_rate": 3.079608908027498e-07, "epoch": 2.6968529222864484, "percentage": 89.9, "elapsed_time": "10:36:23", "remaining_time": "1:11:32"} +{"current_steps": 4200, "total_steps": 4671, "loss": 0.0167, "learning_rate": 3.0667084606572973e-07, "epoch": 2.697495183044316, "percentage": 89.92, "elapsed_time": "10:36:30", "remaining_time": "1:11:22"} +{"current_steps": 4201, "total_steps": 4671, "loss": 0.0137, "learning_rate": 3.053834235054365e-07, "epoch": 2.6981374438021835, "percentage": 89.94, "elapsed_time": "10:36:38", "remaining_time": "1:11:13"} +{"current_steps": 4202, "total_steps": 4671, "loss": 0.047, "learning_rate": 3.04098623841157e-07, "epoch": 2.6987797045600512, "percentage": 89.96, "elapsed_time": "10:36:47", "remaining_time": "1:11:04"} +{"current_steps": 4203, "total_steps": 4671, "loss": 0.018, "learning_rate": 3.028164477907125e-07, "epoch": 2.699421965317919, "percentage": 89.98, "elapsed_time": "10:36:55", "remaining_time": "1:10:55"} +{"current_steps": 4204, "total_steps": 4671, "loss": 0.0399, "learning_rate": 3.015368960704584e-07, "epoch": 2.7000642260757868, "percentage": 90.0, "elapsed_time": "10:37:06", "remaining_time": "1:10:46"} +{"current_steps": 4205, "total_steps": 4671, "loss": 0.0223, "learning_rate": 3.0025996939528403e-07, "epoch": 2.7007064868336546, "percentage": 90.02, "elapsed_time": "10:37:15", "remaining_time": "1:10:37"} +{"current_steps": 4206, "total_steps": 4671, "loss": 0.0147, "learning_rate": 2.9898566847861243e-07, "epoch": 2.7013487475915223, "percentage": 90.04, "elapsed_time": "10:37:24", "remaining_time": "1:10:28"} +{"current_steps": 4207, "total_steps": 4671, "loss": 0.0096, "learning_rate": 2.977139940323992e-07, "epoch": 2.70199100834939, "percentage": 90.07, "elapsed_time": "10:37:32", "remaining_time": "1:10:18"} +{"current_steps": 4208, "total_steps": 4671, "loss": 0.0274, "learning_rate": 2.964449467671321e-07, "epoch": 2.7026332691072574, "percentage": 90.09, "elapsed_time": "10:37:41", "remaining_time": "1:10:09"} +{"current_steps": 4209, "total_steps": 4671, "loss": 0.0513, "learning_rate": 2.951785273918323e-07, "epoch": 2.703275529865125, "percentage": 90.11, "elapsed_time": "10:37:51", "remaining_time": "1:10:00"} +{"current_steps": 4210, "total_steps": 4671, "loss": 0.0378, "learning_rate": 2.93914736614051e-07, "epoch": 2.703917790622993, "percentage": 90.13, "elapsed_time": "10:38:00", "remaining_time": "1:09:51"} +{"current_steps": 4211, "total_steps": 4671, "loss": 0.0084, "learning_rate": 2.9265357513987237e-07, "epoch": 2.7045600513808608, "percentage": 90.15, "elapsed_time": "10:38:08", "remaining_time": "1:09:42"} +{"current_steps": 4212, "total_steps": 4671, "loss": 0.0139, "learning_rate": 2.913950436739116e-07, "epoch": 2.705202312138728, "percentage": 90.17, "elapsed_time": "10:38:17", "remaining_time": "1:09:33"} +{"current_steps": 4213, "total_steps": 4671, "loss": 0.0256, "learning_rate": 2.901391429193123e-07, "epoch": 2.705844572896596, "percentage": 90.19, "elapsed_time": "10:38:28", "remaining_time": "1:09:24"} +{"current_steps": 4214, "total_steps": 4671, "loss": 0.0214, "learning_rate": 2.888858735777511e-07, "epoch": 2.7064868336544636, "percentage": 90.22, "elapsed_time": "10:38:38", "remaining_time": "1:09:15"} +{"current_steps": 4215, "total_steps": 4671, "loss": 0.0196, "learning_rate": 2.8763523634943336e-07, "epoch": 2.7071290944123314, "percentage": 90.24, "elapsed_time": "10:38:46", "remaining_time": "1:09:06"} +{"current_steps": 4216, "total_steps": 4671, "loss": 0.0193, "learning_rate": 2.8638723193309295e-07, "epoch": 2.707771355170199, "percentage": 90.26, "elapsed_time": "10:38:56", "remaining_time": "1:08:57"} +{"current_steps": 4217, "total_steps": 4671, "loss": 0.021, "learning_rate": 2.851418610259943e-07, "epoch": 2.708413615928067, "percentage": 90.28, "elapsed_time": "10:39:05", "remaining_time": "1:08:48"} +{"current_steps": 4218, "total_steps": 4671, "loss": 0.022, "learning_rate": 2.8389912432392974e-07, "epoch": 2.7090558766859347, "percentage": 90.3, "elapsed_time": "10:39:13", "remaining_time": "1:08:39"} +{"current_steps": 4219, "total_steps": 4671, "loss": 0.0185, "learning_rate": 2.8265902252121946e-07, "epoch": 2.709698137443802, "percentage": 90.32, "elapsed_time": "10:39:21", "remaining_time": "1:08:29"} +{"current_steps": 4220, "total_steps": 4671, "loss": 0.0269, "learning_rate": 2.814215563107131e-07, "epoch": 2.71034039820167, "percentage": 90.34, "elapsed_time": "10:39:32", "remaining_time": "1:08:20"} +{"current_steps": 4221, "total_steps": 4671, "loss": 0.0207, "learning_rate": 2.8018672638378486e-07, "epoch": 2.7109826589595376, "percentage": 90.37, "elapsed_time": "10:39:42", "remaining_time": "1:08:11"} +{"current_steps": 4222, "total_steps": 4671, "loss": 0.028, "learning_rate": 2.78954533430339e-07, "epoch": 2.7116249197174054, "percentage": 90.39, "elapsed_time": "10:39:51", "remaining_time": "1:08:02"} +{"current_steps": 4223, "total_steps": 4671, "loss": 0.0207, "learning_rate": 2.777249781388047e-07, "epoch": 2.7122671804752727, "percentage": 90.41, "elapsed_time": "10:39:58", "remaining_time": "1:07:53"} +{"current_steps": 4224, "total_steps": 4671, "loss": 0.0192, "learning_rate": 2.7649806119613877e-07, "epoch": 2.7129094412331405, "percentage": 90.43, "elapsed_time": "10:40:06", "remaining_time": "1:07:44"} +{"current_steps": 4225, "total_steps": 4671, "loss": 0.0452, "learning_rate": 2.752737832878222e-07, "epoch": 2.7135517019910083, "percentage": 90.45, "elapsed_time": "10:40:16", "remaining_time": "1:07:35"} +{"current_steps": 4226, "total_steps": 4671, "loss": 0.0286, "learning_rate": 2.740521450978639e-07, "epoch": 2.714193962748876, "percentage": 90.47, "elapsed_time": "10:40:25", "remaining_time": "1:07:26"} +{"current_steps": 4227, "total_steps": 4671, "loss": 0.022, "learning_rate": 2.728331473087964e-07, "epoch": 2.714836223506744, "percentage": 90.49, "elapsed_time": "10:40:33", "remaining_time": "1:07:17"} +{"current_steps": 4228, "total_steps": 4671, "loss": 0.0183, "learning_rate": 2.7161679060167757e-07, "epoch": 2.7154784842646116, "percentage": 90.52, "elapsed_time": "10:40:42", "remaining_time": "1:07:07"} +{"current_steps": 4229, "total_steps": 4671, "loss": 0.0117, "learning_rate": 2.704030756560888e-07, "epoch": 2.7161207450224794, "percentage": 90.54, "elapsed_time": "10:40:51", "remaining_time": "1:06:58"} +{"current_steps": 4230, "total_steps": 4671, "loss": 0.0255, "learning_rate": 2.6919200315013606e-07, "epoch": 2.7167630057803467, "percentage": 90.56, "elapsed_time": "10:41:01", "remaining_time": "1:06:49"} +{"current_steps": 4231, "total_steps": 4671, "loss": 0.014, "learning_rate": 2.679835737604491e-07, "epoch": 2.7174052665382145, "percentage": 90.58, "elapsed_time": "10:41:10", "remaining_time": "1:06:40"} +{"current_steps": 4232, "total_steps": 4671, "loss": 0.0716, "learning_rate": 2.667777881621819e-07, "epoch": 2.7180475272960822, "percentage": 90.6, "elapsed_time": "10:41:21", "remaining_time": "1:06:31"} +{"current_steps": 4233, "total_steps": 4671, "loss": 0.019, "learning_rate": 2.655746470290099e-07, "epoch": 2.71868978805395, "percentage": 90.62, "elapsed_time": "10:41:29", "remaining_time": "1:06:22"} +{"current_steps": 4234, "total_steps": 4671, "loss": 0.0123, "learning_rate": 2.64374151033131e-07, "epoch": 2.7193320488118173, "percentage": 90.64, "elapsed_time": "10:41:37", "remaining_time": "1:06:13"} +{"current_steps": 4235, "total_steps": 4671, "loss": 0.0263, "learning_rate": 2.631763008452665e-07, "epoch": 2.719974309569685, "percentage": 90.67, "elapsed_time": "10:41:47", "remaining_time": "1:06:04"} +{"current_steps": 4236, "total_steps": 4671, "loss": 0.0357, "learning_rate": 2.619810971346587e-07, "epoch": 2.720616570327553, "percentage": 90.69, "elapsed_time": "10:41:56", "remaining_time": "1:05:55"} +{"current_steps": 4237, "total_steps": 4671, "loss": 0.0197, "learning_rate": 2.6078854056907135e-07, "epoch": 2.7212588310854207, "percentage": 90.71, "elapsed_time": "10:42:05", "remaining_time": "1:05:46"} +{"current_steps": 4238, "total_steps": 4671, "loss": 0.0254, "learning_rate": 2.595986318147892e-07, "epoch": 2.7219010918432884, "percentage": 90.73, "elapsed_time": "10:42:13", "remaining_time": "1:05:36"} +{"current_steps": 4239, "total_steps": 4671, "loss": 0.0152, "learning_rate": 2.5841137153661765e-07, "epoch": 2.722543352601156, "percentage": 90.75, "elapsed_time": "10:42:21", "remaining_time": "1:05:27"} +{"current_steps": 4240, "total_steps": 4671, "loss": 0.0254, "learning_rate": 2.5722676039788286e-07, "epoch": 2.723185613359024, "percentage": 90.77, "elapsed_time": "10:42:29", "remaining_time": "1:05:18"} +{"current_steps": 4241, "total_steps": 4671, "loss": 0.0135, "learning_rate": 2.5604479906043035e-07, "epoch": 2.7238278741168913, "percentage": 90.79, "elapsed_time": "10:42:38", "remaining_time": "1:05:09"} +{"current_steps": 4242, "total_steps": 4671, "loss": 0.0339, "learning_rate": 2.548654881846252e-07, "epoch": 2.724470134874759, "percentage": 90.82, "elapsed_time": "10:42:46", "remaining_time": "1:05:00"} +{"current_steps": 4243, "total_steps": 4671, "loss": 0.0136, "learning_rate": 2.536888284293526e-07, "epoch": 2.725112395632627, "percentage": 90.84, "elapsed_time": "10:42:54", "remaining_time": "1:04:51"} +{"current_steps": 4244, "total_steps": 4671, "loss": 0.0222, "learning_rate": 2.5251482045201446e-07, "epoch": 2.7257546563904946, "percentage": 90.86, "elapsed_time": "10:43:03", "remaining_time": "1:04:42"} +{"current_steps": 4245, "total_steps": 4671, "loss": 0.0382, "learning_rate": 2.513434649085339e-07, "epoch": 2.726396917148362, "percentage": 90.88, "elapsed_time": "10:43:13", "remaining_time": "1:04:32"} +{"current_steps": 4246, "total_steps": 4671, "loss": 0.0226, "learning_rate": 2.5017476245334907e-07, "epoch": 2.7270391779062297, "percentage": 90.9, "elapsed_time": "10:43:22", "remaining_time": "1:04:23"} +{"current_steps": 4247, "total_steps": 4671, "loss": 0.0329, "learning_rate": 2.4900871373941817e-07, "epoch": 2.7276814386640975, "percentage": 90.92, "elapsed_time": "10:43:31", "remaining_time": "1:04:14"} +{"current_steps": 4248, "total_steps": 4671, "loss": 0.0112, "learning_rate": 2.4784531941821675e-07, "epoch": 2.7283236994219653, "percentage": 90.94, "elapsed_time": "10:43:41", "remaining_time": "1:04:05"} +{"current_steps": 4249, "total_steps": 4671, "loss": 0.0229, "learning_rate": 2.4668458013973664e-07, "epoch": 2.728965960179833, "percentage": 90.97, "elapsed_time": "10:43:50", "remaining_time": "1:03:56"} +{"current_steps": 4250, "total_steps": 4671, "loss": 0.0363, "learning_rate": 2.4552649655248507e-07, "epoch": 2.729608220937701, "percentage": 90.99, "elapsed_time": "10:43:59", "remaining_time": "1:03:47"} +{"current_steps": 4251, "total_steps": 4671, "loss": 0.033, "learning_rate": 2.4437106930348843e-07, "epoch": 2.7302504816955686, "percentage": 91.01, "elapsed_time": "10:44:09", "remaining_time": "1:03:38"} +{"current_steps": 4252, "total_steps": 4671, "loss": 0.0165, "learning_rate": 2.432182990382853e-07, "epoch": 2.730892742453436, "percentage": 91.03, "elapsed_time": "10:44:17", "remaining_time": "1:03:29"} +{"current_steps": 4253, "total_steps": 4671, "loss": 0.0163, "learning_rate": 2.4206818640093334e-07, "epoch": 2.7315350032113037, "percentage": 91.05, "elapsed_time": "10:44:28", "remaining_time": "1:03:20"} +{"current_steps": 4254, "total_steps": 4671, "loss": 0.029, "learning_rate": 2.409207320340029e-07, "epoch": 2.7321772639691715, "percentage": 91.07, "elapsed_time": "10:44:38", "remaining_time": "1:03:11"} +{"current_steps": 4255, "total_steps": 4671, "loss": 0.025, "learning_rate": 2.397759365785801e-07, "epoch": 2.7328195247270393, "percentage": 91.09, "elapsed_time": "10:44:48", "remaining_time": "1:03:02"} +{"current_steps": 4256, "total_steps": 4671, "loss": 0.0218, "learning_rate": 2.386338006742661e-07, "epoch": 2.733461785484907, "percentage": 91.12, "elapsed_time": "10:44:56", "remaining_time": "1:02:53"} +{"current_steps": 4257, "total_steps": 4671, "loss": 0.0333, "learning_rate": 2.3749432495917546e-07, "epoch": 2.7341040462427744, "percentage": 91.14, "elapsed_time": "10:45:04", "remaining_time": "1:02:44"} +{"current_steps": 4258, "total_steps": 4671, "loss": 0.0344, "learning_rate": 2.3635751006993668e-07, "epoch": 2.734746307000642, "percentage": 91.16, "elapsed_time": "10:45:13", "remaining_time": "1:02:35"} +{"current_steps": 4259, "total_steps": 4671, "loss": 0.039, "learning_rate": 2.3522335664169115e-07, "epoch": 2.73538856775851, "percentage": 91.18, "elapsed_time": "10:45:22", "remaining_time": "1:02:25"} +{"current_steps": 4260, "total_steps": 4671, "loss": 0.0306, "learning_rate": 2.3409186530809425e-07, "epoch": 2.7360308285163777, "percentage": 91.2, "elapsed_time": "10:45:30", "remaining_time": "1:02:16"} +{"current_steps": 4261, "total_steps": 4671, "loss": 0.0298, "learning_rate": 2.329630367013125e-07, "epoch": 2.7366730892742455, "percentage": 91.22, "elapsed_time": "10:45:41", "remaining_time": "1:02:07"} +{"current_steps": 4262, "total_steps": 4671, "loss": 0.0407, "learning_rate": 2.3183687145202694e-07, "epoch": 2.7373153500321132, "percentage": 91.24, "elapsed_time": "10:45:50", "remaining_time": "1:01:58"} +{"current_steps": 4263, "total_steps": 4671, "loss": 0.0406, "learning_rate": 2.3071337018942876e-07, "epoch": 2.7379576107899806, "percentage": 91.27, "elapsed_time": "10:46:01", "remaining_time": "1:01:49"} +{"current_steps": 4264, "total_steps": 4671, "loss": 0.0177, "learning_rate": 2.2959253354122135e-07, "epoch": 2.7385998715478483, "percentage": 91.29, "elapsed_time": "10:46:10", "remaining_time": "1:01:40"} +{"current_steps": 4265, "total_steps": 4671, "loss": 0.0085, "learning_rate": 2.284743621336194e-07, "epoch": 2.739242132305716, "percentage": 91.31, "elapsed_time": "10:46:18", "remaining_time": "1:01:31"} +{"current_steps": 4266, "total_steps": 4671, "loss": 0.0208, "learning_rate": 2.2735885659134927e-07, "epoch": 2.739884393063584, "percentage": 91.33, "elapsed_time": "10:46:28", "remaining_time": "1:01:22"} +{"current_steps": 4267, "total_steps": 4671, "loss": 0.0175, "learning_rate": 2.2624601753764687e-07, "epoch": 2.7405266538214517, "percentage": 91.35, "elapsed_time": "10:46:37", "remaining_time": "1:01:13"} +{"current_steps": 4268, "total_steps": 4671, "loss": 0.0242, "learning_rate": 2.2513584559425704e-07, "epoch": 2.741168914579319, "percentage": 91.37, "elapsed_time": "10:46:46", "remaining_time": "1:01:04"} +{"current_steps": 4269, "total_steps": 4671, "loss": 0.0091, "learning_rate": 2.240283413814387e-07, "epoch": 2.7418111753371868, "percentage": 91.39, "elapsed_time": "10:46:55", "remaining_time": "1:00:55"} +{"current_steps": 4270, "total_steps": 4671, "loss": 0.0341, "learning_rate": 2.2292350551795572e-07, "epoch": 2.7424534360950545, "percentage": 91.42, "elapsed_time": "10:47:04", "remaining_time": "1:00:46"} +{"current_steps": 4271, "total_steps": 4671, "loss": 0.0317, "learning_rate": 2.2182133862108436e-07, "epoch": 2.7430956968529223, "percentage": 91.44, "elapsed_time": "10:47:15", "remaining_time": "1:00:37"} +{"current_steps": 4272, "total_steps": 4671, "loss": 0.0325, "learning_rate": 2.2072184130660757e-07, "epoch": 2.74373795761079, "percentage": 91.46, "elapsed_time": "10:47:22", "remaining_time": "1:00:27"} +{"current_steps": 4273, "total_steps": 4671, "loss": 0.0295, "learning_rate": 2.1962501418881842e-07, "epoch": 2.744380218368658, "percentage": 91.48, "elapsed_time": "10:47:33", "remaining_time": "1:00:18"} +{"current_steps": 4274, "total_steps": 4671, "loss": 0.0145, "learning_rate": 2.1853085788051677e-07, "epoch": 2.7450224791265256, "percentage": 91.5, "elapsed_time": "10:47:42", "remaining_time": "1:00:09"} +{"current_steps": 4275, "total_steps": 4671, "loss": 0.0182, "learning_rate": 2.1743937299301242e-07, "epoch": 2.745664739884393, "percentage": 91.52, "elapsed_time": "10:47:51", "remaining_time": "1:00:00"} +{"current_steps": 4276, "total_steps": 4671, "loss": 0.0355, "learning_rate": 2.1635056013611877e-07, "epoch": 2.7463070006422607, "percentage": 91.54, "elapsed_time": "10:48:01", "remaining_time": "0:59:51"} +{"current_steps": 4277, "total_steps": 4671, "loss": 0.0329, "learning_rate": 2.1526441991816082e-07, "epoch": 2.7469492614001285, "percentage": 91.56, "elapsed_time": "10:48:12", "remaining_time": "0:59:42"} +{"current_steps": 4278, "total_steps": 4671, "loss": 0.034, "learning_rate": 2.1418095294596707e-07, "epoch": 2.7475915221579963, "percentage": 91.59, "elapsed_time": "10:48:20", "remaining_time": "0:59:33"} +{"current_steps": 4279, "total_steps": 4671, "loss": 0.0122, "learning_rate": 2.1310015982487387e-07, "epoch": 2.7482337829158636, "percentage": 91.61, "elapsed_time": "10:48:30", "remaining_time": "0:59:24"} +{"current_steps": 4280, "total_steps": 4671, "loss": 0.0247, "learning_rate": 2.1202204115872316e-07, "epoch": 2.7488760436737314, "percentage": 91.63, "elapsed_time": "10:48:41", "remaining_time": "0:59:15"} +{"current_steps": 4281, "total_steps": 4671, "loss": 0.0419, "learning_rate": 2.109465975498648e-07, "epoch": 2.749518304431599, "percentage": 91.65, "elapsed_time": "10:48:50", "remaining_time": "0:59:06"} +{"current_steps": 4282, "total_steps": 4671, "loss": 0.0184, "learning_rate": 2.0987382959915038e-07, "epoch": 2.750160565189467, "percentage": 91.67, "elapsed_time": "10:48:57", "remaining_time": "0:58:57"} +{"current_steps": 4283, "total_steps": 4671, "loss": 0.0181, "learning_rate": 2.0880373790594043e-07, "epoch": 2.7508028259473347, "percentage": 91.69, "elapsed_time": "10:49:04", "remaining_time": "0:58:48"} +{"current_steps": 4284, "total_steps": 4671, "loss": 0.0253, "learning_rate": 2.0773632306809622e-07, "epoch": 2.7514450867052025, "percentage": 91.71, "elapsed_time": "10:49:14", "remaining_time": "0:58:38"} +{"current_steps": 4285, "total_steps": 4671, "loss": 0.0406, "learning_rate": 2.0667158568198618e-07, "epoch": 2.7520873474630703, "percentage": 91.74, "elapsed_time": "10:49:25", "remaining_time": "0:58:30"} +{"current_steps": 4286, "total_steps": 4671, "loss": 0.016, "learning_rate": 2.0560952634248231e-07, "epoch": 2.7527296082209376, "percentage": 91.76, "elapsed_time": "10:49:35", "remaining_time": "0:58:21"} +{"current_steps": 4287, "total_steps": 4671, "loss": 0.0195, "learning_rate": 2.045501456429605e-07, "epoch": 2.7533718689788054, "percentage": 91.78, "elapsed_time": "10:49:45", "remaining_time": "0:58:12"} +{"current_steps": 4288, "total_steps": 4671, "loss": 0.0234, "learning_rate": 2.0349344417530004e-07, "epoch": 2.754014129736673, "percentage": 91.8, "elapsed_time": "10:49:52", "remaining_time": "0:58:02"} +{"current_steps": 4289, "total_steps": 4671, "loss": 0.0251, "learning_rate": 2.0243942252988203e-07, "epoch": 2.754656390494541, "percentage": 91.82, "elapsed_time": "10:50:00", "remaining_time": "0:57:53"} +{"current_steps": 4290, "total_steps": 4671, "loss": 0.023, "learning_rate": 2.0138808129559261e-07, "epoch": 2.7552986512524082, "percentage": 91.84, "elapsed_time": "10:50:09", "remaining_time": "0:57:44"} +{"current_steps": 4291, "total_steps": 4671, "loss": 0.0167, "learning_rate": 2.0033942105981918e-07, "epoch": 2.755940912010276, "percentage": 91.86, "elapsed_time": "10:50:17", "remaining_time": "0:57:35"} +{"current_steps": 4292, "total_steps": 4671, "loss": 0.0237, "learning_rate": 1.9929344240845027e-07, "epoch": 2.756583172768144, "percentage": 91.89, "elapsed_time": "10:50:26", "remaining_time": "0:57:26"} +{"current_steps": 4293, "total_steps": 4671, "loss": 0.0229, "learning_rate": 1.9825014592587844e-07, "epoch": 2.7572254335260116, "percentage": 91.91, "elapsed_time": "10:50:35", "remaining_time": "0:57:17"} +{"current_steps": 4294, "total_steps": 4671, "loss": 0.0227, "learning_rate": 1.9720953219499516e-07, "epoch": 2.7578676942838793, "percentage": 91.93, "elapsed_time": "10:50:44", "remaining_time": "0:57:07"} +{"current_steps": 4295, "total_steps": 4671, "loss": 0.0267, "learning_rate": 1.9617160179719596e-07, "epoch": 2.758509955041747, "percentage": 91.95, "elapsed_time": "10:50:52", "remaining_time": "0:56:58"} +{"current_steps": 4296, "total_steps": 4671, "loss": 0.0223, "learning_rate": 1.9513635531237418e-07, "epoch": 2.759152215799615, "percentage": 91.97, "elapsed_time": "10:51:00", "remaining_time": "0:56:49"} +{"current_steps": 4297, "total_steps": 4671, "loss": 0.0287, "learning_rate": 1.9410379331892547e-07, "epoch": 2.7597944765574822, "percentage": 91.99, "elapsed_time": "10:51:10", "remaining_time": "0:56:40"} +{"current_steps": 4298, "total_steps": 4671, "loss": 0.0416, "learning_rate": 1.9307391639374616e-07, "epoch": 2.76043673731535, "percentage": 92.01, "elapsed_time": "10:51:19", "remaining_time": "0:56:31"} +{"current_steps": 4299, "total_steps": 4671, "loss": 0.0356, "learning_rate": 1.9204672511223044e-07, "epoch": 2.7610789980732178, "percentage": 92.04, "elapsed_time": "10:51:28", "remaining_time": "0:56:22"} +{"current_steps": 4300, "total_steps": 4671, "loss": 0.0249, "learning_rate": 1.910222200482731e-07, "epoch": 2.7617212588310855, "percentage": 92.06, "elapsed_time": "10:51:37", "remaining_time": "0:56:13"} +{"current_steps": 4301, "total_steps": 4671, "loss": 0.011, "learning_rate": 1.9000040177426793e-07, "epoch": 2.762363519588953, "percentage": 92.08, "elapsed_time": "10:51:45", "remaining_time": "0:56:04"} +{"current_steps": 4302, "total_steps": 4671, "loss": 0.0317, "learning_rate": 1.889812708611083e-07, "epoch": 2.7630057803468207, "percentage": 92.1, "elapsed_time": "10:51:55", "remaining_time": "0:55:55"} +{"current_steps": 4303, "total_steps": 4671, "loss": 0.0424, "learning_rate": 1.8796482787818593e-07, "epoch": 2.7636480411046884, "percentage": 92.12, "elapsed_time": "10:52:05", "remaining_time": "0:55:46"} +{"current_steps": 4304, "total_steps": 4671, "loss": 0.0165, "learning_rate": 1.869510733933899e-07, "epoch": 2.764290301862556, "percentage": 92.14, "elapsed_time": "10:52:16", "remaining_time": "0:55:37"} +{"current_steps": 4305, "total_steps": 4671, "loss": 0.0284, "learning_rate": 1.859400079731083e-07, "epoch": 2.764932562620424, "percentage": 92.16, "elapsed_time": "10:52:26", "remaining_time": "0:55:28"} +{"current_steps": 4306, "total_steps": 4671, "loss": 0.0357, "learning_rate": 1.8493163218222643e-07, "epoch": 2.7655748233782917, "percentage": 92.19, "elapsed_time": "10:52:35", "remaining_time": "0:55:19"} +{"current_steps": 4307, "total_steps": 4671, "loss": 0.011, "learning_rate": 1.8392594658412588e-07, "epoch": 2.7662170841361595, "percentage": 92.21, "elapsed_time": "10:52:44", "remaining_time": "0:55:09"} +{"current_steps": 4308, "total_steps": 4671, "loss": 0.0582, "learning_rate": 1.829229517406872e-07, "epoch": 2.766859344894027, "percentage": 92.23, "elapsed_time": "10:52:54", "remaining_time": "0:55:00"} +{"current_steps": 4309, "total_steps": 4671, "loss": 0.0166, "learning_rate": 1.8192264821228544e-07, "epoch": 2.7675016056518946, "percentage": 92.25, "elapsed_time": "10:53:03", "remaining_time": "0:54:51"} +{"current_steps": 4310, "total_steps": 4671, "loss": 0.0092, "learning_rate": 1.8092503655779357e-07, "epoch": 2.7681438664097624, "percentage": 92.27, "elapsed_time": "10:53:09", "remaining_time": "0:54:42"} +{"current_steps": 4311, "total_steps": 4671, "loss": 0.0295, "learning_rate": 1.7993011733458077e-07, "epoch": 2.76878612716763, "percentage": 92.29, "elapsed_time": "10:53:19", "remaining_time": "0:54:33"} +{"current_steps": 4312, "total_steps": 4671, "loss": 0.0243, "learning_rate": 1.7893789109851069e-07, "epoch": 2.7694283879254975, "percentage": 92.31, "elapsed_time": "10:53:28", "remaining_time": "0:54:24"} +{"current_steps": 4313, "total_steps": 4671, "loss": 0.0314, "learning_rate": 1.779483584039432e-07, "epoch": 2.7700706486833653, "percentage": 92.34, "elapsed_time": "10:53:37", "remaining_time": "0:54:15"} +{"current_steps": 4314, "total_steps": 4671, "loss": 0.0146, "learning_rate": 1.7696151980373278e-07, "epoch": 2.770712909441233, "percentage": 92.36, "elapsed_time": "10:53:45", "remaining_time": "0:54:06"} +{"current_steps": 4315, "total_steps": 4671, "loss": 0.0407, "learning_rate": 1.7597737584922946e-07, "epoch": 2.771355170199101, "percentage": 92.38, "elapsed_time": "10:53:53", "remaining_time": "0:53:56"} +{"current_steps": 4316, "total_steps": 4671, "loss": 0.0278, "learning_rate": 1.7499592709027679e-07, "epoch": 2.7719974309569686, "percentage": 92.4, "elapsed_time": "10:54:01", "remaining_time": "0:53:47"} +{"current_steps": 4317, "total_steps": 4671, "loss": 0.023, "learning_rate": 1.740171740752139e-07, "epoch": 2.7726396917148364, "percentage": 92.42, "elapsed_time": "10:54:08", "remaining_time": "0:53:38"} +{"current_steps": 4318, "total_steps": 4671, "loss": 0.0221, "learning_rate": 1.730411173508728e-07, "epoch": 2.773281952472704, "percentage": 92.44, "elapsed_time": "10:54:19", "remaining_time": "0:53:29"} +{"current_steps": 4319, "total_steps": 4671, "loss": 0.0174, "learning_rate": 1.7206775746257898e-07, "epoch": 2.7739242132305715, "percentage": 92.46, "elapsed_time": "10:54:28", "remaining_time": "0:53:20"} +{"current_steps": 4320, "total_steps": 4671, "loss": 0.0239, "learning_rate": 1.7109709495415073e-07, "epoch": 2.7745664739884393, "percentage": 92.49, "elapsed_time": "10:54:35", "remaining_time": "0:53:11"} +{"current_steps": 4321, "total_steps": 4671, "loss": 0.0117, "learning_rate": 1.7012913036790145e-07, "epoch": 2.775208734746307, "percentage": 92.51, "elapsed_time": "10:54:43", "remaining_time": "0:53:01"} +{"current_steps": 4322, "total_steps": 4671, "loss": 0.0138, "learning_rate": 1.6916386424463527e-07, "epoch": 2.775850995504175, "percentage": 92.53, "elapsed_time": "10:54:53", "remaining_time": "0:52:52"} +{"current_steps": 4323, "total_steps": 4671, "loss": 0.0317, "learning_rate": 1.6820129712364852e-07, "epoch": 2.776493256262042, "percentage": 92.55, "elapsed_time": "10:55:02", "remaining_time": "0:52:43"} +{"current_steps": 4324, "total_steps": 4671, "loss": 0.0057, "learning_rate": 1.672414295427305e-07, "epoch": 2.77713551701991, "percentage": 92.57, "elapsed_time": "10:55:10", "remaining_time": "0:52:34"} +{"current_steps": 4325, "total_steps": 4671, "loss": 0.009, "learning_rate": 1.6628426203816273e-07, "epoch": 2.7777777777777777, "percentage": 92.59, "elapsed_time": "10:55:22", "remaining_time": "0:52:25"} +{"current_steps": 4326, "total_steps": 4671, "loss": 0.0256, "learning_rate": 1.6532979514471747e-07, "epoch": 2.7784200385356455, "percentage": 92.61, "elapsed_time": "10:55:31", "remaining_time": "0:52:16"} +{"current_steps": 4327, "total_steps": 4671, "loss": 0.0329, "learning_rate": 1.6437802939565705e-07, "epoch": 2.7790622992935132, "percentage": 92.64, "elapsed_time": "10:55:40", "remaining_time": "0:52:07"} +{"current_steps": 4328, "total_steps": 4671, "loss": 0.0314, "learning_rate": 1.6342896532273666e-07, "epoch": 2.779704560051381, "percentage": 92.66, "elapsed_time": "10:55:48", "remaining_time": "0:51:58"} +{"current_steps": 4329, "total_steps": 4671, "loss": 0.0486, "learning_rate": 1.624826034562016e-07, "epoch": 2.7803468208092488, "percentage": 92.68, "elapsed_time": "10:55:57", "remaining_time": "0:51:49"} +{"current_steps": 4330, "total_steps": 4671, "loss": 0.0203, "learning_rate": 1.615389443247861e-07, "epoch": 2.780989081567116, "percentage": 92.7, "elapsed_time": "10:56:08", "remaining_time": "0:51:40"} +{"current_steps": 4331, "total_steps": 4671, "loss": 0.0124, "learning_rate": 1.6059798845571572e-07, "epoch": 2.781631342324984, "percentage": 92.72, "elapsed_time": "10:56:16", "remaining_time": "0:51:31"} +{"current_steps": 4332, "total_steps": 4671, "loss": 0.0253, "learning_rate": 1.5965973637470489e-07, "epoch": 2.7822736030828517, "percentage": 92.74, "elapsed_time": "10:56:25", "remaining_time": "0:51:22"} +{"current_steps": 4333, "total_steps": 4671, "loss": 0.0189, "learning_rate": 1.5872418860595817e-07, "epoch": 2.7829158638407194, "percentage": 92.76, "elapsed_time": "10:56:33", "remaining_time": "0:51:12"} +{"current_steps": 4334, "total_steps": 4671, "loss": 0.0108, "learning_rate": 1.5779134567216857e-07, "epoch": 2.7835581245985868, "percentage": 92.79, "elapsed_time": "10:56:42", "remaining_time": "0:51:03"} +{"current_steps": 4335, "total_steps": 4671, "loss": 0.0324, "learning_rate": 1.568612080945181e-07, "epoch": 2.7842003853564545, "percentage": 92.81, "elapsed_time": "10:56:50", "remaining_time": "0:50:54"} +{"current_steps": 4336, "total_steps": 4671, "loss": 0.0402, "learning_rate": 1.5593377639267715e-07, "epoch": 2.7848426461143223, "percentage": 92.83, "elapsed_time": "10:57:00", "remaining_time": "0:50:45"} +{"current_steps": 4337, "total_steps": 4671, "loss": 0.0135, "learning_rate": 1.550090510848057e-07, "epoch": 2.78548490687219, "percentage": 92.85, "elapsed_time": "10:57:08", "remaining_time": "0:50:36"} +{"current_steps": 4338, "total_steps": 4671, "loss": 0.0058, "learning_rate": 1.5408703268754988e-07, "epoch": 2.786127167630058, "percentage": 92.87, "elapsed_time": "10:57:18", "remaining_time": "0:50:27"} +{"current_steps": 4339, "total_steps": 4671, "loss": 0.0358, "learning_rate": 1.5316772171604378e-07, "epoch": 2.7867694283879256, "percentage": 92.89, "elapsed_time": "10:57:26", "remaining_time": "0:50:18"} +{"current_steps": 4340, "total_steps": 4671, "loss": 0.0221, "learning_rate": 1.5225111868390873e-07, "epoch": 2.7874116891457934, "percentage": 92.91, "elapsed_time": "10:57:36", "remaining_time": "0:50:09"} +{"current_steps": 4341, "total_steps": 4671, "loss": 0.0082, "learning_rate": 1.5133722410325458e-07, "epoch": 2.7880539499036607, "percentage": 92.94, "elapsed_time": "10:57:45", "remaining_time": "0:50:00"} +{"current_steps": 4342, "total_steps": 4671, "loss": 0.023, "learning_rate": 1.5042603848467562e-07, "epoch": 2.7886962106615285, "percentage": 92.96, "elapsed_time": "10:57:56", "remaining_time": "0:49:51"} +{"current_steps": 4343, "total_steps": 4671, "loss": 0.0161, "learning_rate": 1.4951756233725522e-07, "epoch": 2.7893384714193963, "percentage": 92.98, "elapsed_time": "10:58:07", "remaining_time": "0:49:42"} +{"current_steps": 4344, "total_steps": 4671, "loss": 0.0173, "learning_rate": 1.4861179616856126e-07, "epoch": 2.789980732177264, "percentage": 93.0, "elapsed_time": "10:58:18", "remaining_time": "0:49:33"} +{"current_steps": 4345, "total_steps": 4671, "loss": 0.0186, "learning_rate": 1.4770874048464724e-07, "epoch": 2.790622992935132, "percentage": 93.02, "elapsed_time": "10:58:26", "remaining_time": "0:49:24"} +{"current_steps": 4346, "total_steps": 4671, "loss": 0.0161, "learning_rate": 1.4680839579005402e-07, "epoch": 2.791265253692999, "percentage": 93.04, "elapsed_time": "10:58:34", "remaining_time": "0:49:14"} +{"current_steps": 4347, "total_steps": 4671, "loss": 0.0273, "learning_rate": 1.459107625878059e-07, "epoch": 2.791907514450867, "percentage": 93.06, "elapsed_time": "10:58:43", "remaining_time": "0:49:05"} +{"current_steps": 4348, "total_steps": 4671, "loss": 0.0253, "learning_rate": 1.4501584137941394e-07, "epoch": 2.7925497752087347, "percentage": 93.08, "elapsed_time": "10:58:53", "remaining_time": "0:48:56"} +{"current_steps": 4349, "total_steps": 4671, "loss": 0.0288, "learning_rate": 1.4412363266487318e-07, "epoch": 2.7931920359666025, "percentage": 93.11, "elapsed_time": "10:59:02", "remaining_time": "0:48:47"} +{"current_steps": 4350, "total_steps": 4671, "loss": 0.0319, "learning_rate": 1.4323413694266264e-07, "epoch": 2.7938342967244703, "percentage": 93.13, "elapsed_time": "10:59:11", "remaining_time": "0:48:38"} +{"current_steps": 4351, "total_steps": 4671, "loss": 0.0366, "learning_rate": 1.4234735470974647e-07, "epoch": 2.794476557482338, "percentage": 93.15, "elapsed_time": "10:59:19", "remaining_time": "0:48:29"} +{"current_steps": 4352, "total_steps": 4671, "loss": 0.0211, "learning_rate": 1.4146328646157282e-07, "epoch": 2.7951188182402054, "percentage": 93.17, "elapsed_time": "10:59:29", "remaining_time": "0:48:20"} +{"current_steps": 4353, "total_steps": 4671, "loss": 0.0359, "learning_rate": 1.4058193269207322e-07, "epoch": 2.795761078998073, "percentage": 93.19, "elapsed_time": "10:59:40", "remaining_time": "0:48:11"} +{"current_steps": 4354, "total_steps": 4671, "loss": 0.0158, "learning_rate": 1.3970329389366155e-07, "epoch": 2.796403339755941, "percentage": 93.21, "elapsed_time": "10:59:50", "remaining_time": "0:48:02"} +{"current_steps": 4355, "total_steps": 4671, "loss": 0.0313, "learning_rate": 1.3882737055723737e-07, "epoch": 2.7970456005138087, "percentage": 93.23, "elapsed_time": "10:59:59", "remaining_time": "0:47:53"} +{"current_steps": 4356, "total_steps": 4671, "loss": 0.0168, "learning_rate": 1.3795416317218036e-07, "epoch": 2.7976878612716765, "percentage": 93.26, "elapsed_time": "11:00:09", "remaining_time": "0:47:44"} +{"current_steps": 4357, "total_steps": 4671, "loss": 0.0258, "learning_rate": 1.370836722263541e-07, "epoch": 2.798330122029544, "percentage": 93.28, "elapsed_time": "11:00:20", "remaining_time": "0:47:35"} +{"current_steps": 4358, "total_steps": 4671, "loss": 0.0269, "learning_rate": 1.362158982061057e-07, "epoch": 2.7989723827874116, "percentage": 93.3, "elapsed_time": "11:00:30", "remaining_time": "0:47:26"} +{"current_steps": 4359, "total_steps": 4671, "loss": 0.0288, "learning_rate": 1.3535084159626176e-07, "epoch": 2.7996146435452793, "percentage": 93.32, "elapsed_time": "11:00:41", "remaining_time": "0:47:17"} +{"current_steps": 4360, "total_steps": 4671, "loss": 0.0151, "learning_rate": 1.3448850288013293e-07, "epoch": 2.800256904303147, "percentage": 93.34, "elapsed_time": "11:00:49", "remaining_time": "0:47:08"} +{"current_steps": 4361, "total_steps": 4671, "loss": 0.0335, "learning_rate": 1.336288825395099e-07, "epoch": 2.800899165061015, "percentage": 93.36, "elapsed_time": "11:00:58", "remaining_time": "0:46:59"} +{"current_steps": 4362, "total_steps": 4671, "loss": 0.0422, "learning_rate": 1.3277198105466515e-07, "epoch": 2.8015414258188827, "percentage": 93.38, "elapsed_time": "11:01:07", "remaining_time": "0:46:49"} +{"current_steps": 4363, "total_steps": 4671, "loss": 0.0135, "learning_rate": 1.319177989043513e-07, "epoch": 2.8021836865767504, "percentage": 93.41, "elapsed_time": "11:01:15", "remaining_time": "0:46:40"} +{"current_steps": 4364, "total_steps": 4671, "loss": 0.0299, "learning_rate": 1.3106633656580326e-07, "epoch": 2.8028259473346178, "percentage": 93.43, "elapsed_time": "11:01:23", "remaining_time": "0:46:31"} +{"current_steps": 4365, "total_steps": 4671, "loss": 0.0147, "learning_rate": 1.3021759451473548e-07, "epoch": 2.8034682080924855, "percentage": 93.45, "elapsed_time": "11:01:32", "remaining_time": "0:46:22"} +{"current_steps": 4366, "total_steps": 4671, "loss": 0.0255, "learning_rate": 1.2937157322534254e-07, "epoch": 2.8041104688503533, "percentage": 93.47, "elapsed_time": "11:01:41", "remaining_time": "0:46:13"} +{"current_steps": 4367, "total_steps": 4671, "loss": 0.0265, "learning_rate": 1.2852827317029858e-07, "epoch": 2.804752729608221, "percentage": 93.49, "elapsed_time": "11:01:51", "remaining_time": "0:46:04"} +{"current_steps": 4368, "total_steps": 4671, "loss": 0.0367, "learning_rate": 1.2768769482075838e-07, "epoch": 2.8053949903660884, "percentage": 93.51, "elapsed_time": "11:02:01", "remaining_time": "0:45:55"} +{"current_steps": 4369, "total_steps": 4671, "loss": 0.0363, "learning_rate": 1.2684983864635514e-07, "epoch": 2.806037251123956, "percentage": 93.53, "elapsed_time": "11:02:10", "remaining_time": "0:45:46"} +{"current_steps": 4370, "total_steps": 4671, "loss": 0.0341, "learning_rate": 1.2601470511520164e-07, "epoch": 2.806679511881824, "percentage": 93.56, "elapsed_time": "11:02:19", "remaining_time": "0:45:37"} +{"current_steps": 4371, "total_steps": 4671, "loss": 0.0257, "learning_rate": 1.2518229469388965e-07, "epoch": 2.8073217726396917, "percentage": 93.58, "elapsed_time": "11:02:29", "remaining_time": "0:45:28"} +{"current_steps": 4372, "total_steps": 4671, "loss": 0.0234, "learning_rate": 1.2435260784748882e-07, "epoch": 2.8079640333975595, "percentage": 93.6, "elapsed_time": "11:02:38", "remaining_time": "0:45:19"} +{"current_steps": 4373, "total_steps": 4671, "loss": 0.0376, "learning_rate": 1.2352564503954834e-07, "epoch": 2.8086062941554273, "percentage": 93.62, "elapsed_time": "11:02:48", "remaining_time": "0:45:10"} +{"current_steps": 4374, "total_steps": 4671, "loss": 0.0146, "learning_rate": 1.2270140673209473e-07, "epoch": 2.809248554913295, "percentage": 93.64, "elapsed_time": "11:02:59", "remaining_time": "0:45:01"} +{"current_steps": 4375, "total_steps": 4671, "loss": 0.0249, "learning_rate": 1.2187989338563132e-07, "epoch": 2.8098908156711624, "percentage": 93.66, "elapsed_time": "11:03:09", "remaining_time": "0:44:52"} +{"current_steps": 4376, "total_steps": 4671, "loss": 0.0135, "learning_rate": 1.2106110545914097e-07, "epoch": 2.81053307642903, "percentage": 93.68, "elapsed_time": "11:03:18", "remaining_time": "0:44:42"} +{"current_steps": 4377, "total_steps": 4671, "loss": 0.0209, "learning_rate": 1.202450434100827e-07, "epoch": 2.811175337186898, "percentage": 93.71, "elapsed_time": "11:03:26", "remaining_time": "0:44:33"} +{"current_steps": 4378, "total_steps": 4671, "loss": 0.0185, "learning_rate": 1.1943170769439237e-07, "epoch": 2.8118175979447657, "percentage": 93.73, "elapsed_time": "11:03:33", "remaining_time": "0:44:24"} +{"current_steps": 4379, "total_steps": 4671, "loss": 0.0333, "learning_rate": 1.186210987664832e-07, "epoch": 2.812459858702633, "percentage": 93.75, "elapsed_time": "11:03:43", "remaining_time": "0:44:15"} +{"current_steps": 4380, "total_steps": 4671, "loss": 0.0162, "learning_rate": 1.1781321707924508e-07, "epoch": 2.813102119460501, "percentage": 93.77, "elapsed_time": "11:03:53", "remaining_time": "0:44:06"} +{"current_steps": 4381, "total_steps": 4671, "loss": 0.0159, "learning_rate": 1.1700806308404367e-07, "epoch": 2.8137443802183686, "percentage": 93.79, "elapsed_time": "11:04:01", "remaining_time": "0:43:57"} +{"current_steps": 4382, "total_steps": 4671, "loss": 0.0248, "learning_rate": 1.1620563723072131e-07, "epoch": 2.8143866409762364, "percentage": 93.81, "elapsed_time": "11:04:10", "remaining_time": "0:43:48"} +{"current_steps": 4383, "total_steps": 4671, "loss": 0.0414, "learning_rate": 1.1540593996759441e-07, "epoch": 2.815028901734104, "percentage": 93.83, "elapsed_time": "11:04:20", "remaining_time": "0:43:39"} +{"current_steps": 4384, "total_steps": 4671, "loss": 0.0178, "learning_rate": 1.146089717414578e-07, "epoch": 2.815671162491972, "percentage": 93.86, "elapsed_time": "11:04:30", "remaining_time": "0:43:30"} +{"current_steps": 4385, "total_steps": 4671, "loss": 0.0355, "learning_rate": 1.1381473299757917e-07, "epoch": 2.8163134232498397, "percentage": 93.88, "elapsed_time": "11:04:38", "remaining_time": "0:43:20"} +{"current_steps": 4386, "total_steps": 4671, "loss": 0.0181, "learning_rate": 1.1302322417970135e-07, "epoch": 2.816955684007707, "percentage": 93.9, "elapsed_time": "11:04:46", "remaining_time": "0:43:11"} +{"current_steps": 4387, "total_steps": 4671, "loss": 0.0427, "learning_rate": 1.1223444573004339e-07, "epoch": 2.817597944765575, "percentage": 93.92, "elapsed_time": "11:04:54", "remaining_time": "0:43:02"} +{"current_steps": 4388, "total_steps": 4671, "loss": 0.0343, "learning_rate": 1.1144839808929831e-07, "epoch": 2.8182402055234426, "percentage": 93.94, "elapsed_time": "11:05:04", "remaining_time": "0:42:53"} +{"current_steps": 4389, "total_steps": 4671, "loss": 0.0224, "learning_rate": 1.1066508169663315e-07, "epoch": 2.8188824662813103, "percentage": 93.96, "elapsed_time": "11:05:13", "remaining_time": "0:42:44"} +{"current_steps": 4390, "total_steps": 4671, "loss": 0.0095, "learning_rate": 1.0988449698968839e-07, "epoch": 2.8195247270391777, "percentage": 93.98, "elapsed_time": "11:05:20", "remaining_time": "0:42:35"} +{"current_steps": 4391, "total_steps": 4671, "loss": 0.0184, "learning_rate": 1.0910664440457907e-07, "epoch": 2.8201669877970454, "percentage": 94.01, "elapsed_time": "11:05:28", "remaining_time": "0:42:26"} +{"current_steps": 4392, "total_steps": 4671, "loss": 0.0482, "learning_rate": 1.0833152437589423e-07, "epoch": 2.820809248554913, "percentage": 94.03, "elapsed_time": "11:05:38", "remaining_time": "0:42:17"} +{"current_steps": 4393, "total_steps": 4671, "loss": 0.016, "learning_rate": 1.0755913733669632e-07, "epoch": 2.821451509312781, "percentage": 94.05, "elapsed_time": "11:05:47", "remaining_time": "0:42:07"} +{"current_steps": 4394, "total_steps": 4671, "loss": 0.0229, "learning_rate": 1.0678948371851905e-07, "epoch": 2.8220937700706488, "percentage": 94.07, "elapsed_time": "11:05:56", "remaining_time": "0:41:58"} +{"current_steps": 4395, "total_steps": 4671, "loss": 0.0221, "learning_rate": 1.0602256395137068e-07, "epoch": 2.8227360308285165, "percentage": 94.09, "elapsed_time": "11:06:04", "remaining_time": "0:41:49"} +{"current_steps": 4396, "total_steps": 4671, "loss": 0.0169, "learning_rate": 1.0525837846373121e-07, "epoch": 2.8233782915863843, "percentage": 94.11, "elapsed_time": "11:06:14", "remaining_time": "0:41:40"} +{"current_steps": 4397, "total_steps": 4671, "loss": 0.0413, "learning_rate": 1.044969276825536e-07, "epoch": 2.8240205523442516, "percentage": 94.13, "elapsed_time": "11:06:24", "remaining_time": "0:41:31"} +{"current_steps": 4398, "total_steps": 4671, "loss": 0.0275, "learning_rate": 1.0373821203326251e-07, "epoch": 2.8246628131021194, "percentage": 94.16, "elapsed_time": "11:06:35", "remaining_time": "0:41:22"} +{"current_steps": 4399, "total_steps": 4671, "loss": 0.0331, "learning_rate": 1.0298223193975499e-07, "epoch": 2.825305073859987, "percentage": 94.18, "elapsed_time": "11:06:44", "remaining_time": "0:41:13"} +{"current_steps": 4400, "total_steps": 4671, "loss": 0.0133, "learning_rate": 1.0222898782439872e-07, "epoch": 2.825947334617855, "percentage": 94.2, "elapsed_time": "11:06:51", "remaining_time": "0:41:04"} +{"current_steps": 4401, "total_steps": 4671, "loss": 0.0272, "learning_rate": 1.0147848010803319e-07, "epoch": 2.8265895953757223, "percentage": 94.22, "elapsed_time": "11:07:00", "remaining_time": "0:40:55"} +{"current_steps": 4402, "total_steps": 4671, "loss": 0.0288, "learning_rate": 1.0073070920997018e-07, "epoch": 2.82723185613359, "percentage": 94.24, "elapsed_time": "11:07:09", "remaining_time": "0:40:46"} +{"current_steps": 4403, "total_steps": 4671, "loss": 0.0204, "learning_rate": 9.998567554799111e-08, "epoch": 2.827874116891458, "percentage": 94.26, "elapsed_time": "11:07:19", "remaining_time": "0:40:37"} +{"current_steps": 4404, "total_steps": 4671, "loss": 0.0327, "learning_rate": 9.924337953834795e-08, "epoch": 2.8285163776493256, "percentage": 94.28, "elapsed_time": "11:07:27", "remaining_time": "0:40:27"} +{"current_steps": 4405, "total_steps": 4671, "loss": 0.0081, "learning_rate": 9.850382159576455e-08, "epoch": 2.8291586384071934, "percentage": 94.31, "elapsed_time": "11:07:36", "remaining_time": "0:40:18"} +{"current_steps": 4406, "total_steps": 4671, "loss": 0.0221, "learning_rate": 9.776700213343315e-08, "epoch": 2.829800899165061, "percentage": 94.33, "elapsed_time": "11:07:44", "remaining_time": "0:40:09"} +{"current_steps": 4407, "total_steps": 4671, "loss": 0.0411, "learning_rate": 9.70329215630178e-08, "epoch": 2.830443159922929, "percentage": 94.35, "elapsed_time": "11:07:52", "remaining_time": "0:40:00"} +{"current_steps": 4408, "total_steps": 4671, "loss": 0.0437, "learning_rate": 9.630158029465098e-08, "epoch": 2.8310854206807963, "percentage": 94.37, "elapsed_time": "11:08:03", "remaining_time": "0:39:51"} +{"current_steps": 4409, "total_steps": 4671, "loss": 0.0352, "learning_rate": 9.557297873693528e-08, "epoch": 2.831727681438664, "percentage": 94.39, "elapsed_time": "11:08:13", "remaining_time": "0:39:42"} +{"current_steps": 4410, "total_steps": 4671, "loss": 0.016, "learning_rate": 9.484711729694229e-08, "epoch": 2.832369942196532, "percentage": 94.41, "elapsed_time": "11:08:23", "remaining_time": "0:39:33"} +{"current_steps": 4411, "total_steps": 4671, "loss": 0.0226, "learning_rate": 9.412399638021319e-08, "epoch": 2.8330122029543996, "percentage": 94.43, "elapsed_time": "11:08:34", "remaining_time": "0:39:24"} +{"current_steps": 4412, "total_steps": 4671, "loss": 0.0239, "learning_rate": 9.340361639075701e-08, "epoch": 2.833654463712267, "percentage": 94.46, "elapsed_time": "11:08:42", "remaining_time": "0:39:15"} +{"current_steps": 4413, "total_steps": 4671, "loss": 0.0246, "learning_rate": 9.268597773105347e-08, "epoch": 2.8342967244701347, "percentage": 94.48, "elapsed_time": "11:08:52", "remaining_time": "0:39:06"} +{"current_steps": 4414, "total_steps": 4671, "loss": 0.0288, "learning_rate": 9.197108080204909e-08, "epoch": 2.8349389852280025, "percentage": 94.5, "elapsed_time": "11:09:02", "remaining_time": "0:38:57"} +{"current_steps": 4415, "total_steps": 4671, "loss": 0.0442, "learning_rate": 9.125892600315822e-08, "epoch": 2.8355812459858702, "percentage": 94.52, "elapsed_time": "11:09:13", "remaining_time": "0:38:48"} +{"current_steps": 4416, "total_steps": 4671, "loss": 0.006, "learning_rate": 9.054951373226483e-08, "epoch": 2.836223506743738, "percentage": 94.54, "elapsed_time": "11:09:22", "remaining_time": "0:38:39"} +{"current_steps": 4417, "total_steps": 4671, "loss": 0.0184, "learning_rate": 8.984284438571855e-08, "epoch": 2.836865767501606, "percentage": 94.56, "elapsed_time": "11:09:31", "remaining_time": "0:38:30"} +{"current_steps": 4418, "total_steps": 4671, "loss": 0.0158, "learning_rate": 8.913891835833743e-08, "epoch": 2.8375080282594736, "percentage": 94.58, "elapsed_time": "11:09:40", "remaining_time": "0:38:20"} +{"current_steps": 4419, "total_steps": 4671, "loss": 0.0501, "learning_rate": 8.8437736043408e-08, "epoch": 2.838150289017341, "percentage": 94.61, "elapsed_time": "11:09:49", "remaining_time": "0:38:11"} +{"current_steps": 4420, "total_steps": 4671, "loss": 0.0299, "learning_rate": 8.773929783268297e-08, "epoch": 2.8387925497752087, "percentage": 94.63, "elapsed_time": "11:09:58", "remaining_time": "0:38:02"} +{"current_steps": 4421, "total_steps": 4671, "loss": 0.0334, "learning_rate": 8.704360411638079e-08, "epoch": 2.8394348105330764, "percentage": 94.65, "elapsed_time": "11:10:07", "remaining_time": "0:37:53"} +{"current_steps": 4422, "total_steps": 4671, "loss": 0.02, "learning_rate": 8.635065528318775e-08, "epoch": 2.840077071290944, "percentage": 94.67, "elapsed_time": "11:10:16", "remaining_time": "0:37:44"} +{"current_steps": 4423, "total_steps": 4671, "loss": 0.0188, "learning_rate": 8.56604517202575e-08, "epoch": 2.8407193320488116, "percentage": 94.69, "elapsed_time": "11:10:26", "remaining_time": "0:37:35"} +{"current_steps": 4424, "total_steps": 4671, "loss": 0.0346, "learning_rate": 8.497299381320767e-08, "epoch": 2.8413615928066793, "percentage": 94.71, "elapsed_time": "11:10:35", "remaining_time": "0:37:26"} +{"current_steps": 4425, "total_steps": 4671, "loss": 0.0114, "learning_rate": 8.428828194612326e-08, "epoch": 2.842003853564547, "percentage": 94.73, "elapsed_time": "11:10:42", "remaining_time": "0:37:17"} +{"current_steps": 4426, "total_steps": 4671, "loss": 0.0217, "learning_rate": 8.360631650155493e-08, "epoch": 2.842646114322415, "percentage": 94.75, "elapsed_time": "11:10:51", "remaining_time": "0:37:08"} +{"current_steps": 4427, "total_steps": 4671, "loss": 0.0134, "learning_rate": 8.292709786051845e-08, "epoch": 2.8432883750802826, "percentage": 94.78, "elapsed_time": "11:11:01", "remaining_time": "0:36:59"} +{"current_steps": 4428, "total_steps": 4671, "loss": 0.0216, "learning_rate": 8.225062640249636e-08, "epoch": 2.8439306358381504, "percentage": 94.8, "elapsed_time": "11:11:10", "remaining_time": "0:36:49"} +{"current_steps": 4429, "total_steps": 4671, "loss": 0.0257, "learning_rate": 8.157690250543359e-08, "epoch": 2.844572896596018, "percentage": 94.82, "elapsed_time": "11:11:19", "remaining_time": "0:36:40"} +{"current_steps": 4430, "total_steps": 4671, "loss": 0.0323, "learning_rate": 8.090592654574292e-08, "epoch": 2.8452151573538855, "percentage": 94.84, "elapsed_time": "11:11:28", "remaining_time": "0:36:31"} +{"current_steps": 4431, "total_steps": 4671, "loss": 0.0167, "learning_rate": 8.023769889830002e-08, "epoch": 2.8458574181117533, "percentage": 94.86, "elapsed_time": "11:11:35", "remaining_time": "0:36:22"} +{"current_steps": 4432, "total_steps": 4671, "loss": 0.0413, "learning_rate": 7.957221993644625e-08, "epoch": 2.846499678869621, "percentage": 94.88, "elapsed_time": "11:11:45", "remaining_time": "0:36:13"} +{"current_steps": 4433, "total_steps": 4671, "loss": 0.0144, "learning_rate": 7.89094900319859e-08, "epoch": 2.847141939627489, "percentage": 94.9, "elapsed_time": "11:11:53", "remaining_time": "0:36:04"} +{"current_steps": 4434, "total_steps": 4671, "loss": 0.0322, "learning_rate": 7.824950955518773e-08, "epoch": 2.847784200385356, "percentage": 94.93, "elapsed_time": "11:12:03", "remaining_time": "0:35:55"} +{"current_steps": 4435, "total_steps": 4671, "loss": 0.0387, "learning_rate": 7.75922788747857e-08, "epoch": 2.848426461143224, "percentage": 94.95, "elapsed_time": "11:12:12", "remaining_time": "0:35:46"} +{"current_steps": 4436, "total_steps": 4671, "loss": 0.0199, "learning_rate": 7.69377983579761e-08, "epoch": 2.8490687219010917, "percentage": 94.97, "elapsed_time": "11:12:21", "remaining_time": "0:35:37"} +{"current_steps": 4437, "total_steps": 4671, "loss": 0.0228, "learning_rate": 7.628606837041974e-08, "epoch": 2.8497109826589595, "percentage": 94.99, "elapsed_time": "11:12:30", "remaining_time": "0:35:28"} +{"current_steps": 4438, "total_steps": 4671, "loss": 0.0224, "learning_rate": 7.563708927623925e-08, "epoch": 2.8503532434168273, "percentage": 95.01, "elapsed_time": "11:12:40", "remaining_time": "0:35:18"} +{"current_steps": 4439, "total_steps": 4671, "loss": 0.0078, "learning_rate": 7.499086143802126e-08, "epoch": 2.850995504174695, "percentage": 95.03, "elapsed_time": "11:12:48", "remaining_time": "0:35:09"} +{"current_steps": 4440, "total_steps": 4671, "loss": 0.0214, "learning_rate": 7.434738521681584e-08, "epoch": 2.851637764932563, "percentage": 95.05, "elapsed_time": "11:12:57", "remaining_time": "0:35:00"} +{"current_steps": 4441, "total_steps": 4671, "loss": 0.0389, "learning_rate": 7.37066609721343e-08, "epoch": 2.85228002569043, "percentage": 95.08, "elapsed_time": "11:13:07", "remaining_time": "0:34:51"} +{"current_steps": 4442, "total_steps": 4671, "loss": 0.0199, "learning_rate": 7.306868906195141e-08, "epoch": 2.852922286448298, "percentage": 95.1, "elapsed_time": "11:13:16", "remaining_time": "0:34:42"} +{"current_steps": 4443, "total_steps": 4671, "loss": 0.0125, "learning_rate": 7.243346984270371e-08, "epoch": 2.8535645472061657, "percentage": 95.12, "elapsed_time": "11:13:26", "remaining_time": "0:34:33"} +{"current_steps": 4444, "total_steps": 4671, "loss": 0.02, "learning_rate": 7.180100366929066e-08, "epoch": 2.8542068079640335, "percentage": 95.14, "elapsed_time": "11:13:35", "remaining_time": "0:34:24"} +{"current_steps": 4445, "total_steps": 4671, "loss": 0.025, "learning_rate": 7.117129089507236e-08, "epoch": 2.8548490687219013, "percentage": 95.16, "elapsed_time": "11:13:43", "remaining_time": "0:34:15"} +{"current_steps": 4446, "total_steps": 4671, "loss": 0.0441, "learning_rate": 7.05443318718707e-08, "epoch": 2.8554913294797686, "percentage": 95.18, "elapsed_time": "11:13:52", "remaining_time": "0:34:06"} +{"current_steps": 4447, "total_steps": 4671, "loss": 0.0154, "learning_rate": 6.992012694997108e-08, "epoch": 2.8561335902376364, "percentage": 95.2, "elapsed_time": "11:14:00", "remaining_time": "0:33:57"} +{"current_steps": 4448, "total_steps": 4671, "loss": 0.0446, "learning_rate": 6.929867647811784e-08, "epoch": 2.856775850995504, "percentage": 95.23, "elapsed_time": "11:14:08", "remaining_time": "0:33:47"} +{"current_steps": 4449, "total_steps": 4671, "loss": 0.0222, "learning_rate": 6.867998080351656e-08, "epoch": 2.857418111753372, "percentage": 95.25, "elapsed_time": "11:14:19", "remaining_time": "0:33:38"} +{"current_steps": 4450, "total_steps": 4671, "loss": 0.0258, "learning_rate": 6.806404027183466e-08, "epoch": 2.8580603725112397, "percentage": 95.27, "elapsed_time": "11:14:29", "remaining_time": "0:33:29"} +{"current_steps": 4451, "total_steps": 4671, "loss": 0.0261, "learning_rate": 6.745085522720074e-08, "epoch": 2.8587026332691075, "percentage": 95.29, "elapsed_time": "11:14:39", "remaining_time": "0:33:20"} +{"current_steps": 4452, "total_steps": 4671, "loss": 0.0208, "learning_rate": 6.684042601220186e-08, "epoch": 2.8593448940269752, "percentage": 95.31, "elapsed_time": "11:14:48", "remaining_time": "0:33:11"} +{"current_steps": 4453, "total_steps": 4671, "loss": 0.0202, "learning_rate": 6.623275296788744e-08, "epoch": 2.8599871547848426, "percentage": 95.33, "elapsed_time": "11:14:57", "remaining_time": "0:33:02"} +{"current_steps": 4454, "total_steps": 4671, "loss": 0.027, "learning_rate": 6.562783643376536e-08, "epoch": 2.8606294155427103, "percentage": 95.35, "elapsed_time": "11:15:07", "remaining_time": "0:32:53"} +{"current_steps": 4455, "total_steps": 4671, "loss": 0.0305, "learning_rate": 6.502567674780524e-08, "epoch": 2.861271676300578, "percentage": 95.38, "elapsed_time": "11:15:18", "remaining_time": "0:32:44"} +{"current_steps": 4456, "total_steps": 4671, "loss": 0.0207, "learning_rate": 6.442627424643522e-08, "epoch": 2.861913937058446, "percentage": 95.4, "elapsed_time": "11:15:25", "remaining_time": "0:32:35"} +{"current_steps": 4457, "total_steps": 4671, "loss": 0.023, "learning_rate": 6.382962926454295e-08, "epoch": 2.862556197816313, "percentage": 95.42, "elapsed_time": "11:15:34", "remaining_time": "0:32:26"} +{"current_steps": 4458, "total_steps": 4671, "loss": 0.0132, "learning_rate": 6.323574213547567e-08, "epoch": 2.863198458574181, "percentage": 95.44, "elapsed_time": "11:15:43", "remaining_time": "0:32:17"} +{"current_steps": 4459, "total_steps": 4671, "loss": 0.0213, "learning_rate": 6.264461319104021e-08, "epoch": 2.8638407193320488, "percentage": 95.46, "elapsed_time": "11:15:54", "remaining_time": "0:32:08"} +{"current_steps": 4460, "total_steps": 4671, "loss": 0.0145, "learning_rate": 6.20562427615018e-08, "epoch": 2.8644829800899165, "percentage": 95.48, "elapsed_time": "11:16:03", "remaining_time": "0:31:59"} +{"current_steps": 4461, "total_steps": 4671, "loss": 0.0178, "learning_rate": 6.147063117558472e-08, "epoch": 2.8651252408477843, "percentage": 95.5, "elapsed_time": "11:16:13", "remaining_time": "0:31:49"} +{"current_steps": 4462, "total_steps": 4671, "loss": 0.0219, "learning_rate": 6.08877787604717e-08, "epoch": 2.865767501605652, "percentage": 95.53, "elapsed_time": "11:16:21", "remaining_time": "0:31:40"} +{"current_steps": 4463, "total_steps": 4671, "loss": 0.0213, "learning_rate": 6.030768584180446e-08, "epoch": 2.86640976236352, "percentage": 95.55, "elapsed_time": "11:16:30", "remaining_time": "0:31:31"} +{"current_steps": 4464, "total_steps": 4671, "loss": 0.0238, "learning_rate": 5.973035274368266e-08, "epoch": 2.867052023121387, "percentage": 95.57, "elapsed_time": "11:16:40", "remaining_time": "0:31:22"} +{"current_steps": 4465, "total_steps": 4671, "loss": 0.0413, "learning_rate": 5.915577978866327e-08, "epoch": 2.867694283879255, "percentage": 95.59, "elapsed_time": "11:16:50", "remaining_time": "0:31:13"} +{"current_steps": 4466, "total_steps": 4671, "loss": 0.0256, "learning_rate": 5.8583967297762835e-08, "epoch": 2.8683365446371227, "percentage": 95.61, "elapsed_time": "11:16:59", "remaining_time": "0:31:04"} +{"current_steps": 4467, "total_steps": 4671, "loss": 0.0155, "learning_rate": 5.801491559045358e-08, "epoch": 2.8689788053949905, "percentage": 95.63, "elapsed_time": "11:17:07", "remaining_time": "0:30:55"} +{"current_steps": 4468, "total_steps": 4671, "loss": 0.0354, "learning_rate": 5.7448624984667853e-08, "epoch": 2.869621066152858, "percentage": 95.65, "elapsed_time": "11:17:19", "remaining_time": "0:30:46"} +{"current_steps": 4469, "total_steps": 4671, "loss": 0.0135, "learning_rate": 5.6885095796792574e-08, "epoch": 2.8702633269107256, "percentage": 95.68, "elapsed_time": "11:17:27", "remaining_time": "0:30:37"} +{"current_steps": 4470, "total_steps": 4671, "loss": 0.0292, "learning_rate": 5.6324328341673676e-08, "epoch": 2.8709055876685934, "percentage": 95.7, "elapsed_time": "11:17:37", "remaining_time": "0:30:28"} +{"current_steps": 4471, "total_steps": 4671, "loss": 0.0231, "learning_rate": 5.576632293261386e-08, "epoch": 2.871547848426461, "percentage": 95.72, "elapsed_time": "11:17:44", "remaining_time": "0:30:19"} +{"current_steps": 4472, "total_steps": 4671, "loss": 0.0189, "learning_rate": 5.521107988137153e-08, "epoch": 2.872190109184329, "percentage": 95.74, "elapsed_time": "11:17:53", "remaining_time": "0:30:09"} +{"current_steps": 4473, "total_steps": 4671, "loss": 0.0249, "learning_rate": 5.465859949816299e-08, "epoch": 2.8728323699421967, "percentage": 95.76, "elapsed_time": "11:18:03", "remaining_time": "0:30:00"} +{"current_steps": 4474, "total_steps": 4671, "loss": 0.0172, "learning_rate": 5.410888209166132e-08, "epoch": 2.8734746307000645, "percentage": 95.78, "elapsed_time": "11:18:11", "remaining_time": "0:29:51"} +{"current_steps": 4475, "total_steps": 4671, "loss": 0.0315, "learning_rate": 5.356192796899418e-08, "epoch": 2.874116891457932, "percentage": 95.8, "elapsed_time": "11:18:20", "remaining_time": "0:29:42"} +{"current_steps": 4476, "total_steps": 4671, "loss": 0.0188, "learning_rate": 5.301773743574712e-08, "epoch": 2.8747591522157996, "percentage": 95.83, "elapsed_time": "11:18:32", "remaining_time": "0:29:33"} +{"current_steps": 4477, "total_steps": 4671, "loss": 0.0383, "learning_rate": 5.247631079596083e-08, "epoch": 2.8754014129736674, "percentage": 95.85, "elapsed_time": "11:18:42", "remaining_time": "0:29:24"} +{"current_steps": 4478, "total_steps": 4671, "loss": 0.0357, "learning_rate": 5.1937648352131665e-08, "epoch": 2.876043673731535, "percentage": 95.87, "elapsed_time": "11:18:53", "remaining_time": "0:29:15"} +{"current_steps": 4479, "total_steps": 4671, "loss": 0.0342, "learning_rate": 5.140175040521222e-08, "epoch": 2.8766859344894025, "percentage": 95.89, "elapsed_time": "11:19:04", "remaining_time": "0:29:06"} +{"current_steps": 4480, "total_steps": 4671, "loss": 0.0414, "learning_rate": 5.086861725461023e-08, "epoch": 2.8773281952472702, "percentage": 95.91, "elapsed_time": "11:19:13", "remaining_time": "0:28:57"} +{"current_steps": 4481, "total_steps": 4671, "loss": 0.0233, "learning_rate": 5.0338249198188525e-08, "epoch": 2.877970456005138, "percentage": 95.93, "elapsed_time": "11:19:23", "remaining_time": "0:28:48"} +{"current_steps": 4482, "total_steps": 4671, "loss": 0.0215, "learning_rate": 4.981064653226564e-08, "epoch": 2.878612716763006, "percentage": 95.95, "elapsed_time": "11:19:32", "remaining_time": "0:28:39"} +{"current_steps": 4483, "total_steps": 4671, "loss": 0.0144, "learning_rate": 4.928580955161466e-08, "epoch": 2.8792549775208736, "percentage": 95.98, "elapsed_time": "11:19:40", "remaining_time": "0:28:30"} +{"current_steps": 4484, "total_steps": 4671, "loss": 0.0091, "learning_rate": 4.876373854946326e-08, "epoch": 2.8798972382787413, "percentage": 96.0, "elapsed_time": "11:19:47", "remaining_time": "0:28:21"} +{"current_steps": 4485, "total_steps": 4671, "loss": 0.0223, "learning_rate": 4.824443381749477e-08, "epoch": 2.880539499036609, "percentage": 96.02, "elapsed_time": "11:19:55", "remaining_time": "0:28:11"} +{"current_steps": 4486, "total_steps": 4671, "loss": 0.0486, "learning_rate": 4.77278956458449e-08, "epoch": 2.8811817597944764, "percentage": 96.04, "elapsed_time": "11:20:06", "remaining_time": "0:28:02"} +{"current_steps": 4487, "total_steps": 4671, "loss": 0.018, "learning_rate": 4.721412432310668e-08, "epoch": 2.881824020552344, "percentage": 96.06, "elapsed_time": "11:20:14", "remaining_time": "0:27:53"} +{"current_steps": 4488, "total_steps": 4671, "loss": 0.0181, "learning_rate": 4.6703120136324384e-08, "epoch": 2.882466281310212, "percentage": 96.08, "elapsed_time": "11:20:24", "remaining_time": "0:27:44"} +{"current_steps": 4489, "total_steps": 4671, "loss": 0.0106, "learning_rate": 4.6194883370997423e-08, "epoch": 2.8831085420680798, "percentage": 96.1, "elapsed_time": "11:20:32", "remaining_time": "0:27:35"} +{"current_steps": 4490, "total_steps": 4671, "loss": 0.0195, "learning_rate": 4.5689414311080314e-08, "epoch": 2.883750802825947, "percentage": 96.13, "elapsed_time": "11:20:43", "remaining_time": "0:27:26"} +{"current_steps": 4491, "total_steps": 4671, "loss": 0.0104, "learning_rate": 4.5186713238979385e-08, "epoch": 2.884393063583815, "percentage": 96.15, "elapsed_time": "11:20:50", "remaining_time": "0:27:17"} +{"current_steps": 4492, "total_steps": 4671, "loss": 0.034, "learning_rate": 4.468678043555497e-08, "epoch": 2.8850353243416826, "percentage": 96.17, "elapsed_time": "11:21:00", "remaining_time": "0:27:08"} +{"current_steps": 4493, "total_steps": 4671, "loss": 0.0165, "learning_rate": 4.4189616180121964e-08, "epoch": 2.8856775850995504, "percentage": 96.19, "elapsed_time": "11:21:10", "remaining_time": "0:26:59"} +{"current_steps": 4494, "total_steps": 4671, "loss": 0.0241, "learning_rate": 4.369522075044652e-08, "epoch": 2.886319845857418, "percentage": 96.21, "elapsed_time": "11:21:17", "remaining_time": "0:26:50"} +{"current_steps": 4495, "total_steps": 4671, "loss": 0.0262, "learning_rate": 4.320359442274935e-08, "epoch": 2.886962106615286, "percentage": 96.23, "elapsed_time": "11:21:27", "remaining_time": "0:26:40"} +{"current_steps": 4496, "total_steps": 4671, "loss": 0.0154, "learning_rate": 4.271473747170296e-08, "epoch": 2.8876043673731537, "percentage": 96.25, "elapsed_time": "11:21:37", "remaining_time": "0:26:31"} +{"current_steps": 4497, "total_steps": 4671, "loss": 0.0143, "learning_rate": 4.222865017043387e-08, "epoch": 2.888246628131021, "percentage": 96.27, "elapsed_time": "11:21:45", "remaining_time": "0:26:22"} +{"current_steps": 4498, "total_steps": 4671, "loss": 0.0223, "learning_rate": 4.174533279051984e-08, "epoch": 2.888888888888889, "percentage": 96.3, "elapsed_time": "11:21:54", "remaining_time": "0:26:13"} +{"current_steps": 4499, "total_steps": 4671, "loss": 0.0306, "learning_rate": 4.12647856019921e-08, "epoch": 2.8895311496467566, "percentage": 96.32, "elapsed_time": "11:22:04", "remaining_time": "0:26:04"} +{"current_steps": 4500, "total_steps": 4671, "loss": 0.0297, "learning_rate": 4.078700887333365e-08, "epoch": 2.8901734104046244, "percentage": 96.34, "elapsed_time": "11:22:13", "remaining_time": "0:25:55"} +{"current_steps": 4501, "total_steps": 4671, "loss": 0.0135, "learning_rate": 4.031200287147985e-08, "epoch": 2.8908156711624917, "percentage": 96.36, "elapsed_time": "11:22:22", "remaining_time": "0:25:46"} +{"current_steps": 4502, "total_steps": 4671, "loss": 0.0241, "learning_rate": 3.983976786181787e-08, "epoch": 2.8914579319203595, "percentage": 96.38, "elapsed_time": "11:22:32", "remaining_time": "0:25:37"} +{"current_steps": 4503, "total_steps": 4671, "loss": 0.0214, "learning_rate": 3.9370304108186653e-08, "epoch": 2.8921001926782273, "percentage": 96.4, "elapsed_time": "11:22:41", "remaining_time": "0:25:28"} +{"current_steps": 4504, "total_steps": 4671, "loss": 0.0265, "learning_rate": 3.890361187287694e-08, "epoch": 2.892742453436095, "percentage": 96.42, "elapsed_time": "11:22:50", "remaining_time": "0:25:19"} +{"current_steps": 4505, "total_steps": 4671, "loss": 0.0133, "learning_rate": 3.843969141663128e-08, "epoch": 2.893384714193963, "percentage": 96.45, "elapsed_time": "11:22:58", "remaining_time": "0:25:09"} +{"current_steps": 4506, "total_steps": 4671, "loss": 0.0206, "learning_rate": 3.797854299864345e-08, "epoch": 2.8940269749518306, "percentage": 96.47, "elapsed_time": "11:23:08", "remaining_time": "0:25:00"} +{"current_steps": 4507, "total_steps": 4671, "loss": 0.0193, "learning_rate": 3.752016687655846e-08, "epoch": 2.8946692357096984, "percentage": 96.49, "elapsed_time": "11:23:15", "remaining_time": "0:24:51"} +{"current_steps": 4508, "total_steps": 4671, "loss": 0.027, "learning_rate": 3.706456330647201e-08, "epoch": 2.8953114964675657, "percentage": 96.51, "elapsed_time": "11:23:26", "remaining_time": "0:24:42"} +{"current_steps": 4509, "total_steps": 4671, "loss": 0.0308, "learning_rate": 3.6611732542931044e-08, "epoch": 2.8959537572254335, "percentage": 96.53, "elapsed_time": "11:23:36", "remaining_time": "0:24:33"} +{"current_steps": 4510, "total_steps": 4671, "loss": 0.0314, "learning_rate": 3.6161674838933736e-08, "epoch": 2.8965960179833012, "percentage": 96.55, "elapsed_time": "11:23:45", "remaining_time": "0:24:24"} +{"current_steps": 4511, "total_steps": 4671, "loss": 0.0185, "learning_rate": 3.571439044592895e-08, "epoch": 2.897238278741169, "percentage": 96.57, "elapsed_time": "11:23:54", "remaining_time": "0:24:15"} +{"current_steps": 4512, "total_steps": 4671, "loss": 0.026, "learning_rate": 3.526987961381567e-08, "epoch": 2.8978805394990363, "percentage": 96.6, "elapsed_time": "11:24:03", "remaining_time": "0:24:06"} +{"current_steps": 4513, "total_steps": 4671, "loss": 0.0089, "learning_rate": 3.482814259094247e-08, "epoch": 2.898522800256904, "percentage": 96.62, "elapsed_time": "11:24:13", "remaining_time": "0:23:57"} +{"current_steps": 4514, "total_steps": 4671, "loss": 0.0261, "learning_rate": 3.438917962411026e-08, "epoch": 2.899165061014772, "percentage": 96.64, "elapsed_time": "11:24:23", "remaining_time": "0:23:48"} +{"current_steps": 4515, "total_steps": 4671, "loss": 0.0171, "learning_rate": 3.3952990958568965e-08, "epoch": 2.8998073217726397, "percentage": 96.66, "elapsed_time": "11:24:31", "remaining_time": "0:23:39"} +{"current_steps": 4516, "total_steps": 4671, "loss": 0.0175, "learning_rate": 3.351957683801754e-08, "epoch": 2.9004495825305074, "percentage": 96.68, "elapsed_time": "11:24:40", "remaining_time": "0:23:29"} +{"current_steps": 4517, "total_steps": 4671, "loss": 0.0223, "learning_rate": 3.3088937504606176e-08, "epoch": 2.901091843288375, "percentage": 96.7, "elapsed_time": "11:24:49", "remaining_time": "0:23:20"} +{"current_steps": 4518, "total_steps": 4671, "loss": 0.0154, "learning_rate": 3.266107319893463e-08, "epoch": 2.901734104046243, "percentage": 96.72, "elapsed_time": "11:24:59", "remaining_time": "0:23:11"} +{"current_steps": 4519, "total_steps": 4671, "loss": 0.0464, "learning_rate": 3.223598416005169e-08, "epoch": 2.9023763648041103, "percentage": 96.75, "elapsed_time": "11:25:08", "remaining_time": "0:23:02"} +{"current_steps": 4520, "total_steps": 4671, "loss": 0.0344, "learning_rate": 3.1813670625455154e-08, "epoch": 2.903018625561978, "percentage": 96.77, "elapsed_time": "11:25:19", "remaining_time": "0:22:53"} +{"current_steps": 4521, "total_steps": 4671, "loss": 0.023, "learning_rate": 3.139413283109405e-08, "epoch": 2.903660886319846, "percentage": 96.79, "elapsed_time": "11:25:29", "remaining_time": "0:22:44"} +{"current_steps": 4522, "total_steps": 4671, "loss": 0.0213, "learning_rate": 3.0977371011364776e-08, "epoch": 2.9043031470777136, "percentage": 96.81, "elapsed_time": "11:25:38", "remaining_time": "0:22:35"} +{"current_steps": 4523, "total_steps": 4671, "loss": 0.0248, "learning_rate": 3.0563385399113296e-08, "epoch": 2.904945407835581, "percentage": 96.83, "elapsed_time": "11:25:49", "remaining_time": "0:22:26"} +{"current_steps": 4524, "total_steps": 4671, "loss": 0.0146, "learning_rate": 3.01521762256346e-08, "epoch": 2.9055876685934487, "percentage": 96.85, "elapsed_time": "11:25:58", "remaining_time": "0:22:17"} +{"current_steps": 4525, "total_steps": 4671, "loss": 0.0135, "learning_rate": 2.974374372067268e-08, "epoch": 2.9062299293513165, "percentage": 96.87, "elapsed_time": "11:26:06", "remaining_time": "0:22:08"} +{"current_steps": 4526, "total_steps": 4671, "loss": 0.022, "learning_rate": 2.933808811242056e-08, "epoch": 2.9068721901091843, "percentage": 96.9, "elapsed_time": "11:26:16", "remaining_time": "0:21:59"} +{"current_steps": 4527, "total_steps": 4671, "loss": 0.0174, "learning_rate": 2.89352096275175e-08, "epoch": 2.907514450867052, "percentage": 96.92, "elapsed_time": "11:26:26", "remaining_time": "0:21:50"} +{"current_steps": 4528, "total_steps": 4671, "loss": 0.0197, "learning_rate": 2.8535108491054565e-08, "epoch": 2.90815671162492, "percentage": 96.94, "elapsed_time": "11:26:35", "remaining_time": "0:21:40"} +{"current_steps": 4529, "total_steps": 4671, "loss": 0.0247, "learning_rate": 2.813778492656849e-08, "epoch": 2.9087989723827876, "percentage": 96.96, "elapsed_time": "11:26:43", "remaining_time": "0:21:31"} +{"current_steps": 4530, "total_steps": 4671, "loss": 0.0415, "learning_rate": 2.7743239156045044e-08, "epoch": 2.909441233140655, "percentage": 96.98, "elapsed_time": "11:26:52", "remaining_time": "0:21:22"} +{"current_steps": 4531, "total_steps": 4671, "loss": 0.0187, "learning_rate": 2.7351471399919005e-08, "epoch": 2.9100834938985227, "percentage": 97.0, "elapsed_time": "11:27:00", "remaining_time": "0:21:13"} +{"current_steps": 4532, "total_steps": 4671, "loss": 0.0149, "learning_rate": 2.69624818770714e-08, "epoch": 2.9107257546563905, "percentage": 97.02, "elapsed_time": "11:27:09", "remaining_time": "0:21:04"} +{"current_steps": 4533, "total_steps": 4671, "loss": 0.0283, "learning_rate": 2.6576270804831717e-08, "epoch": 2.9113680154142583, "percentage": 97.05, "elapsed_time": "11:27:17", "remaining_time": "0:20:55"} +{"current_steps": 4534, "total_steps": 4671, "loss": 0.0371, "learning_rate": 2.6192838398977906e-08, "epoch": 2.912010276172126, "percentage": 97.07, "elapsed_time": "11:27:25", "remaining_time": "0:20:46"} +{"current_steps": 4535, "total_steps": 4671, "loss": 0.0071, "learning_rate": 2.5812184873734158e-08, "epoch": 2.9126525369299934, "percentage": 97.09, "elapsed_time": "11:27:33", "remaining_time": "0:20:37"} +{"current_steps": 4536, "total_steps": 4671, "loss": 0.0266, "learning_rate": 2.5434310441773135e-08, "epoch": 2.913294797687861, "percentage": 97.11, "elapsed_time": "11:27:42", "remaining_time": "0:20:28"} +{"current_steps": 4537, "total_steps": 4671, "loss": 0.0234, "learning_rate": 2.5059215314214292e-08, "epoch": 2.913937058445729, "percentage": 97.13, "elapsed_time": "11:27:49", "remaining_time": "0:20:18"} +{"current_steps": 4538, "total_steps": 4671, "loss": 0.0162, "learning_rate": 2.468689970062388e-08, "epoch": 2.9145793192035967, "percentage": 97.15, "elapsed_time": "11:27:58", "remaining_time": "0:20:09"} +{"current_steps": 4539, "total_steps": 4671, "loss": 0.0181, "learning_rate": 2.4317363809016615e-08, "epoch": 2.9152215799614645, "percentage": 97.17, "elapsed_time": "11:28:07", "remaining_time": "0:20:00"} +{"current_steps": 4540, "total_steps": 4671, "loss": 0.0314, "learning_rate": 2.3950607845852346e-08, "epoch": 2.9158638407193322, "percentage": 97.2, "elapsed_time": "11:28:17", "remaining_time": "0:19:51"} +{"current_steps": 4541, "total_steps": 4671, "loss": 0.0324, "learning_rate": 2.358663201603939e-08, "epoch": 2.9165061014772, "percentage": 97.22, "elapsed_time": "11:28:27", "remaining_time": "0:19:42"} +{"current_steps": 4542, "total_steps": 4671, "loss": 0.0281, "learning_rate": 2.3225436522931743e-08, "epoch": 2.9171483622350673, "percentage": 97.24, "elapsed_time": "11:28:36", "remaining_time": "0:19:33"} +{"current_steps": 4543, "total_steps": 4671, "loss": 0.0101, "learning_rate": 2.2867021568330205e-08, "epoch": 2.917790622992935, "percentage": 97.26, "elapsed_time": "11:28:46", "remaining_time": "0:19:24"} +{"current_steps": 4544, "total_steps": 4671, "loss": 0.0238, "learning_rate": 2.2511387352482927e-08, "epoch": 2.918432883750803, "percentage": 97.28, "elapsed_time": "11:28:53", "remaining_time": "0:19:15"} +{"current_steps": 4545, "total_steps": 4671, "loss": 0.0223, "learning_rate": 2.2158534074083193e-08, "epoch": 2.9190751445086707, "percentage": 97.3, "elapsed_time": "11:29:03", "remaining_time": "0:19:06"} +{"current_steps": 4546, "total_steps": 4671, "loss": 0.0279, "learning_rate": 2.180846193027164e-08, "epoch": 2.919717405266538, "percentage": 97.32, "elapsed_time": "11:29:12", "remaining_time": "0:18:57"} +{"current_steps": 4547, "total_steps": 4671, "loss": 0.0243, "learning_rate": 2.146117111663404e-08, "epoch": 2.9203596660244058, "percentage": 97.35, "elapsed_time": "11:29:20", "remaining_time": "0:18:47"} +{"current_steps": 4548, "total_steps": 4671, "loss": 0.0396, "learning_rate": 2.1116661827202954e-08, "epoch": 2.9210019267822736, "percentage": 97.37, "elapsed_time": "11:29:30", "remaining_time": "0:18:38"} +{"current_steps": 4549, "total_steps": 4671, "loss": 0.0397, "learning_rate": 2.0774934254457202e-08, "epoch": 2.9216441875401413, "percentage": 97.39, "elapsed_time": "11:29:38", "remaining_time": "0:18:29"} +{"current_steps": 4550, "total_steps": 4671, "loss": 0.0287, "learning_rate": 2.0435988589320723e-08, "epoch": 2.922286448298009, "percentage": 97.41, "elapsed_time": "11:29:46", "remaining_time": "0:18:20"} +{"current_steps": 4551, "total_steps": 4671, "loss": 0.0288, "learning_rate": 2.0099825021163143e-08, "epoch": 2.922928709055877, "percentage": 97.43, "elapsed_time": "11:29:56", "remaining_time": "0:18:11"} +{"current_steps": 4552, "total_steps": 4671, "loss": 0.0218, "learning_rate": 1.9766443737800345e-08, "epoch": 2.9235709698137446, "percentage": 97.45, "elapsed_time": "11:30:03", "remaining_time": "0:18:02"} +{"current_steps": 4553, "total_steps": 4671, "loss": 0.0169, "learning_rate": 1.943584492549333e-08, "epoch": 2.924213230571612, "percentage": 97.47, "elapsed_time": "11:30:13", "remaining_time": "0:17:53"} +{"current_steps": 4554, "total_steps": 4671, "loss": 0.0302, "learning_rate": 1.910802876894824e-08, "epoch": 2.9248554913294798, "percentage": 97.5, "elapsed_time": "11:30:22", "remaining_time": "0:17:44"} +{"current_steps": 4555, "total_steps": 4671, "loss": 0.0374, "learning_rate": 1.878299545131801e-08, "epoch": 2.9254977520873475, "percentage": 97.52, "elapsed_time": "11:30:31", "remaining_time": "0:17:35"} +{"current_steps": 4556, "total_steps": 4671, "loss": 0.0529, "learning_rate": 1.846074515419849e-08, "epoch": 2.9261400128452153, "percentage": 97.54, "elapsed_time": "11:30:40", "remaining_time": "0:17:26"} +{"current_steps": 4557, "total_steps": 4671, "loss": 0.0206, "learning_rate": 1.8141278057632326e-08, "epoch": 2.9267822736030826, "percentage": 97.56, "elapsed_time": "11:30:48", "remaining_time": "0:17:16"} +{"current_steps": 4558, "total_steps": 4671, "loss": 0.0422, "learning_rate": 1.782459434010675e-08, "epoch": 2.9274245343609504, "percentage": 97.58, "elapsed_time": "11:30:59", "remaining_time": "0:17:07"} +{"current_steps": 4559, "total_steps": 4671, "loss": 0.0273, "learning_rate": 1.751069417855411e-08, "epoch": 2.928066795118818, "percentage": 97.6, "elapsed_time": "11:31:08", "remaining_time": "0:16:58"} +{"current_steps": 4560, "total_steps": 4671, "loss": 0.0157, "learning_rate": 1.719957774835135e-08, "epoch": 2.928709055876686, "percentage": 97.62, "elapsed_time": "11:31:17", "remaining_time": "0:16:49"} +{"current_steps": 4561, "total_steps": 4671, "loss": 0.0384, "learning_rate": 1.689124522331942e-08, "epoch": 2.9293513166345537, "percentage": 97.65, "elapsed_time": "11:31:25", "remaining_time": "0:16:40"} +{"current_steps": 4562, "total_steps": 4671, "loss": 0.0172, "learning_rate": 1.6585696775725524e-08, "epoch": 2.9299935773924215, "percentage": 97.67, "elapsed_time": "11:31:37", "remaining_time": "0:16:31"} +{"current_steps": 4563, "total_steps": 4671, "loss": 0.0418, "learning_rate": 1.6282932576279775e-08, "epoch": 2.9306358381502893, "percentage": 97.69, "elapsed_time": "11:31:46", "remaining_time": "0:16:22"} +{"current_steps": 4564, "total_steps": 4671, "loss": 0.0282, "learning_rate": 1.5982952794137973e-08, "epoch": 2.9312780989081566, "percentage": 97.71, "elapsed_time": "11:31:54", "remaining_time": "0:16:13"} +{"current_steps": 4565, "total_steps": 4671, "loss": 0.0149, "learning_rate": 1.568575759689883e-08, "epoch": 2.9319203596660244, "percentage": 97.73, "elapsed_time": "11:32:03", "remaining_time": "0:16:04"} +{"current_steps": 4566, "total_steps": 4671, "loss": 0.0208, "learning_rate": 1.5391347150607305e-08, "epoch": 2.932562620423892, "percentage": 97.75, "elapsed_time": "11:32:11", "remaining_time": "0:15:55"} +{"current_steps": 4567, "total_steps": 4671, "loss": 0.0119, "learning_rate": 1.5099721619750707e-08, "epoch": 2.93320488118176, "percentage": 97.77, "elapsed_time": "11:32:19", "remaining_time": "0:15:45"} +{"current_steps": 4568, "total_steps": 4671, "loss": 0.0172, "learning_rate": 1.4810881167260927e-08, "epoch": 2.9338471419396273, "percentage": 97.79, "elapsed_time": "11:32:27", "remaining_time": "0:15:36"} +{"current_steps": 4569, "total_steps": 4671, "loss": 0.0155, "learning_rate": 1.4524825954514432e-08, "epoch": 2.934489402697495, "percentage": 97.82, "elapsed_time": "11:32:35", "remaining_time": "0:15:27"} +{"current_steps": 4570, "total_steps": 4671, "loss": 0.0397, "learning_rate": 1.4241556141330604e-08, "epoch": 2.935131663455363, "percentage": 97.84, "elapsed_time": "11:32:44", "remaining_time": "0:15:18"} +{"current_steps": 4571, "total_steps": 4671, "loss": 0.0159, "learning_rate": 1.3961071885973953e-08, "epoch": 2.9357739242132306, "percentage": 97.86, "elapsed_time": "11:32:52", "remaining_time": "0:15:09"} +{"current_steps": 4572, "total_steps": 4671, "loss": 0.0163, "learning_rate": 1.3683373345150796e-08, "epoch": 2.9364161849710984, "percentage": 97.88, "elapsed_time": "11:33:01", "remaining_time": "0:15:00"} +{"current_steps": 4573, "total_steps": 4671, "loss": 0.032, "learning_rate": 1.3408460674013135e-08, "epoch": 2.937058445728966, "percentage": 97.9, "elapsed_time": "11:33:10", "remaining_time": "0:14:51"} +{"current_steps": 4574, "total_steps": 4671, "loss": 0.0086, "learning_rate": 1.3136334026154773e-08, "epoch": 2.937700706486834, "percentage": 97.92, "elapsed_time": "11:33:20", "remaining_time": "0:14:42"} +{"current_steps": 4575, "total_steps": 4671, "loss": 0.0418, "learning_rate": 1.2866993553614093e-08, "epoch": 2.9383429672447012, "percentage": 97.94, "elapsed_time": "11:33:28", "remaining_time": "0:14:33"} +{"current_steps": 4576, "total_steps": 4671, "loss": 0.0182, "learning_rate": 1.2600439406871834e-08, "epoch": 2.938985228002569, "percentage": 97.97, "elapsed_time": "11:33:38", "remaining_time": "0:14:24"} +{"current_steps": 4577, "total_steps": 4671, "loss": 0.0092, "learning_rate": 1.233667173485331e-08, "epoch": 2.939627488760437, "percentage": 97.99, "elapsed_time": "11:33:46", "remaining_time": "0:14:14"} +{"current_steps": 4578, "total_steps": 4671, "loss": 0.0151, "learning_rate": 1.2075690684925645e-08, "epoch": 2.9402697495183046, "percentage": 98.01, "elapsed_time": "11:33:55", "remaining_time": "0:14:05"} +{"current_steps": 4579, "total_steps": 4671, "loss": 0.0176, "learning_rate": 1.1817496402899975e-08, "epoch": 2.940912010276172, "percentage": 98.03, "elapsed_time": "11:34:04", "remaining_time": "0:13:56"} +{"current_steps": 4580, "total_steps": 4671, "loss": 0.0138, "learning_rate": 1.15620890330298e-08, "epoch": 2.9415542710340397, "percentage": 98.05, "elapsed_time": "11:34:12", "remaining_time": "0:13:47"} +{"current_steps": 4581, "total_steps": 4671, "loss": 0.0299, "learning_rate": 1.1309468718013194e-08, "epoch": 2.9421965317919074, "percentage": 98.07, "elapsed_time": "11:34:20", "remaining_time": "0:13:38"} +{"current_steps": 4582, "total_steps": 4671, "loss": 0.0313, "learning_rate": 1.1059635598988926e-08, "epoch": 2.942838792549775, "percentage": 98.09, "elapsed_time": "11:34:29", "remaining_time": "0:13:29"} +{"current_steps": 4583, "total_steps": 4671, "loss": 0.0152, "learning_rate": 1.0812589815539232e-08, "epoch": 2.943481053307643, "percentage": 98.12, "elapsed_time": "11:34:38", "remaining_time": "0:13:20"} +{"current_steps": 4584, "total_steps": 4671, "loss": 0.031, "learning_rate": 1.056833150568981e-08, "epoch": 2.9441233140655108, "percentage": 98.14, "elapsed_time": "11:34:47", "remaining_time": "0:13:11"} +{"current_steps": 4585, "total_steps": 4671, "loss": 0.0108, "learning_rate": 1.0326860805908722e-08, "epoch": 2.9447655748233785, "percentage": 98.16, "elapsed_time": "11:34:55", "remaining_time": "0:13:02"} +{"current_steps": 4586, "total_steps": 4671, "loss": 0.0398, "learning_rate": 1.008817785110583e-08, "epoch": 2.945407835581246, "percentage": 98.18, "elapsed_time": "11:35:04", "remaining_time": "0:12:52"} +{"current_steps": 4587, "total_steps": 4671, "loss": 0.0154, "learning_rate": 9.852282774633903e-09, "epoch": 2.9460500963391136, "percentage": 98.2, "elapsed_time": "11:35:13", "remaining_time": "0:12:43"} +{"current_steps": 4588, "total_steps": 4671, "loss": 0.0312, "learning_rate": 9.61917570828863e-09, "epoch": 2.9466923570969814, "percentage": 98.22, "elapsed_time": "11:35:21", "remaining_time": "0:12:34"} +{"current_steps": 4589, "total_steps": 4671, "loss": 0.0177, "learning_rate": 9.388856782307498e-09, "epoch": 2.947334617854849, "percentage": 98.24, "elapsed_time": "11:35:29", "remaining_time": "0:12:25"} +{"current_steps": 4590, "total_steps": 4671, "loss": 0.0318, "learning_rate": 9.16132612537035e-09, "epoch": 2.9479768786127165, "percentage": 98.27, "elapsed_time": "11:35:39", "remaining_time": "0:12:16"} +{"current_steps": 4591, "total_steps": 4671, "loss": 0.0181, "learning_rate": 8.93658386459939e-09, "epoch": 2.9486191393705843, "percentage": 98.29, "elapsed_time": "11:35:45", "remaining_time": "0:12:07"} +{"current_steps": 4592, "total_steps": 4671, "loss": 0.0303, "learning_rate": 8.714630125558066e-09, "epoch": 2.949261400128452, "percentage": 98.31, "elapsed_time": "11:35:54", "remaining_time": "0:11:58"} +{"current_steps": 4593, "total_steps": 4671, "loss": 0.0462, "learning_rate": 8.495465032253847e-09, "epoch": 2.94990366088632, "percentage": 98.33, "elapsed_time": "11:36:02", "remaining_time": "0:11:49"} +{"current_steps": 4594, "total_steps": 4671, "loss": 0.0343, "learning_rate": 8.279088707133787e-09, "epoch": 2.9505459216441876, "percentage": 98.35, "elapsed_time": "11:36:12", "remaining_time": "0:11:40"} +{"current_steps": 4595, "total_steps": 4671, "loss": 0.0179, "learning_rate": 8.065501271088405e-09, "epoch": 2.9511881824020554, "percentage": 98.37, "elapsed_time": "11:36:22", "remaining_time": "0:11:31"} +{"current_steps": 4596, "total_steps": 4671, "loss": 0.015, "learning_rate": 7.85470284344947e-09, "epoch": 2.951830443159923, "percentage": 98.39, "elapsed_time": "11:36:33", "remaining_time": "0:11:22"} +{"current_steps": 4597, "total_steps": 4671, "loss": 0.0267, "learning_rate": 7.646693541991101e-09, "epoch": 2.9524727039177905, "percentage": 98.42, "elapsed_time": "11:36:42", "remaining_time": "0:11:12"} +{"current_steps": 4598, "total_steps": 4671, "loss": 0.047, "learning_rate": 7.441473482928119e-09, "epoch": 2.9531149646756583, "percentage": 98.44, "elapsed_time": "11:36:52", "remaining_time": "0:11:03"} +{"current_steps": 4599, "total_steps": 4671, "loss": 0.0203, "learning_rate": 7.2390427809176934e-09, "epoch": 2.953757225433526, "percentage": 98.46, "elapsed_time": "11:37:00", "remaining_time": "0:10:54"} +{"current_steps": 4600, "total_steps": 4671, "loss": 0.0265, "learning_rate": 7.0394015490588e-09, "epoch": 2.954399486191394, "percentage": 98.48, "elapsed_time": "11:37:08", "remaining_time": "0:10:45"} +{"current_steps": 4601, "total_steps": 4671, "loss": 0.016, "learning_rate": 6.842549898891659e-09, "epoch": 2.955041746949261, "percentage": 98.5, "elapsed_time": "11:37:18", "remaining_time": "0:10:36"} +{"current_steps": 4602, "total_steps": 4671, "loss": 0.0249, "learning_rate": 6.648487940397186e-09, "epoch": 2.955684007707129, "percentage": 98.52, "elapsed_time": "11:37:27", "remaining_time": "0:10:27"} +{"current_steps": 4603, "total_steps": 4671, "loss": 0.018, "learning_rate": 6.4572157819992045e-09, "epoch": 2.9563262684649967, "percentage": 98.54, "elapsed_time": "11:37:37", "remaining_time": "0:10:18"} +{"current_steps": 4604, "total_steps": 4671, "loss": 0.0235, "learning_rate": 6.268733530561122e-09, "epoch": 2.9569685292228645, "percentage": 98.57, "elapsed_time": "11:37:48", "remaining_time": "0:10:09"} +{"current_steps": 4605, "total_steps": 4671, "loss": 0.0313, "learning_rate": 6.083041291389258e-09, "epoch": 2.9576107899807322, "percentage": 98.59, "elapsed_time": "11:37:57", "remaining_time": "0:10:00"} +{"current_steps": 4606, "total_steps": 4671, "loss": 0.0311, "learning_rate": 5.900139168230068e-09, "epoch": 2.9582530507386, "percentage": 98.61, "elapsed_time": "11:38:08", "remaining_time": "0:09:51"} +{"current_steps": 4607, "total_steps": 4671, "loss": 0.0355, "learning_rate": 5.72002726327181e-09, "epoch": 2.958895311496468, "percentage": 98.63, "elapsed_time": "11:38:19", "remaining_time": "0:09:42"} +{"current_steps": 4608, "total_steps": 4671, "loss": 0.032, "learning_rate": 5.542705677143434e-09, "epoch": 2.959537572254335, "percentage": 98.65, "elapsed_time": "11:38:27", "remaining_time": "0:09:32"} +{"current_steps": 4609, "total_steps": 4671, "loss": 0.0351, "learning_rate": 5.368174508914581e-09, "epoch": 2.960179833012203, "percentage": 98.67, "elapsed_time": "11:38:35", "remaining_time": "0:09:23"} +{"current_steps": 4610, "total_steps": 4671, "loss": 0.0194, "learning_rate": 5.196433856096694e-09, "epoch": 2.9608220937700707, "percentage": 98.69, "elapsed_time": "11:38:44", "remaining_time": "0:09:14"} +{"current_steps": 4611, "total_steps": 4671, "loss": 0.0224, "learning_rate": 5.027483814641354e-09, "epoch": 2.9614643545279384, "percentage": 98.72, "elapsed_time": "11:38:53", "remaining_time": "0:09:05"} +{"current_steps": 4612, "total_steps": 4671, "loss": 0.0213, "learning_rate": 4.8613244789419425e-09, "epoch": 2.9621066152858058, "percentage": 98.74, "elapsed_time": "11:39:02", "remaining_time": "0:08:56"} +{"current_steps": 4613, "total_steps": 4671, "loss": 0.0333, "learning_rate": 4.697955941832533e-09, "epoch": 2.9627488760436735, "percentage": 98.76, "elapsed_time": "11:39:13", "remaining_time": "0:08:47"} +{"current_steps": 4614, "total_steps": 4671, "loss": 0.0086, "learning_rate": 4.5373782945867805e-09, "epoch": 2.9633911368015413, "percentage": 98.78, "elapsed_time": "11:39:21", "remaining_time": "0:08:38"} +{"current_steps": 4615, "total_steps": 4671, "loss": 0.0228, "learning_rate": 4.379591626920699e-09, "epoch": 2.964033397559409, "percentage": 98.8, "elapsed_time": "11:39:31", "remaining_time": "0:08:29"} +{"current_steps": 4616, "total_steps": 4671, "loss": 0.0654, "learning_rate": 4.22459602698877e-09, "epoch": 2.964675658317277, "percentage": 98.82, "elapsed_time": "11:39:41", "remaining_time": "0:08:20"} +{"current_steps": 4617, "total_steps": 4671, "loss": 0.0193, "learning_rate": 4.072391581388946e-09, "epoch": 2.9653179190751446, "percentage": 98.84, "elapsed_time": "11:39:50", "remaining_time": "0:08:11"} +{"current_steps": 4618, "total_steps": 4671, "loss": 0.036, "learning_rate": 3.922978375158204e-09, "epoch": 2.9659601798330124, "percentage": 98.87, "elapsed_time": "11:39:59", "remaining_time": "0:08:02"} +{"current_steps": 4619, "total_steps": 4671, "loss": 0.0424, "learning_rate": 3.776356491773103e-09, "epoch": 2.9666024405908797, "percentage": 98.89, "elapsed_time": "11:40:09", "remaining_time": "0:07:52"} +{"current_steps": 4620, "total_steps": 4671, "loss": 0.0177, "learning_rate": 3.6325260131525597e-09, "epoch": 2.9672447013487475, "percentage": 98.91, "elapsed_time": "11:40:18", "remaining_time": "0:07:43"} +{"current_steps": 4621, "total_steps": 4671, "loss": 0.0281, "learning_rate": 3.491487019654516e-09, "epoch": 2.9678869621066153, "percentage": 98.93, "elapsed_time": "11:40:26", "remaining_time": "0:07:34"} +{"current_steps": 4622, "total_steps": 4671, "loss": 0.0402, "learning_rate": 3.353239590078161e-09, "epoch": 2.968529222864483, "percentage": 98.95, "elapsed_time": "11:40:35", "remaining_time": "0:07:25"} +{"current_steps": 4623, "total_steps": 4671, "loss": 0.0207, "learning_rate": 3.2177838016628216e-09, "epoch": 2.969171483622351, "percentage": 98.97, "elapsed_time": "11:40:43", "remaining_time": "0:07:16"} +{"current_steps": 4624, "total_steps": 4671, "loss": 0.038, "learning_rate": 3.08511973008796e-09, "epoch": 2.969813744380218, "percentage": 98.99, "elapsed_time": "11:40:52", "remaining_time": "0:07:07"} +{"current_steps": 4625, "total_steps": 4671, "loss": 0.0242, "learning_rate": 2.9552474494737304e-09, "epoch": 2.970456005138086, "percentage": 99.02, "elapsed_time": "11:41:01", "remaining_time": "0:06:58"} +{"current_steps": 4626, "total_steps": 4671, "loss": 0.0272, "learning_rate": 2.8281670323798693e-09, "epoch": 2.9710982658959537, "percentage": 99.04, "elapsed_time": "11:41:11", "remaining_time": "0:06:49"} +{"current_steps": 4627, "total_steps": 4671, "loss": 0.0246, "learning_rate": 2.703878549806249e-09, "epoch": 2.9717405266538215, "percentage": 99.06, "elapsed_time": "11:41:19", "remaining_time": "0:06:40"} +{"current_steps": 4628, "total_steps": 4671, "loss": 0.0133, "learning_rate": 2.5823820711934345e-09, "epoch": 2.9723827874116893, "percentage": 99.08, "elapsed_time": "11:41:27", "remaining_time": "0:06:31"} +{"current_steps": 4629, "total_steps": 4671, "loss": 0.023, "learning_rate": 2.463677664422126e-09, "epoch": 2.973025048169557, "percentage": 99.1, "elapsed_time": "11:41:36", "remaining_time": "0:06:21"} +{"current_steps": 4630, "total_steps": 4671, "loss": 0.0232, "learning_rate": 2.347765395812052e-09, "epoch": 2.9736673089274244, "percentage": 99.12, "elapsed_time": "11:41:47", "remaining_time": "0:06:12"} +{"current_steps": 4631, "total_steps": 4671, "loss": 0.0238, "learning_rate": 2.2346453301247405e-09, "epoch": 2.974309569685292, "percentage": 99.14, "elapsed_time": "11:41:56", "remaining_time": "0:06:03"} +{"current_steps": 4632, "total_steps": 4671, "loss": 0.0406, "learning_rate": 2.124317530560749e-09, "epoch": 2.97495183044316, "percentage": 99.17, "elapsed_time": "11:42:05", "remaining_time": "0:05:54"} +{"current_steps": 4633, "total_steps": 4671, "loss": 0.0246, "learning_rate": 2.0167820587591036e-09, "epoch": 2.9755940912010277, "percentage": 99.19, "elapsed_time": "11:42:15", "remaining_time": "0:05:45"} +{"current_steps": 4634, "total_steps": 4671, "loss": 0.0189, "learning_rate": 1.9120389748017443e-09, "epoch": 2.9762363519588955, "percentage": 99.21, "elapsed_time": "11:42:22", "remaining_time": "0:05:36"} +{"current_steps": 4635, "total_steps": 4671, "loss": 0.0199, "learning_rate": 1.8100883372085266e-09, "epoch": 2.976878612716763, "percentage": 99.23, "elapsed_time": "11:42:31", "remaining_time": "0:05:27"} +{"current_steps": 4636, "total_steps": 4671, "loss": 0.0309, "learning_rate": 1.7109302029388874e-09, "epoch": 2.9775208734746306, "percentage": 99.25, "elapsed_time": "11:42:38", "remaining_time": "0:05:18"} +{"current_steps": 4637, "total_steps": 4671, "loss": 0.0259, "learning_rate": 1.614564627393511e-09, "epoch": 2.9781631342324983, "percentage": 99.27, "elapsed_time": "11:42:48", "remaining_time": "0:05:09"} +{"current_steps": 4638, "total_steps": 4671, "loss": 0.0207, "learning_rate": 1.520991664411553e-09, "epoch": 2.978805394990366, "percentage": 99.29, "elapsed_time": "11:42:58", "remaining_time": "0:05:00"} +{"current_steps": 4639, "total_steps": 4671, "loss": 0.0217, "learning_rate": 1.4302113662734151e-09, "epoch": 2.979447655748234, "percentage": 99.31, "elapsed_time": "11:43:07", "remaining_time": "0:04:51"} +{"current_steps": 4640, "total_steps": 4671, "loss": 0.0182, "learning_rate": 1.342223783697416e-09, "epoch": 2.9800899165061017, "percentage": 99.34, "elapsed_time": "11:43:16", "remaining_time": "0:04:41"} +{"current_steps": 4641, "total_steps": 4671, "loss": 0.0354, "learning_rate": 1.2570289658425662e-09, "epoch": 2.9807321772639694, "percentage": 99.36, "elapsed_time": "11:43:25", "remaining_time": "0:04:32"} +{"current_steps": 4642, "total_steps": 4671, "loss": 0.0097, "learning_rate": 1.1746269603080119e-09, "epoch": 2.9813744380218368, "percentage": 99.38, "elapsed_time": "11:43:33", "remaining_time": "0:04:23"} +{"current_steps": 4643, "total_steps": 4671, "loss": 0.033, "learning_rate": 1.0950178131313716e-09, "epoch": 2.9820166987797045, "percentage": 99.4, "elapsed_time": "11:43:42", "remaining_time": "0:04:14"} +{"current_steps": 4644, "total_steps": 4671, "loss": 0.0247, "learning_rate": 1.0182015687909552e-09, "epoch": 2.9826589595375723, "percentage": 99.42, "elapsed_time": "11:43:50", "remaining_time": "0:04:05"} +{"current_steps": 4645, "total_steps": 4671, "loss": 0.0291, "learning_rate": 9.44178270204099e-10, "epoch": 2.98330122029544, "percentage": 99.44, "elapsed_time": "11:44:00", "remaining_time": "0:03:56"} +{"current_steps": 4646, "total_steps": 4671, "loss": 0.0433, "learning_rate": 8.729479587277212e-10, "epoch": 2.9839434810533074, "percentage": 99.46, "elapsed_time": "11:44:09", "remaining_time": "0:03:47"} +{"current_steps": 4647, "total_steps": 4671, "loss": 0.018, "learning_rate": 8.045106741583208e-10, "epoch": 2.984585741811175, "percentage": 99.49, "elapsed_time": "11:44:19", "remaining_time": "0:03:38"} +{"current_steps": 4648, "total_steps": 4671, "loss": 0.0203, "learning_rate": 7.388664547319791e-10, "epoch": 2.985228002569043, "percentage": 99.51, "elapsed_time": "11:44:27", "remaining_time": "0:03:29"} +{"current_steps": 4649, "total_steps": 4671, "loss": 0.0272, "learning_rate": 6.760153371249134e-10, "epoch": 2.9858702633269107, "percentage": 99.53, "elapsed_time": "11:44:36", "remaining_time": "0:03:20"} +{"current_steps": 4650, "total_steps": 4671, "loss": 0.0423, "learning_rate": 6.159573564518128e-10, "epoch": 2.9865125240847785, "percentage": 99.55, "elapsed_time": "11:44:44", "remaining_time": "0:03:10"} +{"current_steps": 4651, "total_steps": 4671, "loss": 0.0356, "learning_rate": 5.58692546267503e-10, "epoch": 2.9871547848426463, "percentage": 99.57, "elapsed_time": "11:44:56", "remaining_time": "0:03:01"} +{"current_steps": 4652, "total_steps": 4671, "loss": 0.0212, "learning_rate": 5.042209385652808e-10, "epoch": 2.987797045600514, "percentage": 99.59, "elapsed_time": "11:45:06", "remaining_time": "0:02:52"} +{"current_steps": 4653, "total_steps": 4671, "loss": 0.0154, "learning_rate": 4.5254256377913474e-10, "epoch": 2.9884393063583814, "percentage": 99.61, "elapsed_time": "11:45:15", "remaining_time": "0:02:43"} +{"current_steps": 4654, "total_steps": 4671, "loss": 0.0235, "learning_rate": 4.036574507820801e-10, "epoch": 2.989081567116249, "percentage": 99.64, "elapsed_time": "11:45:23", "remaining_time": "0:02:34"} +{"current_steps": 4655, "total_steps": 4671, "loss": 0.0397, "learning_rate": 3.5756562688615826e-10, "epoch": 2.989723827874117, "percentage": 99.66, "elapsed_time": "11:45:31", "remaining_time": "0:02:25"} +{"current_steps": 4656, "total_steps": 4671, "loss": 0.0393, "learning_rate": 3.142671178429924e-10, "epoch": 2.9903660886319847, "percentage": 99.68, "elapsed_time": "11:45:40", "remaining_time": "0:02:16"} +{"current_steps": 4657, "total_steps": 4671, "loss": 0.0522, "learning_rate": 2.7376194784323186e-10, "epoch": 2.991008349389852, "percentage": 99.7, "elapsed_time": "11:45:49", "remaining_time": "0:02:07"} +{"current_steps": 4658, "total_steps": 4671, "loss": 0.0433, "learning_rate": 2.3605013951766285e-10, "epoch": 2.99165061014772, "percentage": 99.72, "elapsed_time": "11:46:00", "remaining_time": "0:01:58"} +{"current_steps": 4659, "total_steps": 4671, "loss": 0.0163, "learning_rate": 2.0113171393609797e-10, "epoch": 2.9922928709055876, "percentage": 99.74, "elapsed_time": "11:46:08", "remaining_time": "0:01:49"} +{"current_steps": 4660, "total_steps": 4671, "loss": 0.0182, "learning_rate": 1.6900669060737617e-10, "epoch": 2.9929351316634554, "percentage": 99.76, "elapsed_time": "11:46:17", "remaining_time": "0:01:40"} +{"current_steps": 4661, "total_steps": 4671, "loss": 0.0259, "learning_rate": 1.3967508747991798e-10, "epoch": 2.993577392421323, "percentage": 99.79, "elapsed_time": "11:46:27", "remaining_time": "0:01:30"} +{"current_steps": 4662, "total_steps": 4671, "loss": 0.0285, "learning_rate": 1.1313692094117034e-10, "epoch": 2.994219653179191, "percentage": 99.81, "elapsed_time": "11:46:35", "remaining_time": "0:01:21"} +{"current_steps": 4663, "total_steps": 4671, "loss": 0.0328, "learning_rate": 8.939220581816177e-11, "epoch": 2.9948619139370587, "percentage": 99.83, "elapsed_time": "11:46:46", "remaining_time": "0:01:12"} +{"current_steps": 4664, "total_steps": 4671, "loss": 0.0258, "learning_rate": 6.844095537750228e-11, "epoch": 2.995504174694926, "percentage": 99.85, "elapsed_time": "11:46:55", "remaining_time": "0:01:03"} +{"current_steps": 4665, "total_steps": 4671, "loss": 0.0268, "learning_rate": 5.028318132371812e-11, "epoch": 2.996146435452794, "percentage": 99.87, "elapsed_time": "11:47:06", "remaining_time": "0:00:54"} +{"current_steps": 4666, "total_steps": 4671, "loss": 0.0163, "learning_rate": 3.491889380313751e-11, "epoch": 2.9967886962106616, "percentage": 99.89, "elapsed_time": "11:47:16", "remaining_time": "0:00:45"} +{"current_steps": 4667, "total_steps": 4671, "loss": 0.0417, "learning_rate": 2.234810139833954e-11, "epoch": 2.9974309569685293, "percentage": 99.91, "elapsed_time": "11:47:27", "remaining_time": "0:00:36"} +{"current_steps": 4668, "total_steps": 4671, "loss": 0.0274, "learning_rate": 1.2570811133705285e-11, "epoch": 2.9980732177263967, "percentage": 99.94, "elapsed_time": "11:47:36", "remaining_time": "0:00:27"} +{"current_steps": 4669, "total_steps": 4671, "loss": 0.0243, "learning_rate": 5.587028470976919e-12, "epoch": 2.9987154784842645, "percentage": 99.96, "elapsed_time": "11:47:45", "remaining_time": "0:00:18"} +{"current_steps": 4670, "total_steps": 4671, "loss": 0.0254, "learning_rate": 1.3967573125883705e-12, "epoch": 2.9993577392421322, "percentage": 99.98, "elapsed_time": "11:47:54", "remaining_time": "0:00:09"} +{"current_steps": 4671, "total_steps": 4671, "loss": 0.0242, "learning_rate": 0.0, "epoch": 3.0, "percentage": 100.0, "elapsed_time": "11:48:02", "remaining_time": "0:00:00"} +{"current_steps": 4671, "total_steps": 4671, "epoch": 3.0, "percentage": 100.0, "elapsed_time": "11:51:59", "remaining_time": "0:00:00"}