File size: 2,599 Bytes
06fcf4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: facebook/convnextv2-atto-1k-224
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: 10-convnextv2-atto-1k-224-finetuned-spiderTraining20-500
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 10-convnextv2-atto-1k-224-finetuned-spiderTraining20-500

This model is a fine-tuned version of [facebook/convnextv2-atto-1k-224](https://huggingface.co/facebook/convnextv2-atto-1k-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4791
- Accuracy: 0.8408
- Precision: 0.8390
- Recall: 0.8394
- F1: 0.8383

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 25
- eval_batch_size: 25
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 100
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.8923        | 1.0   | 80   | 1.6643          | 0.4955   | 0.5096    | 0.4901 | 0.4754 |
| 1.0142        | 2.0   | 160  | 0.8840          | 0.7347   | 0.7512    | 0.7309 | 0.7279 |
| 0.8541        | 3.0   | 240  | 0.7184          | 0.7638   | 0.7659    | 0.7570 | 0.7554 |
| 0.7463        | 4.0   | 320  | 0.6199          | 0.8058   | 0.8057    | 0.8044 | 0.8005 |
| 0.6316        | 5.0   | 400  | 0.5719          | 0.8308   | 0.8344    | 0.8283 | 0.8277 |
| 0.576         | 6.0   | 480  | 0.5260          | 0.8258   | 0.8251    | 0.8211 | 0.8216 |
| 0.5158        | 7.0   | 560  | 0.5165          | 0.8428   | 0.8413    | 0.8397 | 0.8386 |
| 0.4545        | 8.0   | 640  | 0.4952          | 0.8428   | 0.8427    | 0.8400 | 0.8405 |
| 0.4602        | 9.0   | 720  | 0.4858          | 0.8418   | 0.8386    | 0.8388 | 0.8378 |
| 0.4606        | 10.0  | 800  | 0.4791          | 0.8408   | 0.8390    | 0.8394 | 0.8383 |


### Framework versions

- Transformers 4.33.3
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3