Zongxia commited on
Commit
44f2fbe
β€’
1 Parent(s): b4a505a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -30
README.md CHANGED
@@ -98,36 +98,6 @@ F1 Match: False
98
  '''
99
  ```
100
 
101
- ## Transformer Neural Evaluation
102
- Our fine-tuned BERT model is on πŸ€— [Huggingface](https://huggingface.co/Zongxia/answer_equivalence_bert?text=The+goal+of+life+is+%5BMASK%5D.). Our Package also supports downloading and matching directly. [distilroberta](https://huggingface.co/Zongxia/answer_equivalence_distilroberta), [distilbert](https://huggingface.co/Zongxia/answer_equivalence_distilbert), [roberta](https://huggingface.co/Zongxia/answer_equivalence_roberta), and [roberta-large](https://huggingface.co/Zongxia/answer_equivalence_roberta-large) are also supported now! πŸ”₯πŸ”₯πŸ”₯
103
-
104
- #### `transformer_match`
105
-
106
- Returns True if the candidate answer is a match of any of the gold answers.
107
-
108
- **Parameters**
109
-
110
- - `reference_answer` (list of str): A list of gold (correct) answers to the question.
111
- - `candidate_answer` (str): The answer provided by a candidate that needs to be evaluated.
112
- - `question` (str): The question for which the answers are being evaluated.
113
-
114
- **Returns**
115
-
116
- - `boolean`: A boolean True/False signifying matches between reference or candidate answers.
117
-
118
- ```python
119
- from qa_metrics.transformerMatcher import TransformerMatcher
120
-
121
- question = "Which movie is loosley based off the Brother Grimm's Iron Henry?"
122
- tm = TransformerMatcher("distilroberta")
123
- scores = tm.get_scores(reference_answer, candidate_answer, question)
124
- match_result = tm.transformer_match(reference_answer, candidate_answer, question)
125
- print("Score: %s; bert Match: %s" % (scores, match_result))
126
- '''
127
- Score: {'The Frog Prince': {'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"': 0.6934309}, 'The Princess and the Frog': {'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"': 0.7400551}}; TM Match: True
128
- '''
129
- ```
130
-
131
  ## Efficient and Robust Question/Answer Type Evaluation
132
  #### 1. `get_highest_score`
133
 
@@ -195,6 +165,36 @@ print(pedant.get_score(reference_answer[1], candidate_answer, question))
195
  '''
196
  ```
197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
 
199
  ## Prompting LLM For Evaluation
200
 
 
98
  '''
99
  ```
100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
  ## Efficient and Robust Question/Answer Type Evaluation
102
  #### 1. `get_highest_score`
103
 
 
165
  '''
166
  ```
167
 
168
+ ## Transformer Neural Evaluation
169
+ Our fine-tuned BERT model is on πŸ€— [Huggingface](https://huggingface.co/Zongxia/answer_equivalence_bert?text=The+goal+of+life+is+%5BMASK%5D.). Our Package also supports downloading and matching directly. [distilroberta](https://huggingface.co/Zongxia/answer_equivalence_distilroberta), [distilbert](https://huggingface.co/Zongxia/answer_equivalence_distilbert), [roberta](https://huggingface.co/Zongxia/answer_equivalence_roberta), and [roberta-large](https://huggingface.co/Zongxia/answer_equivalence_roberta-large) are also supported now! πŸ”₯πŸ”₯πŸ”₯
170
+
171
+ #### `transformer_match`
172
+
173
+ Returns True if the candidate answer is a match of any of the gold answers.
174
+
175
+ **Parameters**
176
+
177
+ - `reference_answer` (list of str): A list of gold (correct) answers to the question.
178
+ - `candidate_answer` (str): The answer provided by a candidate that needs to be evaluated.
179
+ - `question` (str): The question for which the answers are being evaluated.
180
+
181
+ **Returns**
182
+
183
+ - `boolean`: A boolean True/False signifying matches between reference or candidate answers.
184
+
185
+ ```python
186
+ from qa_metrics.transformerMatcher import TransformerMatcher
187
+
188
+ question = "Which movie is loosley based off the Brother Grimm's Iron Henry?"
189
+ # Supported models: roberta-large, roberta, bert, distilbert, distilroberta
190
+ tm = TransformerMatcher("roberta-large")
191
+ scores = tm.get_scores(reference_answer, candidate_answer, question)
192
+ match_result = tm.transformer_match(reference_answer, candidate_answer, question)
193
+ print("Score: %s; bert Match: %s" % (scores, match_result))
194
+ '''
195
+ Score: {'The Frog Prince': {'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"': 0.6934309}, 'The Princess and the Frog': {'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"': 0.7400551}}; TM Match: True
196
+ '''
197
+ ```
198
 
199
  ## Prompting LLM For Evaluation
200