File size: 5,257 Bytes
e7b9d79
 
 
 
 
 
 
 
 
 
 
 
 
a58ecb1
e7b9d79
4a28bae
e7b9d79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a58ecb1
 
e7b9d79
 
a58ecb1
 
 
e7b9d79
 
 
 
 
 
 
 
a58ecb1
00bb126
e7b9d79
 
a58ecb1
 
 
 
e7b9d79
 
 
 
 
 
 
 
 
 
 
a58ecb1
 
 
 
e7b9d79
 
02e6b9b
e7b9d79
02e6b9b
e7b9d79
a58ecb1
02e6b9b
 
 
 
 
 
a58ecb1
02e6b9b
 
 
 
 
 
 
 
 
a58ecb1
e7b9d79
 
 
 
4a28bae
 
 
 
 
 
 
e7b9d79
 
 
 
 
a58ecb1
e7b9d79
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
inference: false
license: mit
language:
- en
metrics:
- exact_match
- f1
- bertscore
pipeline_tag: text-classification
---
# QA-Evaluation-Metrics

[![PyPI version qa-metrics](https://img.shields.io/pypi/v/qa-metrics.svg)](https://pypi.org/project/qa-metrics/) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/17b7vrZqH0Yun2AJaOXydYZxr3cw20Ga6?usp=sharing)

QA-Evaluation-Metrics is a fast and lightweight Python package for evaluating question-answering models. It provides various basic metrics to assess the performance of QA models. Check out our paper [**PANDA**](https://arxiv.org/abs/2402.11161), a matching method going beyond token-level matching and is more efficient than LLM matchings but still retains competitive evaluation performance of transformer LLM models.


## Installation

To install the package, run the following command:

```bash
pip install qa-metrics
```

## Usage

The python package currently provides four QA evaluation metrics.

#### Exact Match
```python
from qa_metrics.em import em_match

reference_answer = ["The Frog Prince", "The Princess and the Frog"]
candidate_answer = "The movie \"The Princess and the Frog\" is loosely based off the Brother Grimm's \"Iron Henry\""
match_result = em_match(reference_answer, candidate_answer)
print("Exact Match: ", match_result)
'''
Exact Match:  False
'''
```

#### Transformer Match
Our fine-tuned BERT model is this repository. Our Package also supports downloading and matching directly. distilroberta, distilbert, and roberta are also supported now! 🔥🔥🔥

```python
from qa_metrics.transformerMatcher import TransformerMatcher

question = "Which movie is loosley based off the Brother Grimm's Iron Henry?"
tm = TransformerMatcher("roberta")
scores = tm.get_scores(reference_answer, candidate_answer, question)
match_result = tm.transformer_match(reference_answer, candidate_answer, question)
print("Score: %s; TM Match: %s" % (scores, match_result))
'''
Score: {'The Frog Prince': {'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"': 0.88954514}, 'The Princess and the Frog': {'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"': 0.9381995}}; TM Match: True
'''
```

#### F1 Score
```python
from qa_metrics.f1 import f1_match,f1_score_with_precision_recall

f1_stats = f1_score_with_precision_recall(reference_answer[0], candidate_answer)
print("F1 stats: ", f1_stats)

match_result = f1_match(reference_answer, candidate_answer, threshold=0.5)
print("F1 Match: ", match_result)
'''
F1 stats:  {'f1': 0.25, 'precision': 0.6666666666666666, 'recall': 0.15384615384615385}
F1 Match:  False
'''
```

#### PANDA Match
```python
from qa_metrics.pedant import PEDANT

question = "Which movie is loosley based off the Brother Grimm's Iron Henry?"
pedant = PEDANT()
scores = pedant.get_scores(reference_answer, candidate_answer, question)
max_pair, highest_scores = pedant.get_highest_score(reference_answer, candidate_answer, question)
match_result = pedant.evaluate(reference_answer, candidate_answer, question)
print("Max Pair: %s; Highest Score: %s" % (max_pair, highest_scores))
print("Score: %s; PANDA Match: %s" % (scores, match_result))
'''
Max Pair: ('the princess and the frog', 'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"'); Highest Score: 0.854451712151719
Score: {'the frog prince': {'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"': 0.7131625951317375}, 'the princess and the frog': {'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"': 0.854451712151719}}; PANDA Match: True
'''
```

```python
print(pedant.get_score(reference_answer[1], candidate_answer, question))
'''
0.7122460127464126
'''
```

If you find this repo avialable, please cite our paper:
```bibtex
@misc{li2024panda,
      title={PANDA (Pedantic ANswer-correctness Determination and Adjudication):Improving Automatic Evaluation for Question Answering and Text Generation}, 
      author={Zongxia Li and Ishani Mondal and Yijun Liang and Huy Nghiem and Jordan Lee Boyd-Graber},
      year={2024},
      eprint={2402.11161},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```


## Updates
- [01/24/24] 🔥 The full paper is uploaded and can be accessed [here](https://arxiv.org/abs/2402.11161). The dataset is expanded and leaderboard is updated.
- Our Training Dataset is adapted and augmented from [Bulian et al](https://github.com/google-research-datasets/answer-equivalence-dataset). Our [dataset repo](https://github.com/zli12321/Answer_Equivalence_Dataset.git) includes the augmented training set and QA evaluation testing sets discussed in our paper. 
- Now our model supports [distilroberta](https://huggingface.co/Zongxia/answer_equivalence_distilroberta), [distilbert](https://huggingface.co/Zongxia/answer_equivalence_distilbert), a smaller and more robust matching model than Bert!

## License

This project is licensed under the [MIT License](LICENSE.md) - see the LICENSE file for details.

## Contact

For any additional questions or comments, please contact [[email protected]].