Update README.md
Browse files
README.md
CHANGED
@@ -9,54 +9,57 @@ metrics:
|
|
9 |
- bertscore
|
10 |
pipeline_tag: text-classification
|
11 |
---
|
12 |
-
# QA-Evaluation-Metrics
|
13 |
|
14 |
[![PyPI version qa-metrics](https://img.shields.io/pypi/v/qa-metrics.svg)](https://pypi.org/project/qa-metrics/)
|
15 |
-
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
- Uopdated to version 0.2.17
|
21 |
-
- Supports prompting OPENAI GPT-series models and Claude Series models now. (Assuimg OPENAI version > 1.0)
|
22 |
-
- Supports prompting various open source models such as LLaMA-2-70B-chat, LLaVA-1.5 etc by calling API from [deepinfra](https://deepinfra.com/models).
|
23 |
-
- Added trained tiny-bert for QA evaluation. Model size is 18 MB.
|
24 |
-
- Pass huggingface repository name to download model directly for TransformerMatcher
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
##
|
28 |
-
* Python version >= 3.6
|
29 |
-
* openai version >= 1.0
|
30 |
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
```bash
|
35 |
pip install qa-metrics
|
36 |
```
|
37 |
|
38 |
-
##
|
39 |
|
40 |
-
|
41 |
-
- Given a set of gold answers, a candidate answer to be evaluated, and a question (if applicable), the evaluation returns True if the candidate answer matches any one of the gold answer, False otherwise.
|
42 |
-
- Different evaluation methods have distinct strictness of evaluating the correctness of a candidate answer. Some have higher correlation with human judgments than others.
|
43 |
-
- Normalized Exact Match and Question/Answer type Evaluation are the most efficient method. They are suitable for short-form QA datasets such as NQ-OPEN, Hotpot QA, TriviaQA, SQuAD, etc.
|
44 |
-
- Question/Answer Type Evaluation and Transformer Neural evaluations are cost free and suitable for short-form and longer-form QA datasets. They have higher correlation with human judgments than exact match and F1 score when the length of the gold and candidate answers become long.
|
45 |
-
- Black-box LLM evaluations are closest to human evaluations, and they are not cost-free.
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
55 |
-
|
|
|
|
|
56 |
|
57 |
**Returns**
|
58 |
-
|
59 |
-
- `boolean`: A boolean True/False signifying matches between reference or candidate answers.
|
60 |
|
61 |
```python
|
62 |
from qa_metrics.em import em_match
|
@@ -64,202 +67,223 @@ from qa_metrics.em import em_match
|
|
64 |
reference_answer = ["The Frog Prince", "The Princess and the Frog"]
|
65 |
candidate_answer = "The movie \"The Princess and the Frog\" is loosely based off the Brother Grimm's \"Iron Henry\""
|
66 |
match_result = em_match(reference_answer, candidate_answer)
|
67 |
-
print("Exact Match: ", match_result)
|
68 |
-
'''
|
69 |
-
Exact Match: False
|
70 |
-
'''
|
71 |
```
|
72 |
|
73 |
-
|
74 |
-
#### `f1_score_with_precision_recall`
|
75 |
-
|
76 |
-
Calculates F1 score, precision, and recall between a reference and a candidate answer.
|
77 |
|
|
|
78 |
**Parameters**
|
79 |
-
|
80 |
-
- `
|
81 |
-
- `candidate_answer` (str): The answer provided by a candidate that needs to be evaluated.
|
82 |
|
83 |
**Returns**
|
|
|
84 |
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
```python
|
88 |
-
from qa_metrics.f1 import f1_match,f1_score_with_precision_recall
|
89 |
|
90 |
f1_stats = f1_score_with_precision_recall(reference_answer[0], candidate_answer)
|
91 |
-
print("F1 stats: ", f1_stats)
|
92 |
-
'''
|
93 |
-
F1 stats: {'f1': 0.25, 'precision': 0.6666666666666666, 'recall': 0.15384615384615385}
|
94 |
-
'''
|
95 |
-
|
96 |
match_result = f1_match(reference_answer, candidate_answer, threshold=0.5)
|
97 |
-
print("F1 Match: ", match_result)
|
98 |
-
'''
|
99 |
-
F1 Match: False
|
100 |
-
'''
|
101 |
```
|
102 |
|
103 |
-
|
104 |
-
#### 1. `get_highest_score`
|
105 |
-
|
106 |
-
Returns the gold answer and candidate answer pair that has the highest matching score. This function is useful for evaluating the closest match to a given candidate response based on a list of reference answers.
|
107 |
|
|
|
108 |
**Parameters**
|
109 |
-
|
110 |
-
- `
|
111 |
-
- `
|
112 |
-
- `question` (str): The question for which the answers are being evaluated.
|
113 |
|
114 |
**Returns**
|
|
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
119 |
|
120 |
-
Returns
|
|
|
121 |
|
|
|
122 |
**Parameters**
|
123 |
-
|
124 |
-
- `
|
125 |
-
- `
|
126 |
-
- `question` (str): The question for which the answers are being evaluated.
|
127 |
|
128 |
**Returns**
|
|
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
133 |
|
134 |
-
Returns
|
|
|
135 |
|
|
|
136 |
**Parameters**
|
137 |
-
|
138 |
-
- `
|
139 |
-
- `candidate_answer` (str): The answer provided by a candidate that needs to be evaluated.
|
140 |
-
- `question` (str): The question for which the answers are being evaluated.
|
141 |
|
142 |
**Returns**
|
|
|
143 |
|
144 |
-
|
|
|
|
|
|
|
|
|
145 |
|
|
|
|
|
146 |
|
147 |
```python
|
148 |
from qa_metrics.pedant import PEDANT
|
149 |
|
150 |
-
question = "Which movie is loosley based off the Brother Grimm's Iron Henry?"
|
151 |
pedant = PEDANT()
|
152 |
scores = pedant.get_scores(reference_answer, candidate_answer, question)
|
153 |
-
max_pair, highest_scores = pedant.get_highest_score(reference_answer, candidate_answer, question)
|
154 |
match_result = pedant.evaluate(reference_answer, candidate_answer, question)
|
155 |
-
print("Max Pair: %s; Highest Score: %s" % (max_pair, highest_scores))
|
156 |
-
print("Score: %s; PANDA Match: %s" % (scores, match_result))
|
157 |
-
'''
|
158 |
-
Max Pair: ('the princess and the frog', 'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"'); Highest Score: 0.854451712151719
|
159 |
-
Score: {'the frog prince': {'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"': 0.7131625951317375}, 'the princess and the frog': {'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"': 0.854451712151719}}; PANDA Match: True
|
160 |
-
'''
|
161 |
-
```
|
162 |
-
|
163 |
-
```python
|
164 |
-
print(pedant.get_score(reference_answer[1], candidate_answer, question))
|
165 |
-
'''
|
166 |
-
0.7122460127464126
|
167 |
-
'''
|
168 |
```
|
169 |
|
170 |
-
|
171 |
-
Our fine-tuned BERT model is on π€ [Huggingface](https://huggingface.co/Zongxia/answer_equivalence_bert?text=The+goal+of+life+is+%5BMASK%5D.). Our Package also supports downloading and matching directly. [distilroberta](https://huggingface.co/Zongxia/answer_equivalence_distilroberta), [distilbert](https://huggingface.co/Zongxia/answer_equivalence_distilbert), [roberta](https://huggingface.co/Zongxia/answer_equivalence_roberta), and [roberta-large](https://huggingface.co/Zongxia/answer_equivalence_roberta-large) are also supported now! π₯π₯π₯
|
172 |
|
173 |
-
#### `
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
Returns
|
|
|
176 |
|
|
|
177 |
**Parameters**
|
|
|
|
|
|
|
178 |
|
179 |
-
|
180 |
-
- `
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
**Returns**
|
|
|
184 |
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
```python
|
188 |
from qa_metrics.transformerMatcher import TransformerMatcher
|
189 |
|
190 |
-
|
191 |
-
# Supported models: roberta-large, roberta, bert, distilbert, distilroberta
|
192 |
tm = TransformerMatcher("zli12321/answer_equivalence_tiny_bert")
|
193 |
-
scores = tm.get_scores(reference_answer, candidate_answer, question)
|
194 |
match_result = tm.transformer_match(reference_answer, candidate_answer, question)
|
195 |
-
print("Score: %s; bert Match: %s" % (scores, match_result))
|
196 |
-
'''
|
197 |
-
Score: {'The Frog Prince': {'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"': 0.6934309}, 'The Princess and the Frog': {'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"': 0.7400551}}; TM Match: True
|
198 |
-
'''
|
199 |
```
|
200 |
|
201 |
-
|
202 |
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
-
###### OpenAI
|
206 |
```python
|
207 |
from qa_metrics.prompt_llm import CloseLLM
|
|
|
208 |
model = CloseLLM()
|
209 |
model.set_openai_api_key(YOUR_OPENAI_KEY)
|
210 |
-
prompt =
|
211 |
-
model.prompt_gpt(prompt=prompt, model_engine='gpt-3.5-turbo', temperature=0.1, max_tokens=10)
|
212 |
-
|
213 |
-
'''
|
214 |
-
'correct'
|
215 |
-
'''
|
216 |
```
|
217 |
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
```python
|
220 |
model = CloseLLM()
|
221 |
-
model.set_anthropic_api_key(
|
222 |
-
model.prompt_claude(prompt=prompt, model_engine='claude-v1'
|
223 |
-
|
224 |
-
'''
|
225 |
-
'correct'
|
226 |
-
'''
|
227 |
```
|
228 |
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
```python
|
231 |
from qa_metrics.prompt_open_llm import OpenLLM
|
|
|
232 |
model = OpenLLM()
|
233 |
model.set_deepinfra_key(YOUR_DEEPINFRA_KEY)
|
234 |
-
model.prompt(message=prompt, model_engine='mistralai/Mixtral-8x7B-Instruct-v0.1'
|
235 |
-
|
236 |
-
'''
|
237 |
-
'correct'
|
238 |
-
'''
|
239 |
```
|
240 |
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
```bibtex
|
243 |
-
@misc{
|
244 |
-
title={
|
245 |
author={Zongxia Li and Ishani Mondal and Yijun Liang and Huy Nghiem and Jordan Lee Boyd-Graber},
|
246 |
year={2024},
|
247 |
eprint={2402.11161},
|
248 |
archivePrefix={arXiv},
|
249 |
-
primaryClass={cs.CL}
|
|
|
250 |
}
|
251 |
```
|
252 |
|
|
|
253 |
|
254 |
-
|
255 |
-
- [01/24/24] π₯ The full paper is uploaded and can be accessed [here](https://arxiv.org/abs/2402.11161). The dataset is expanded and leaderboard is updated.
|
256 |
-
- Our Training Dataset is adapted and augmented from [Bulian et al](https://github.com/google-research-datasets/answer-equivalence-dataset). Our [dataset repo](https://github.com/zli12321/Answer_Equivalence_Dataset.git) includes the augmented training set and QA evaluation testing sets discussed in our paper.
|
257 |
-
- Now our model supports [distilroberta](https://huggingface.co/Zongxia/answer_equivalence_distilroberta), [distilbert](https://huggingface.co/Zongxia/answer_equivalence_distilbert), a smaller and more robust matching model than Bert!
|
258 |
-
|
259 |
-
## License
|
260 |
-
|
261 |
-
This project is licensed under the [MIT License](LICENSE.md) - see the LICENSE file for details.
|
262 |
|
263 |
-
## Contact
|
264 |
|
265 |
-
For
|
|
|
9 |
- bertscore
|
10 |
pipeline_tag: text-classification
|
11 |
---
|
12 |
+
# QA-Evaluation-Metrics π
|
13 |
|
14 |
[![PyPI version qa-metrics](https://img.shields.io/pypi/v/qa-metrics.svg)](https://pypi.org/project/qa-metrics/)
|
15 |
+
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Ke23KIeHFdPWad0BModmcWKZ6jSbF5nI?usp=sharing)
|
16 |
|
17 |
+
> A fast and lightweight Python package for evaluating question-answering models and prompting of black-box and open-source large language models.
|
18 |
|
19 |
+
## π Latest Updates
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
- **Version 0.2.19 Released!**
|
22 |
+
- Paper accepted to EMNLP 2024 Findings! π
|
23 |
+
- Enhanced PEDANTS with multi-pipeline support and improved edge case handling
|
24 |
+
- Added support for OpenAI GPT-series and Claude Series models (OpenAI version > 1.0)
|
25 |
+
- Integrated support for open-source models (LLaMA-2-70B-chat, LLaVA-1.5, etc.) via [deepinfra](https://deepinfra.com/models)
|
26 |
+
- Introduced trained tiny-bert for QA evaluation (18MB model size)
|
27 |
+
- Added direct Huggingface model download support for TransformerMatcher
|
28 |
|
29 |
+
## π Quick Start
|
|
|
|
|
30 |
|
31 |
+
### Prerequisites
|
32 |
+
- Python >= 3.6
|
33 |
+
- openai >= 1.0
|
34 |
|
35 |
+
### Installation
|
|
|
36 |
```bash
|
37 |
pip install qa-metrics
|
38 |
```
|
39 |
|
40 |
+
## π‘ Features
|
41 |
|
42 |
+
Our package offers six QA evaluation methods with varying strengths:
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
| Method | Best For | Cost | Correlation with Human Judgment |
|
45 |
+
|--------|----------|------|--------------------------------|
|
46 |
+
| Normalized Exact Match | Short-form QA (NQ-OPEN, HotpotQA, etc.) | Free | Good |
|
47 |
+
| PEDANTS | Both short & medium-form QA | Free | Very High |
|
48 |
+
| [Neural Evaluation](https://huggingface.co/zli12321/answer_equivalence_tiny_bert) | Both short & long-form QA | Free | High |
|
49 |
+
| [Open Source LLM Evaluation](https://huggingface.co/zli12321/prometheus2-2B) | All QA types | Free | High |
|
50 |
+
| Black-box LLM Evaluation | All QA types | Paid | Highest |
|
51 |
|
52 |
+
## π Documentation
|
53 |
|
54 |
+
### 1. Normalized Exact Match
|
55 |
|
56 |
+
#### Method: `em_match`
|
57 |
+
**Parameters**
|
58 |
+
- `reference_answer` (list of str): A list of gold (correct) answers to the question
|
59 |
+
- `candidate_answer` (str): The answer provided by a candidate that needs to be evaluated
|
60 |
|
61 |
**Returns**
|
62 |
+
- `boolean`: True if there are any exact normalized matches between gold and candidate answers
|
|
|
63 |
|
64 |
```python
|
65 |
from qa_metrics.em import em_match
|
|
|
67 |
reference_answer = ["The Frog Prince", "The Princess and the Frog"]
|
68 |
candidate_answer = "The movie \"The Princess and the Frog\" is loosely based off the Brother Grimm's \"Iron Henry\""
|
69 |
match_result = em_match(reference_answer, candidate_answer)
|
|
|
|
|
|
|
|
|
70 |
```
|
71 |
|
72 |
+
### 2. F1 Score
|
|
|
|
|
|
|
73 |
|
74 |
+
#### Method: `f1_score_with_precision_recall`
|
75 |
**Parameters**
|
76 |
+
- `reference_answer` (str): A gold (correct) answer to the question
|
77 |
+
- `candidate_answer` (str): The answer provided by a candidate that needs to be evaluated
|
|
|
78 |
|
79 |
**Returns**
|
80 |
+
- `dictionary`: Contains the F1 score, precision, and recall between a gold and candidate answer
|
81 |
|
82 |
+
#### Method: `f1_match`
|
83 |
+
**Parameters**
|
84 |
+
- `reference_answer` (list of str): List of gold answers
|
85 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
86 |
+
- `threshold` (float): F1 score threshold for considering a match (default: 0.5)
|
87 |
+
|
88 |
+
**Returns**
|
89 |
+
- `boolean`: True if F1 score exceeds threshold for any gold answer
|
90 |
|
91 |
```python
|
92 |
+
from qa_metrics.f1 import f1_match, f1_score_with_precision_recall
|
93 |
|
94 |
f1_stats = f1_score_with_precision_recall(reference_answer[0], candidate_answer)
|
|
|
|
|
|
|
|
|
|
|
95 |
match_result = f1_match(reference_answer, candidate_answer, threshold=0.5)
|
|
|
|
|
|
|
|
|
96 |
```
|
97 |
|
98 |
+
### 3. PEDANTS
|
|
|
|
|
|
|
99 |
|
100 |
+
#### Method: `get_score`
|
101 |
**Parameters**
|
102 |
+
- `reference_answer` (str): A Gold answer
|
103 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
104 |
+
- `question` (str): The question being evaluated
|
|
|
105 |
|
106 |
**Returns**
|
107 |
+
- `float`: The similarity score between two strings (0 to 1)
|
108 |
|
109 |
+
#### Method: `get_highest_score`
|
110 |
+
**Parameters**
|
111 |
+
- `reference_answer` (list of str): List of gold answers
|
112 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
113 |
+
- `question` (str): The question being evaluated
|
114 |
|
115 |
+
**Returns**
|
116 |
+
- `dictionary`: Contains the gold answer and candidate answer pair with highest matching score
|
117 |
|
118 |
+
#### Method: `get_scores`
|
119 |
**Parameters**
|
120 |
+
- `reference_answer` (list of str): List of gold answers
|
121 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
122 |
+
- `question` (str): The question being evaluated
|
|
|
123 |
|
124 |
**Returns**
|
125 |
+
- `dictionary`: Contains matching scores for all gold answer and candidate answer pairs
|
126 |
|
127 |
+
#### Method: `evaluate`
|
128 |
+
**Parameters**
|
129 |
+
- `reference_answer` (list of str): List of gold answers
|
130 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
131 |
+
- `question` (str): The question being evaluated
|
132 |
|
133 |
+
**Returns**
|
134 |
+
- `boolean`: True if candidate answer matches any gold answer
|
135 |
|
136 |
+
#### Method: `get_question_type`
|
137 |
**Parameters**
|
138 |
+
- `reference_answer` (list of str): List of gold answers
|
139 |
+
- `question` (str): The question being evaluated
|
|
|
|
|
140 |
|
141 |
**Returns**
|
142 |
+
- `list`: The type of the question (what, who, when, how, why, which, where)
|
143 |
|
144 |
+
#### Method: `get_judgement_type`
|
145 |
+
**Parameters**
|
146 |
+
- `reference_answer` (list of str): List of gold answers
|
147 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
148 |
+
- `question` (str): The question being evaluated
|
149 |
|
150 |
+
**Returns**
|
151 |
+
- `list`: A list revised rules applicable to judge answer correctness
|
152 |
|
153 |
```python
|
154 |
from qa_metrics.pedant import PEDANT
|
155 |
|
|
|
156 |
pedant = PEDANT()
|
157 |
scores = pedant.get_scores(reference_answer, candidate_answer, question)
|
|
|
158 |
match_result = pedant.evaluate(reference_answer, candidate_answer, question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
```
|
160 |
|
161 |
+
### 4. Transformer Neural Evaluation
|
|
|
162 |
|
163 |
+
#### Method: `get_score`
|
164 |
+
**Parameters**
|
165 |
+
- `reference_answer` (str): A Gold answer
|
166 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
167 |
+
- `question` (str): The question being evaluated
|
168 |
|
169 |
+
**Returns**
|
170 |
+
- `float`: The similarity score between two strings (0 to 1)
|
171 |
|
172 |
+
#### Method: `get_highest_score`
|
173 |
**Parameters**
|
174 |
+
- `reference_answer` (list of str): List of gold answers
|
175 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
176 |
+
- `question` (str): The question being evaluated
|
177 |
|
178 |
+
**Returns**
|
179 |
+
- `dictionary`: Contains the gold answer and candidate answer pair with highest matching score
|
180 |
+
|
181 |
+
#### Method: `get_scores`
|
182 |
+
**Parameters**
|
183 |
+
- `reference_answer` (list of str): List of gold answers
|
184 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
185 |
+
- `question` (str): The question being evaluated
|
186 |
|
187 |
**Returns**
|
188 |
+
- `dictionary`: Contains matching scores for all gold answer and candidate answer pairs
|
189 |
|
190 |
+
#### Method: `transformer_match`
|
191 |
+
**Parameters**
|
192 |
+
- `reference_answer` (list of str): List of gold answers
|
193 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
194 |
+
- `question` (str): The question being evaluated
|
195 |
+
|
196 |
+
**Returns**
|
197 |
+
- `boolean`: True if transformer model considers candidate answer equivalent to any gold answer
|
198 |
|
199 |
```python
|
200 |
from qa_metrics.transformerMatcher import TransformerMatcher
|
201 |
|
202 |
+
### supports `zli12321/answer_equivalence_bert`, `zli12321/answer_equivalence_distilbert`, `zli12321/answer_equivalence_roberta`, `zli12321/answer_equivalence_distilroberta`
|
|
|
203 |
tm = TransformerMatcher("zli12321/answer_equivalence_tiny_bert")
|
|
|
204 |
match_result = tm.transformer_match(reference_answer, candidate_answer, question)
|
|
|
|
|
|
|
|
|
205 |
```
|
206 |
|
207 |
+
### 5. LLM Integration
|
208 |
|
209 |
+
#### Method: `prompt_gpt`
|
210 |
+
**Parameters**
|
211 |
+
- `prompt` (str): The input prompt text
|
212 |
+
- `model_engine` (str): OpenAI model to use (e.g., 'gpt-3.5-turbo')
|
213 |
+
- `temperature` (float): Controls randomness (0-1)
|
214 |
+
- `max_tokens` (int): Maximum tokens in response
|
215 |
|
|
|
216 |
```python
|
217 |
from qa_metrics.prompt_llm import CloseLLM
|
218 |
+
|
219 |
model = CloseLLM()
|
220 |
model.set_openai_api_key(YOUR_OPENAI_KEY)
|
221 |
+
result = model.prompt_gpt(prompt=prompt, model_engine='gpt-3.5-turbo')
|
|
|
|
|
|
|
|
|
|
|
222 |
```
|
223 |
|
224 |
+
#### Method: `prompt_claude`
|
225 |
+
**Parameters**
|
226 |
+
- `prompt` (str): The input prompt text
|
227 |
+
- `model_engine` (str): Claude model to use
|
228 |
+
- `anthropic_version` (str): API version
|
229 |
+
- `max_tokens_to_sample` (int): Maximum tokens in response
|
230 |
+
- `temperature` (float): Controls randomness (0-1)
|
231 |
+
|
232 |
```python
|
233 |
model = CloseLLM()
|
234 |
+
model.set_anthropic_api_key(YOUR_ANTHROPIC_KEY)
|
235 |
+
result = model.prompt_claude(prompt=prompt, model_engine='claude-v1')
|
|
|
|
|
|
|
|
|
236 |
```
|
237 |
|
238 |
+
#### Method: `prompt`
|
239 |
+
**Parameters**
|
240 |
+
- `message` (str): The input message text
|
241 |
+
- `model_engine` (str): Model to use
|
242 |
+
- `temperature` (float): Controls randomness (0-1)
|
243 |
+
- `max_tokens` (int): Maximum tokens in response
|
244 |
+
|
245 |
```python
|
246 |
from qa_metrics.prompt_open_llm import OpenLLM
|
247 |
+
|
248 |
model = OpenLLM()
|
249 |
model.set_deepinfra_key(YOUR_DEEPINFRA_KEY)
|
250 |
+
result = model.prompt(message=prompt, model_engine='mistralai/Mixtral-8x7B-Instruct-v0.1')
|
|
|
|
|
|
|
|
|
251 |
```
|
252 |
|
253 |
+
## π€ Model Hub
|
254 |
+
|
255 |
+
Our fine-tuned models are available on Huggingface:
|
256 |
+
- [BERT](https://huggingface.co/Zongxia/answer_equivalence_bert)
|
257 |
+
- [DistilRoBERTa](https://huggingface.co/Zongxia/answer_equivalence_distilroberta)
|
258 |
+
- [DistilBERT](https://huggingface.co/Zongxia/answer_equivalence_distilbert)
|
259 |
+
- [RoBERTa](https://huggingface.co/Zongxia/answer_equivalence_roberta)
|
260 |
+
- [Tiny-BERT](https://huggingface.co/Zongxia/answer_equivalence_tiny_bert)
|
261 |
+
- [RoBERTa-Large](https://huggingface.co/Zongxia/answer_equivalence_roberta-large)
|
262 |
+
|
263 |
+
## π Resources
|
264 |
+
|
265 |
+
- [Full Paper](https://arxiv.org/abs/2402.11161)
|
266 |
+
- [Dataset Repository](https://github.com/zli12321/Answer_Equivalence_Dataset.git)
|
267 |
+
- [Supported Models on Deepinfra](https://deepinfra.com/models)
|
268 |
+
|
269 |
+
## π Citation
|
270 |
+
|
271 |
```bibtex
|
272 |
+
@misc{li2024pedantspreciseevaluationsdiverse,
|
273 |
+
title={PEDANTS: Cheap but Effective and Interpretable Answer Equivalence},
|
274 |
author={Zongxia Li and Ishani Mondal and Yijun Liang and Huy Nghiem and Jordan Lee Boyd-Graber},
|
275 |
year={2024},
|
276 |
eprint={2402.11161},
|
277 |
archivePrefix={arXiv},
|
278 |
+
primaryClass={cs.CL},
|
279 |
+
url={https://arxiv.org/abs/2402.11161},
|
280 |
}
|
281 |
```
|
282 |
|
283 |
+
## π License
|
284 |
|
285 |
+
This project is licensed under the [MIT License](LICENSE.md).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
+
## π¬ Contact
|
288 |
|
289 |
+
For questions or comments, please contact: [email protected]
|