zoheb commited on
Commit
c8c0e9d
1 Parent(s): 00a8f07

initial commit

Browse files
Files changed (4) hide show
  1. README.md +55 -1
  2. config.json +39 -0
  3. preprocessor_config.json +18 -0
  4. pytorch_model.bin +3 -0
README.md CHANGED
@@ -1,3 +1,57 @@
1
  ---
2
- license: mit
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - object-detection
4
+ - vision
5
+ finetuned_from:
6
+ - hustvl/yolos-small
7
  ---
8
+
9
+ # YOLOS (small-sized) model fine-tuned on Matterport balloon dataset
10
+
11
+ YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN). YOLOS model fine-tuned on COCO 2017 object detection (118k annotated images). It was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS).
12
+
13
+ ## Model description
14
+
15
+ The model is trained using a "bipartite matching loss": one compares the predicted classes + bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N (so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as bounding box). The Hungarian matching algorithm is used to create an optimal one-to-one mapping between each of the N queries and each of the N annotations. Next, standard cross-entropy (for the classes) and a linear combination of the L1 and generalized IoU loss (for the bounding boxes) are used to optimize the parameters of the model.
16
+
17
+ Currently, both the feature extractor and model support PyTorch.
18
+
19
+ ## Training data
20
+
21
+ This model was pre-trained on [ImageNet-1k](https://huggingface.co/datasets/imagenet2012) and fine-tuned on [COCO 2017 object detection](https://cocodataset.org/#download), a dataset consisting of 118k/5k annotated images for training/validation respectively. It was further fine-tuned on [Matterport Balloon Detection dataset](https://github.com/matterport/Mask_RCNN/releases/download/v2.1/balloon_dataset.zip), a dataset containg 74 annotated images.
22
+
23
+ ### Training
24
+
25
+ The model was pre-trained for 200 epochs on ImageNet-1k, fine-tuned for 150 epochs on COCO and further fine-tuned for 96 epochs on Matterport Balloon Dataset.
26
+
27
+ You can go through its detailed notebook [here](https://github.com/ZohebAbai/Deep-Learning-Projects/blob/master/10_PT_Object_Detection_using_Transformers.ipynb).
28
+
29
+ ## Evaluation results
30
+
31
+ This model achieves an AP (average precision) of **26.9** on Matterport Balloon validation.
32
+
33
+ ### BibTeX entry and citation info
34
+
35
+ ```bibtex
36
+ @article{DBLP:journals/corr/abs-2106-00666,
37
+ author = {Yuxin Fang and
38
+ Bencheng Liao and
39
+ Xinggang Wang and
40
+ Jiemin Fang and
41
+ Jiyang Qi and
42
+ Rui Wu and
43
+ Jianwei Niu and
44
+ Wenyu Liu},
45
+ title = {You Only Look at One Sequence: Rethinking Transformer in Vision through
46
+ Object Detection},
47
+ journal = {CoRR},
48
+ volume = {abs/2106.00666},
49
+ year = {2021},
50
+ url = {https://arxiv.org/abs/2106.00666},
51
+ eprinttype = {arXiv},
52
+ eprint = {2106.00666},
53
+ timestamp = {Fri, 29 Apr 2022 19:49:16 +0200},
54
+ biburl = {https://dblp.org/rec/journals/corr/abs-2106-00666.bib},
55
+ bibsource = {dblp computer science bibliography, https://dblp.org}
56
+ }
57
+ ```
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "YolosForObjectDetection"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.0,
6
+ "auxiliary_loss": false,
7
+ "bbox_cost": 5,
8
+ "bbox_loss_coefficient": 5,
9
+ "class_cost": 1,
10
+ "eos_coefficient": 0.1,
11
+ "giou_cost": 2,
12
+ "giou_loss_coefficient": 2,
13
+ "hidden_act": "gelu",
14
+ "hidden_dropout_prob": 0.0,
15
+ "hidden_size": 384,
16
+ "id2label": {
17
+ "0": "Balloon"
18
+ },
19
+ "image_size": [
20
+ 512,
21
+ 864
22
+ ],
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 1536,
25
+ "label2id": {
26
+ "Balloon": 0
27
+ },
28
+ "layer_norm_eps": 1e-12,
29
+ "model_type": "yolos",
30
+ "num_attention_heads": 6,
31
+ "num_channels": 3,
32
+ "num_detection_tokens": 100,
33
+ "num_hidden_layers": 12,
34
+ "patch_size": 16,
35
+ "qkv_bias": true,
36
+ "torch_dtype": "float32",
37
+ "transformers_version": "4.22.2",
38
+ "use_mid_position_embeddings": true
39
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_resize": true,
4
+ "feature_extractor_type": "YolosFeatureExtractor",
5
+ "format": "coco_detection",
6
+ "image_mean": [
7
+ 0.485,
8
+ 0.456,
9
+ 0.406
10
+ ],
11
+ "image_std": [
12
+ 0.229,
13
+ 0.224,
14
+ 0.225
15
+ ],
16
+ "max_size": 1333,
17
+ "size": 800
18
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:073d1210ad9ce9aa2d7fed6a9fd85eb87522e258b876e23cd7a6e9edd3a3d068
3
+ size 122667609