--- license: apache-2.0 base_model: openai/whisper-large tags: - generated_from_trainer datasets: - common_voice_16_1 metrics: - wer model-index: - name: openai/whisper-large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_1 type: common_voice_16_1 config: eu split: test args: eu metrics: - name: Wer type: wer value: 8.144442707519149 --- # openai/whisper-large This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the common_voice_16_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.4111 - Wer: 8.1444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.004 | 10.04 | 1000 | 0.2314 | 10.6603 | | 0.0028 | 20.08 | 2000 | 0.2480 | 10.2783 | | 0.0027 | 30.11 | 3000 | 0.2492 | 10.0379 | | 0.0005 | 40.15 | 4000 | 0.2753 | 9.3784 | | 0.0016 | 50.19 | 5000 | 0.2489 | 9.3003 | | 0.0006 | 60.23 | 6000 | 0.2599 | 9.0023 | | 0.0011 | 70.26 | 7000 | 0.2606 | 8.9378 | | 0.0005 | 80.3 | 8000 | 0.2723 | 8.9270 | | 0.0001 | 90.34 | 9000 | 0.2764 | 8.5304 | | 0.0011 | 100.38 | 10000 | 0.2668 | 8.8977 | | 0.0001 | 110.41 | 11000 | 0.2856 | 8.3701 | | 0.0 | 120.45 | 12000 | 0.3045 | 8.2890 | | 0.0 | 130.49 | 13000 | 0.3149 | 8.2441 | | 0.0 | 140.53 | 14000 | 0.3241 | 8.2285 | | 0.0 | 150.56 | 15000 | 0.3336 | 8.2060 | | 0.0 | 160.6 | 16000 | 0.3433 | 8.1601 | | 0.0 | 170.64 | 17000 | 0.3537 | 8.1806 | | 0.0 | 180.68 | 18000 | 0.3634 | 8.1874 | | 0.0 | 190.72 | 19000 | 0.3738 | 8.1786 | | 0.0 | 200.75 | 20000 | 0.3848 | 8.2441 | | 0.0 | 210.79 | 21000 | 0.3952 | 8.2324 | | 0.0 | 220.83 | 22000 | 0.4030 | 8.2480 | | 0.0001 | 230.87 | 23000 | 0.2919 | 8.4268 | | 0.0 | 240.9 | 24000 | 0.3137 | 8.1865 | | 0.0 | 250.94 | 25000 | 0.3271 | 8.1884 | | 0.0 | 260.98 | 26000 | 0.3378 | 8.1825 | | 0.0 | 271.02 | 27000 | 0.3472 | 8.1865 | | 0.0 | 281.05 | 28000 | 0.3556 | 8.2031 | | 0.0 | 291.09 | 29000 | 0.3637 | 8.2099 | | 0.0 | 301.13 | 30000 | 0.3710 | 8.1933 | | 0.0 | 311.17 | 31000 | 0.3781 | 8.1874 | | 0.0 | 321.2 | 32000 | 0.3845 | 8.1679 | | 0.0 | 331.24 | 33000 | 0.3905 | 8.1601 | | 0.0 | 341.28 | 34000 | 0.3971 | 8.1640 | | 0.0 | 351.32 | 35000 | 0.4022 | 8.1611 | | 0.0 | 361.36 | 36000 | 0.4046 | 8.1562 | | 0.0 | 371.39 | 37000 | 0.4073 | 8.1523 | | 0.0 | 381.43 | 38000 | 0.4093 | 8.1493 | | 0.0 | 391.47 | 39000 | 0.4107 | 8.1513 | | 0.0 | 401.51 | 40000 | 0.4111 | 8.1444 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1