--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: openai/whisper-large-v3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: es split: test args: es metrics: - name: Wer type: wer value: 4.9295277686894154 --- # openai/whisper-large-v3 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3245 - Wer: 4.9295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.058 | 2.04 | 1000 | 0.1540 | 4.6851 | | 0.0124 | 4.07 | 2000 | 0.1829 | 4.6787 | | 0.0052 | 6.11 | 3000 | 0.2190 | 4.8096 | | 0.0024 | 8.15 | 4000 | 0.2289 | 4.8776 | | 0.0024 | 10.18 | 5000 | 0.2341 | 4.8923 | | 0.0015 | 12.22 | 6000 | 0.2459 | 4.9340 | | 0.0021 | 14.26 | 7000 | 0.2558 | 4.9276 | | 0.0011 | 16.29 | 8000 | 0.2540 | 5.1015 | | 0.0013 | 18.33 | 9000 | 0.2611 | 5.1855 | | 0.0005 | 20.37 | 10000 | 0.2720 | 4.9379 | | 0.0028 | 22.4 | 11000 | 0.2614 | 5.0110 | | 0.0004 | 24.44 | 12000 | 0.2652 | 4.9898 | | 0.0004 | 26.48 | 13000 | 0.2850 | 4.9776 | | 0.0006 | 28.51 | 14000 | 0.2736 | 4.9732 | | 0.0002 | 30.55 | 15000 | 0.2944 | 5.1566 | | 0.0002 | 32.59 | 16000 | 0.2949 | 5.0007 | | 0.0001 | 34.62 | 17000 | 0.3094 | 4.9552 | | 0.0 | 36.66 | 18000 | 0.3185 | 4.9622 | | 0.0 | 38.7 | 19000 | 0.3229 | 4.9462 | | 0.0 | 40.73 | 20000 | 0.3245 | 4.9295 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1