--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - azaheadhealth metrics: - accuracy - f1 - precision - recall model-index: - name: microtest-2.0 results: - task: name: Text Classification type: text-classification dataset: name: azaheadhealth type: azaheadhealth config: micro split: test args: micro metrics: - name: Accuracy type: accuracy value: 0.75 - name: F1 type: f1 value: 0.8 - name: Precision type: precision value: 0.6666666666666666 - name: Recall type: recall value: 1.0 --- # microtest-2.0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the azaheadhealth dataset. It achieves the following results on the evaluation set: - Loss: 0.3672 - Accuracy: 0.75 - F1: 0.8 - Precision: 0.6667 - Recall: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|:---------:|:------:| | 0.8113 | 0.5 | 1 | 0.4486 | 0.75 | 0.8 | 0.6667 | 1.0 | | 0.7227 | 1.0 | 2 | 0.3672 | 0.75 | 0.8 | 0.6667 | 1.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.13.2