|
--- |
|
base_model: WinKawaks/vit-tiny-patch16-224 |
|
datasets: |
|
- 0-ma/geometric-shapes |
|
license: apache-2.0 |
|
metrics: |
|
- accuracy |
|
pipeline_tag: image-classification |
|
--- |
|
|
|
# Model Card for VIT Geometric Shapes Dataset Tiny |
|
|
|
## Training Dataset |
|
|
|
- **Repository:** https://huggingface.co/datasets/0-ma/geometric-shapes |
|
|
|
## Base Model |
|
|
|
- **Repository:** https://huggingface.co/models/WinKawaks/vit-tiny-patch16-224 |
|
|
|
## Accuracy |
|
|
|
- Accuracy on dataset 0-ma/geometric-shapes [test] : 0.9138095238095238 |
|
|
|
# Loading and using the model |
|
import numpy as np |
|
from PIL import Image |
|
from transformers import AutoImageProcessor, AutoModelForImageClassification |
|
import requests |
|
labels = [ |
|
"None", |
|
"Circle", |
|
"Triangle", |
|
"Square", |
|
"Pentagon", |
|
"Hexagon" |
|
] |
|
images = [Image.open(requests.get("https://raw.githubusercontent.com/0-ma/geometric-shape-detector/main/input/exemple_circle.jpg", stream=True).raw), |
|
Image.open(requests.get("https://raw.githubusercontent.com/0-ma/geometric-shape-detector/main/input/exemple_pentagone.jpg", stream=True).raw)] |
|
feature_extractor = AutoImageProcessor.from_pretrained('0-ma/vit-geometric-shapes-tiny') |
|
model = AutoModelForImageClassification.from_pretrained('0-ma/vit-geometric-shapes-tiny') |
|
inputs = feature_extractor(images=images, return_tensors="pt") |
|
logits = model(**inputs)['logits'].cpu().detach().numpy() |
|
predictions = np.argmax(logits, axis=1) |
|
predicted_labels = [labels[prediction] for prediction in predictions] |
|
print(predicted_labels) |
|
|
|
## Model generation |
|
The model has been created using the 'train_shape_detector.py.py' of the project from the project https://github.com/0-ma/geometric-shape-detector. No external code sources were used. |