AGTD-v0.1 / README.md
0xnu's picture
Update README.md
8c084ea
|
raw
history blame
2.75 kB
---
license: apache-2.0
datasets:
- dmitva/human_ai_generated_text
---
# 0xnu/AGTD-v0.1
The "0xnu/AGTD-v0.1" model represents a significant breakthrough in distinguishing between human-generated and AI-generated text. It is rooted in sophisticated algorithms and offers exceptional accuracy and efficiency in text analysis and classification. Everything is detailed in the study and accessible [here](https://arxiv.org/abs/2311.15565).
## Instruction Format
```
<BOS> [CLS] [INST] Instruction [/INST] Model answer [SEP] [INST] Follow-up instruction [/INST] [SEP] [EOS]
```
Pseudo-code for tokenizing instructions with the new format:
```Python
def tokenize(text):
return tok.encode(text, add_special_tokens=False)
[BOS_ID] +
tokenize("[CLS]") + tokenize("[INST]") + tokenize(USER_MESSAGE_1) + tokenize("[/INST]") +
tokenize(BOT_MESSAGE_1) + tokenize("[SEP]") +
tokenize("[INST]") + tokenize(USER_MESSAGE_N) + tokenize("[/INST]") +
tokenize(BOT_MESSAGE_N) + tokenize("[SEP]") + [EOS_ID]
```
Notes:
- `[CLS]`, `[SEP]`, `[PAD]`, `[UNK]`, and `[MASK]` tokens are integrated based on their definitions in the tokenizer configuration.
- `[INST]` and `[/INST]` are utilized to encapsulate instructions.
- The tokenize method should not automatically add BOS or EOS tokens but should add a prefix space.
- The `do_lower_case` parameter indicates that text should be in lowercase for consistent tokenization.
- `clean_up_tokenization_spaces` remove unnecessary spaces in the tokenization process.
- The `tokenize_chinese_chars` parameter indicates special handling for Chinese characters.
- The maximum model length is set to 512 tokens.
## Run the model
```Python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
model_id = "0xnu/AGTD-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(model_id)
# Input text
text = "This model trains on a diverse dataset and serves functions in applications requiring a mechanism for distinguishing between human and AI-generated text."
# Preprocess the text
inputs = tokenizer(text, return_tensors='pt')
# Run the model
outputs = model(**inputs)
# Interpret the output
logits = outputs.logits
# Apply softmax to convert logits to probabilities
probabilities = torch.softmax(logits, dim=1)
# Assuming the first class is 'human' and the second class is 'ai'
human_prob, ai_prob = probabilities.detach().numpy()[0]
# Print probabilities
print(f"Human Probability: {human_prob:.4f}")
print(f"AI Probability: {ai_prob:.4f}")
# Determine if the text is human or AI-generated
if human_prob > ai_prob:
print("The text is likely human-generated.")
else:
print("The text is likely AI-generated.")
```