AGTD-v0.1 / README.md
0xnu's picture
Update README.md
8c084ea
|
raw
history blame
2.75 kB
metadata
license: apache-2.0
datasets:
  - dmitva/human_ai_generated_text

0xnu/AGTD-v0.1

The "0xnu/AGTD-v0.1" model represents a significant breakthrough in distinguishing between human-generated and AI-generated text. It is rooted in sophisticated algorithms and offers exceptional accuracy and efficiency in text analysis and classification. Everything is detailed in the study and accessible here.

Instruction Format

<BOS> [CLS] [INST] Instruction [/INST] Model answer [SEP] [INST] Follow-up instruction [/INST] [SEP] [EOS]

Pseudo-code for tokenizing instructions with the new format:

def tokenize(text):
    return tok.encode(text, add_special_tokens=False)

[BOS_ID] + 
tokenize("[CLS]") + tokenize("[INST]") + tokenize(USER_MESSAGE_1) + tokenize("[/INST]") +
tokenize(BOT_MESSAGE_1) + tokenize("[SEP]") +
…
tokenize("[INST]") + tokenize(USER_MESSAGE_N) + tokenize("[/INST]") +
tokenize(BOT_MESSAGE_N) + tokenize("[SEP]") + [EOS_ID]

Notes:

  • [CLS], [SEP], [PAD], [UNK], and [MASK] tokens are integrated based on their definitions in the tokenizer configuration.
  • [INST] and [/INST] are utilized to encapsulate instructions.
  • The tokenize method should not automatically add BOS or EOS tokens but should add a prefix space.
  • The do_lower_case parameter indicates that text should be in lowercase for consistent tokenization.
  • clean_up_tokenization_spaces remove unnecessary spaces in the tokenization process.
  • The tokenize_chinese_chars parameter indicates special handling for Chinese characters.
  • The maximum model length is set to 512 tokens.

Run the model

from transformers import AutoTokenizer, AutoModelForSequenceClassification

model_id = "0xnu/AGTD-v0.1"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(model_id)

# Input text
text = "This model trains on a diverse dataset and serves functions in applications requiring a mechanism for distinguishing between human and AI-generated text."

# Preprocess the text
inputs = tokenizer(text, return_tensors='pt')

# Run the model
outputs = model(**inputs)

# Interpret the output
logits = outputs.logits

# Apply softmax to convert logits to probabilities
probabilities = torch.softmax(logits, dim=1)

# Assuming the first class is 'human' and the second class is 'ai'
human_prob, ai_prob = probabilities.detach().numpy()[0]

# Print probabilities
print(f"Human Probability: {human_prob:.4f}")
print(f"AI Probability: {ai_prob:.4f}")

# Determine if the text is human or AI-generated
if human_prob > ai_prob:
    print("The text is likely human-generated.")
else:
    print("The text is likely AI-generated.")