|
--- |
|
license: apache-2.0 |
|
library_name: onnx |
|
tags: |
|
- punctuation |
|
- sentence boundary detection |
|
- truecasing |
|
language: |
|
- af |
|
- am |
|
- ar |
|
- bg |
|
- bn |
|
- de |
|
- el |
|
- en |
|
- es |
|
- et |
|
- fa |
|
- fi |
|
- fr |
|
- gu |
|
- hi |
|
- hr |
|
- hu |
|
- id |
|
- is |
|
- it |
|
- ja |
|
- kk |
|
- kn |
|
- ko |
|
- ky |
|
- lt |
|
- lv |
|
- mk |
|
- ml |
|
- mr |
|
- nl |
|
- or |
|
- pa |
|
- pl |
|
- ps |
|
- pt |
|
- ro |
|
- ru |
|
- rw |
|
- so |
|
- sr |
|
- sw |
|
- ta |
|
- te |
|
- tr |
|
- uk |
|
- zh |
|
--- |
|
# Model Overview |
|
This model accepts as input lower-cased, unpunctuated, unsegmented text in 47 languages and performs punctuation restoration, true-casing (capitalization), and sentence boundary detection (segmentation). |
|
|
|
All languages are processed with the same algorithm with no need for language tags or language-specific branches in the graph. |
|
This includes continuous-script and non-continuous script languages, predicting language-specific punctuation, etc. |
|
|
|
# Model Details |
|
|
|
This model generally follows the graph shown below, with brief descriptions for each step following. |
|
|
|
![graph.png](https://s3.amazonaws.com/moonup/production/uploads/1677025540482-62d34c813eebd640a4f97587.png) |
|
|
|
|
|
1. **Encoding**: |
|
The model begins by tokenizing the text with a subword tokenizer. |
|
The tokenizer used here is a `SentencePiece` model with a vocabulary size of 64k. |
|
Next, the input sequence is encoded with a base-sized Transformer, consisting of 6 layers with a model dimension of 512. |
|
|
|
2. **Post-punctuation**: |
|
The encoded sequence is then fed into a classification network to predict "post" punctuation tokens. |
|
Post punctuation are punctuation tokens that may appear after a word, basically most normal punctuation. |
|
Post punctation is predicted once per subword - further discussion is below. |
|
|
|
3. **Re-encoding** |
|
All subsequent tasks (true-casing, sentence boundary detection, and "pre" punctuation) are dependent on "post" punctuation. |
|
Therefore, we must conditional all further predictions on the post punctuation tokens. |
|
For this task, predicted punctation tokens are fed into an embedding layer, where embeddings represent each possible punctuation token. |
|
Each time step is mapped to a 4-dimensional embeddings, which is concatenated to the 512-dimensional encoding. |
|
The concatenated joint representation is re-encoded to confer global context to each time step to incorporate puncuation predictions into subsequent tasks. |
|
|
|
4. **Pre-punctuation** |
|
After the re-encoding, another classification network predicts "pre" punctuation, or punctation tokens that may appear before a word. |
|
In practice, this means the inverted question mark for Spanish and Asturian, `¿`. |
|
Note that a `¿` can only appear if a `?` is predicted, hence the conditioning. |
|
|
|
5. **Sentence boundary detection** |
|
Parallel to the "pre" punctuation, another classification network predicts sentence boundaries from the re-encoded text. |
|
In all languages, sentence boundaries can occur only if a potential full stop is predicted, hence the conditioning. |
|
|
|
6. **Shift and concat sentence boundaries** |
|
In many languages, the first character of each sentence should be upper-cased. |
|
Thus, we should feed the sentence boundary information to the true-case classification network. |
|
Since the true-case classification network is feed-forward and has no context, each time step must embed whether it is the first word of a sentence. |
|
Therefore, we shift the binary sentence boundary decisions to the right by one: if token `N-1` is a sentence boundary, token `N` is the first word of a sentence. |
|
Concatenating this with the re-encoded text, each time step contains whether it is the first word of a sentence as predicted by the SBD head. |
|
|
|
7. **True-case prediction** |
|
Armed with the knowledge of punctation and sentence boundaries, a classification network predicts true-casing. |
|
Since true-casing should be done on a per-character basis, the classification network makes `N` predictions per token, where `N` is the length of the subtoken. |
|
(In practice, `N` is the longest possible subword, and the extra predictions are ignored). |
|
This scheme captures acronyms, e.g., "NATO", as well as bi-capitalized words, e.g., "MacDonald". |
|
|
|
|
|
## Post-Punctuation Tokens |
|
This model predicts the following set of "post" punctuation tokens: |
|
|
|
| Token | Description | Relavant Languages | |
|
| ---: | :---------- | :----------- | |
|
| . | Latin full stop | Many | |
|
| , | Latin comma | Many | |
|
| ? | Latin question mark | Many | |
|
| ? | Full-width question mark | Chinese, Japanese | |
|
| , | Full-width comma | Chinese, Japanese | |
|
| 。 | Full-width full stop | Chinese, Japanese | |
|
| 、 | Ideographic comma | Chinese, Japanese | |
|
| ・ | Middle dot | Japanese | |
|
| । | Danda | Hindi, Bengali, Oriya | |
|
| ؟ | Arabic question mark | Arabic | |
|
| ; | Greek question mark | Greek | |
|
| ። | Ethiopic full stop | Amharic | |
|
| ፣ | Ethiopic comma | Amharic | |
|
| ፧ | Ethiopic question mark | Amharic | |
|
|
|
|
|
## Pre-Punctuation Tokens |
|
This model predicts the following set of "post" punctuation tokens: |
|
|
|
| Token | Description | Relavant Languages | |
|
| ---: | :---------- | :----------- | |
|
| ¿ | Inverted question mark | Spanish | |
|
|
|
|
|
# Usage |
|
This model is released in two parts: |
|
|
|
1. The ONNX graph |
|
2. The SentencePiece tokenizer |
|
|
|
|
|
The following code snippet will instantiate a `SimplePCSWrapper`, which will download the model files from this repository. |
|
It will then run a few example sentences in a few languages, and print the processed output. |
|
|
|
|
|
<details> |
|
<summary>Example Code</summary> |
|
|
|
```python |
|
import logging |
|
|
|
from sentencepiece import SentencePieceProcessor |
|
import onnxruntime as ort |
|
import numpy as np |
|
from huggingface_hub import hf_hub_download |
|
from typing import List |
|
|
|
|
|
class SimplePCSWrapper: |
|
def __init__(self): |
|
spe_path = hf_hub_download( |
|
repo_id="1-800-BAD-CODE/punct_cap_seg_47_language", filename="spe_unigram_64k_lowercase_47lang.model" |
|
) |
|
onnx_path = hf_hub_download( |
|
repo_id="1-800-BAD-CODE/punct_cap_seg_47_language", filename="punct_cap_seg_47lang.onnx" |
|
) |
|
self._tokenizer: SentencePieceProcessor = SentencePieceProcessor(spe_path) |
|
self._ort_session: ort.InferenceSession = ort.InferenceSession(onnx_path) |
|
# This model has max length 128. Real code should wrap inputs; example code will truncate. |
|
self._max_len = 128 |
|
|
|
# Hard-coding labels, for now |
|
self._pre_labels = [ |
|
"<NULL>", |
|
"¿", |
|
] |
|
|
|
self._post_labels = [ |
|
"<NULL>", |
|
".", |
|
",", |
|
"?", |
|
"?", |
|
",", |
|
"。", |
|
"、", |
|
"・", |
|
"।", |
|
"؟", |
|
"،", |
|
";", |
|
"።", |
|
"፣", |
|
"፧", |
|
] |
|
|
|
def infer_one_text(self, text: str) -> List[str]: |
|
input_ids = self._tokenizer.EncodeAsIds(text) |
|
# Limit sequence to model's positional encoding limit. Leave 2 slots for BOS/EOS tags. |
|
if len(input_ids) > self._max_len - 2: |
|
logging.warning(f"Truncating input sequence from {len(input_ids)} to {self._max_len - 2}") |
|
input_ids = input_ids[: self._max_len - 2] |
|
# Append BOS and EOS. |
|
input_ids = [self._tokenizer.bos_id()] + input_ids + [self._tokenizer.eos_id()] |
|
# Add empty batch dimension. With real batches, sequence padding should be `self._tokenizer.pad_id()`. |
|
input_ids = [input_ids] |
|
|
|
# ORT input should be np.array |
|
input_ids = np.array(input_ids) |
|
# Get predictions. |
|
pre_preds, post_preds, cap_preds, seg_preds = self._ort_session.run(None, {"input_ids": input_ids}) |
|
# Remove all batch dims. Remove BOS/EOS from time dim |
|
pre_preds = pre_preds[0, 1:-1] |
|
post_preds = post_preds[0, 1:-1] |
|
cap_preds = cap_preds[0, 1:-1] |
|
seg_preds = seg_preds[0, 1:-1] |
|
|
|
# Apply predictions to input tokens |
|
input_tokens = self._tokenizer.EncodeAsPieces(text) |
|
# Segmented sentences |
|
output_strings: List[str] = [] |
|
# Current sentence, which is built until we hit a sentence boundary prediction |
|
current_chars: List[str] = [] |
|
for token_idx, token in enumerate(input_tokens): |
|
# Simple SP decoding |
|
if token.startswith("▁") and current_chars: |
|
current_chars.append(" ") |
|
# Skip non-printable chars |
|
char_start = 1 if token.startswith("▁") else 0 |
|
for token_char_idx, char in enumerate(token[char_start:], start=char_start): |
|
# If this is the first char in the subtoken, and we predict "pre-punct", insert it |
|
if token_char_idx == char_start and pre_preds[token_idx] != 0: |
|
current_chars.append(self._pre_labels[pre_preds[token_idx]]) |
|
# If this char should be capitalized, apply upper case |
|
if cap_preds[token_idx][token_char_idx]: |
|
char = char.upper() |
|
# Append char after pre-punc and upper-casing, before post-punt |
|
current_chars.append(char) |
|
# If this is the final char in the subtoken, and we predict "post-punct", insert it |
|
if token_char_idx == len(token) - 1 and post_preds[token_idx] != 0: |
|
current_chars.append(self._post_labels[post_preds[token_idx]]) |
|
# If this token is a sentence boundary, finalize the current sentence and reset |
|
if token_char_idx == len(token) - 1 and seg_preds[token_idx]: |
|
output_strings.append("".join(current_chars)) |
|
current_chars = [] |
|
return output_strings |
|
|
|
|
|
# Upon instantiation, will automatically download models from HF Hub |
|
pcs_wrapper: SimplePCSWrapper = SimplePCSWrapper() |
|
|
|
|
|
# Function for pretty-printing raw input and segmented output |
|
def print_processed_text(input_text: str, output_texts: List[str]): |
|
print(f"Input: {input_text}") |
|
print(f"Outputs:") |
|
for text in output_texts: |
|
print(f"\t{text}") |
|
print() |
|
|
|
|
|
# Process and print each text, one at a time |
|
texts = [ |
|
"hola mundo cómo estás estamos bajo el sol y hace mucho calor santa coloma abre los huertos urbanos a las escuelas de la ciudad", |
|
"hello friend how's it going it's snowing outside right now in connecticut a large storm is moving in", |
|
"未來疫苗將有望覆蓋3歲以上全年齡段美國與北約軍隊已全部撤離還有鐵路公路在內的各項基建的來源都將枯竭", |
|
"በባለፈው ሳምንት ኢትዮጵያ ከሶማሊያ 3 ሺህ ወታደሮቿንም እንዳስወጣች የሶማሊያው ዳልሳን ሬድዮ ዘግቦ ነበር ጸጥታ ሃይሉና ህዝቡ ተቀናጅቶ በመስራቱ በመዲናዋ ላይ የታቀደው የጥፋት ሴራ ከሽፏል", |
|
"all human beings are born free and equal in dignity and rights they are endowed with reason and conscience and should act towards one another in a spirit of brotherhood", |
|
"सभी मनुष्य जन्म से मर्यादा और अधिकारों में स्वतंत्र और समान होते हैं वे तर्क और विवेक से संपन्न हैं तथा उन्हें भ्रातृत्व की भावना से परस्पर के प्रति कार्य करना चाहिए", |
|
"wszyscy ludzie rodzą się wolni i równi pod względem swej godności i swych praw są oni obdarzeni rozumem i sumieniem i powinni postępować wobec innych w duchu braterstwa", |
|
"tous les êtres humains naissent libres et égaux en dignité et en droits ils sont doués de raison et de conscience et doivent agir les uns envers les autres dans un esprit de fraternité", |
|
] |
|
for text in texts: |
|
outputs = pcs_wrapper.infer_one_text(text) |
|
print_processed_text(text, outputs) |
|
``` |
|
</details> |
|
|
|
|
|
<details> |
|
<summary>Expected output</summary> |
|
|
|
```text |
|
Input: hola mundo cómo estás estamos bajo el sol y hace mucho calor santa coloma abre los huertos urbanos a las escuelas de la ciudad |
|
Outputs: |
|
Hola Mundo, ¿cómo estás? |
|
Estamos bajo el sol y hace mucho calor. |
|
Santa Coloma abre los huertos urbanos a las escuelas de la ciudad. |
|
|
|
Input: hello friend how's it going it's snowing outside right now in connecticut a large storm is moving in |
|
Outputs: |
|
Hello Friend, how's it going? |
|
It's snowing outside right now. |
|
In Connecticut, a large storm is moving in. |
|
|
|
Input: 未來疫苗將有望覆蓋3歲以上全年齡段美國與北約軍隊已全部撤離還有鐵路公路在內的各項基建的來源都將枯竭 |
|
Outputs: |
|
未來,疫苗將有望覆蓋3歲以上全年齡段。 |
|
美國與北約軍隊已全部撤離。 |
|
還有鐵路公路在內的各項基建的來源都將枯竭。 |
|
|
|
Input: በባለፈው ሳምንት ኢትዮጵያ ከሶማሊያ 3 ሺህ ወታደሮቿንም እንዳስወጣች የሶማሊያው ዳልሳን ሬድዮ ዘግቦ ነበር ጸጥታ ሃይሉና ህዝቡ ተቀናጅቶ በመስራቱ በመዲናዋ ላይ የታቀደው የጥፋት ሴራ ከሽፏል |
|
Outputs: |
|
በባለፈው ሳምንት ኢትዮጵያ ከሶማሊያ 3 ሺህ ወታደሮቿንም እንዳስወጣች የሶማሊያው ዳልሳን ሬድዮ ዘግቦ ነበር። |
|
ጸጥታ ሃይሉና ህዝቡ ተቀናጅቶ በመስራቱ በመዲናዋ ላይ የታቀደው የጥፋት ሴራ ከሽፏል። |
|
|
|
Input: all human beings are born free and equal in dignity and rights they are endowed with reason and conscience and should act towards one another in a spirit of brotherhood |
|
Outputs: |
|
All human beings are born free and equal in dignity and rights. |
|
They are endowed with reason and conscience and should act towards one another in a spirit of brotherhood. |
|
|
|
Input: सभी मनुष्य जन्म से मर्यादा और अधिकारों में स्वतंत्र और समान होते हैं वे तर्क और विवेक से संपन्न हैं तथा उन्हें भ्रातृत्व की भावना से परस्पर के प्रति कार्य करना चाहिए |
|
Outputs: |
|
सभी मनुष्य जन्म से मर्यादा और अधिकारों में स्वतंत्र और समान होते हैं। |
|
वे तर्क और विवेक से संपन्न हैं तथा उन्हें भ्रातृत्व की भावना से परस्पर के प्रति कार्य करना चाहिए। |
|
|
|
Input: wszyscy ludzie rodzą się wolni i równi pod względem swej godności i swych praw są oni obdarzeni rozumem i sumieniem i powinni postępować wobec innych w duchu braterstwa |
|
Outputs: |
|
Wszyscy ludzie rodzą się wolni i równi pod względem swej godności i swych praw. |
|
Są oni obdarzeni rozumem i sumieniem i powinni postępować wobec innych w duchu braterstwa. |
|
|
|
Input: tous les êtres humains naissent libres et égaux en dignité et en droits ils sont doués de raison et de conscience et doivent agir les uns envers les autres dans un esprit de fraternité |
|
Outputs: |
|
Tous les êtres humains naissent libres et égaux, en dignité et en droits. |
|
Ils sont doués de raison et de conscience et doivent agir les uns envers les autres. |
|
Dans un esprit de fraternité. |
|
``` |
|
</details> |
|
|
|
|
|
# Training Details |
|
This model was trained in the NeMo framework. |
|
|
|
## Training Data |
|
This model was trained with News Crawl data from WMT. |
|
|
|
1M lines of text for each language was used, except for a few low-resource languages which may have used less. |
|
|
|
Languages were chosen based on whether the News Crawl corpus contained enough reliable-quality data as judged by the author. |
|
|
|
# Limitations |
|
This model was trained on news data, and may not perform well on conversational or informal data. |
|
|
|
This model predicts punctuation only once per subword. |
|
This implies that some acronyms, e.g., 'U.S.', cannot properly be punctuation. |
|
This concession was accepted on two grounds: |
|
1. Such acronyms are rare, especially in the context of multi-lingual models |
|
2. Punctuated acronyms are typically pronounced as individual characters, e.g., 'U.S.' vs. 'NATO'. |
|
Since the expected use-case of this model is the output of an ASR system, it is presumed that such |
|
pronunciations would be transcribed as separate tokens, e.g, 'u s' vs. 'us' (though this depends on the model's pre-processing). |
|
|
|
Further, this model is unlikely to be of production quality. |
|
It was trained with "only" 1M lines per language, and the dev sets may have been noisy due to the nature of web-scraped news data. |
|
This is also a base-sized model with many languages and many tasks, so capacity may be limited. |
|
|
|
This model's maximum sequence length is 128, which is relatively short for an NLP problem. |
|
|
|
After analyzing the limitations of this version, a future version of this model will attempt to improve the following points: |
|
1. Longer maximum length |
|
2. More training data |
|
3. More training steps |
|
|
|
# Evaluation |
|
In these metrics, keep in mind that |
|
1. The data is noisy |
|
2. Sentence boundaries and true-casing are conditioned on predicted punctuation, which is the most difficult task and sometimes incorrect. |
|
When conditioning on reference punctuation, true-casing and SBD is practically 100% for most languages. |
|
4. Punctuation can be subjective. E.g., |
|
|
|
`Hola mundo, ¿cómo estás?` |
|
|
|
or |
|
|
|
`Hola mundo. ¿Cómo estás?` |
|
|
|
When the sentences are longer and more practical, these ambiguities abound and affect all 3 analytics. |
|
|
|
## Test Data and Example Generation |
|
Each test example was generated using the following procedure: |
|
|
|
1. Concatenate 5 random sentences |
|
2. Lower-case the concatenated sentence |
|
3. Remove all punctuation |
|
|
|
The data is a held-out portion of News Crawl, which has been deduplicated. |
|
2,000 lines of data per language was used, generating 2,000 unique examples of 5 sentences each. |
|
The last 4 sentences of each example were randomly sampled from the 2,000 and may be duplicated. |
|
|
|
Examples longer than the model's maximum length were truncated. |
|
The number of affected sentences can be estimated from the "full stop" support: with 2,000 sentences and 5 sentences per example, we expect 10,000 full stop targets total. |
|
|
|
## Selected Language Evaluation Reports |
|
This model will likely be updated soon, so only a few languages are reported below. |
|
|
|
<details> |
|
<summary>English</summary> |
|
|
|
``` |
|
punct_post test report: |
|
label precision recall f1 support |
|
<NULL> (label_id: 0) 98.71 98.66 98.68 156605 |
|
. (label_id: 1) 87.72 88.85 88.28 8752 |
|
, (label_id: 2) 68.06 67.81 67.93 5216 |
|
? (label_id: 3) 79.38 77.20 78.27 693 |
|
? (label_id: 4) 0.00 0.00 0.00 0 |
|
, (label_id: 5) 0.00 0.00 0.00 0 |
|
。 (label_id: 6) 0.00 0.00 0.00 0 |
|
、 (label_id: 7) 0.00 0.00 0.00 0 |
|
・ (label_id: 8) 0.00 0.00 0.00 0 |
|
। (label_id: 9) 0.00 0.00 0.00 0 |
|
؟ (label_id: 10) 0.00 0.00 0.00 0 |
|
، (label_id: 11) 0.00 0.00 0.00 0 |
|
; (label_id: 12) 0.00 0.00 0.00 0 |
|
። (label_id: 13) 0.00 0.00 0.00 0 |
|
፣ (label_id: 14) 0.00 0.00 0.00 0 |
|
፧ (label_id: 15) 0.00 0.00 0.00 0 |
|
------------------- |
|
micro avg 97.13 97.13 97.13 171266 |
|
macro avg 83.46 83.13 83.29 171266 |
|
weighted avg 97.13 97.13 97.13 171266 |
|
|
|
cap test report: |
|
label precision recall f1 support |
|
LOWER (label_id: 0) 99.63 99.49 99.56 526612 |
|
UPPER (label_id: 1) 89.19 91.84 90.50 24161 |
|
------------------- |
|
micro avg 99.15 99.15 99.15 550773 |
|
macro avg 94.41 95.66 95.03 550773 |
|
weighted avg 99.17 99.15 99.16 550773 |
|
|
|
seg test report: |
|
label precision recall f1 support |
|
NOSTOP (label_id: 0) 99.37 99.42 99.39 162044 |
|
FULLSTOP (label_id: 1) 89.75 88.84 89.29 9222 |
|
------------------- |
|
micro avg 98.85 98.85 98.85 171266 |
|
macro avg 94.56 94.13 94.34 171266 |
|
weighted avg 98.85 98.85 98.85 171266 |
|
``` |
|
</details> |
|
|
|
|
|
<details> |
|
<summary>Spanish</summary> |
|
|
|
``` |
|
punct_pre test report: |
|
label precision recall f1 support |
|
<NULL> (label_id: 0) 99.94 99.92 99.93 185535 |
|
¿ (label_id: 1) 55.01 64.86 59.53 296 |
|
------------------- |
|
micro avg 99.86 99.86 99.86 185831 |
|
macro avg 77.48 82.39 79.73 185831 |
|
weighted avg 99.87 99.86 99.87 185831 |
|
|
|
punct_post test report: |
|
label precision recall f1 support |
|
<NULL> (label_id: 0) 98.74 98.86 98.80 170282 |
|
. (label_id: 1) 90.07 89.58 89.82 9959 |
|
, (label_id: 2) 68.33 67.00 67.66 5300 |
|
? (label_id: 3) 70.25 58.62 63.91 290 |
|
? (label_id: 4) 0.00 0.00 0.00 0 |
|
, (label_id: 5) 0.00 0.00 0.00 0 |
|
。 (label_id: 6) 0.00 0.00 0.00 0 |
|
、 (label_id: 7) 0.00 0.00 0.00 0 |
|
・ (label_id: 8) 0.00 0.00 0.00 0 |
|
। (label_id: 9) 0.00 0.00 0.00 0 |
|
؟ (label_id: 10) 0.00 0.00 0.00 0 |
|
، (label_id: 11) 0.00 0.00 0.00 0 |
|
; (label_id: 12) 0.00 0.00 0.00 0 |
|
። (label_id: 13) 0.00 0.00 0.00 0 |
|
፣ (label_id: 14) 0.00 0.00 0.00 0 |
|
፧ (label_id: 15) 0.00 0.00 0.00 0 |
|
------------------- |
|
micro avg 97.39 97.39 97.39 185831 |
|
macro avg 81.84 78.51 80.05 185831 |
|
weighted avg 97.36 97.39 97.37 185831 |
|
|
|
cap test report: |
|
label precision recall f1 support |
|
LOWER (label_id: 0) 99.62 99.60 99.61 555041 |
|
UPPER (label_id: 1) 90.60 91.06 90.83 23538 |
|
------------------- |
|
micro avg 99.25 99.25 99.25 578579 |
|
macro avg 95.11 95.33 95.22 578579 |
|
weighted avg 99.25 99.25 99.25 578579 |
|
|
|
[NeMo I 2023-02-22 17:24:04 punct_cap_seg_model:427] seg test report: |
|
label precision recall f1 support |
|
NOSTOP (label_id: 0) 99.44 99.54 99.49 175908 |
|
FULLSTOP (label_id: 1) 91.68 89.98 90.82 9923 |
|
------------------- |
|
micro avg 99.03 99.03 99.03 185831 |
|
macro avg 95.56 94.76 95.16 185831 |
|
weighted avg 99.02 99.03 99.02 185831 |
|
``` |
|
</details> |
|
|
|
<details> |
|
<summary>Chinese</summary> |
|
|
|
``` |
|
punct_post test report: |
|
label precision recall f1 support |
|
<NULL> (label_id: 0) 98.82 97.34 98.07 147920 |
|
. (label_id: 1) 0.00 0.00 0.00 0 |
|
, (label_id: 2) 0.00 0.00 0.00 0 |
|
? (label_id: 3) 0.00 0.00 0.00 0 |
|
? (label_id: 4) 85.77 80.71 83.16 560 |
|
, (label_id: 5) 59.88 78.02 67.75 6901 |
|
。 (label_id: 6) 92.50 93.92 93.20 10988 |
|
、 (label_id: 7) 0.00 0.00 0.00 0 |
|
・ (label_id: 8) 0.00 0.00 0.00 0 |
|
। (label_id: 9) 0.00 0.00 0.00 0 |
|
؟ (label_id: 10) 0.00 0.00 0.00 0 |
|
، (label_id: 11) 0.00 0.00 0.00 0 |
|
; (label_id: 12) 0.00 0.00 0.00 0 |
|
። (label_id: 13) 0.00 0.00 0.00 0 |
|
፣ (label_id: 14) 0.00 0.00 0.00 0 |
|
፧ (label_id: 15) 0.00 0.00 0.00 0 |
|
------------------- |
|
micro avg 96.25 96.25 96.25 166369 |
|
macro avg 84.24 87.50 85.55 166369 |
|
weighted avg 96.75 96.25 96.45 166369 |
|
|
|
cap test report: |
|
label precision recall f1 support |
|
LOWER (label_id: 0) 97.07 92.39 94.67 394 |
|
UPPER (label_id: 1) 70.59 86.75 77.84 83 |
|
------------------- |
|
micro avg 91.40 91.40 91.40 477 |
|
macro avg 83.83 89.57 86.25 477 |
|
weighted avg 92.46 91.40 91.74 477 |
|
|
|
seg test report: |
|
label precision recall f1 support |
|
NOSTOP (label_id: 0) 99.58 99.53 99.56 156369 |
|
FULLSTOP (label_id: 1) 92.77 93.50 93.13 10000 |
|
------------------- |
|
micro avg 99.17 99.17 99.17 166369 |
|
macro avg 96.18 96.52 96.35 166369 |
|
weighted avg 99.17 99.17 99.17 166369 |
|
``` |
|
</details> |
|
|
|
|
|
<details> |
|
<summary>Hindi</summary> |
|
|
|
``` |
|
punct_post test report: |
|
label precision recall f1 support |
|
<NULL> (label_id: 0) 99.58 99.59 99.59 176743 |
|
. (label_id: 1) 0.00 0.00 0.00 0 |
|
, (label_id: 2) 68.32 65.23 66.74 1815 |
|
? (label_id: 3) 60.27 44.90 51.46 98 |
|
? (label_id: 4) 0.00 0.00 0.00 0 |
|
, (label_id: 5) 0.00 0.00 0.00 0 |
|
。 (label_id: 6) 0.00 0.00 0.00 0 |
|
、 (label_id: 7) 0.00 0.00 0.00 0 |
|
・ (label_id: 8) 0.00 0.00 0.00 0 |
|
। (label_id: 9) 96.45 97.43 96.94 10136 |
|
؟ (label_id: 10) 0.00 0.00 0.00 0 |
|
، (label_id: 11) 0.00 0.00 0.00 0 |
|
; (label_id: 12) 0.00 0.00 0.00 0 |
|
። (label_id: 13) 0.00 0.00 0.00 0 |
|
፣ (label_id: 14) 0.00 0.00 0.00 0 |
|
፧ (label_id: 15) 0.00 0.00 0.00 0 |
|
------------------- |
|
micro avg 99.11 99.11 99.11 188792 |
|
macro avg 81.16 76.79 78.68 188792 |
|
weighted avg 99.10 99.11 99.10 188792 |
|
|
|
cap test report: |
|
label precision recall f1 support |
|
LOWER (label_id: 0) 98.25 95.06 96.63 708 |
|
UPPER (label_id: 1) 89.46 96.12 92.67 309 |
|
------------------- |
|
micro avg 95.38 95.38 95.38 1017 |
|
macro avg 93.85 95.59 94.65 1017 |
|
weighted avg 95.58 95.38 95.42 1017 |
|
|
|
seg test report: |
|
label precision recall f1 support |
|
NOSTOP (label_id: 0) 99.87 99.85 99.86 178892 |
|
FULLSTOP (label_id: 1) 97.38 97.58 97.48 9900 |
|
------------------- |
|
micro avg 99.74 99.74 99.74 188792 |
|
macro avg 98.62 98.72 98.67 188792 |
|
weighted avg 99.74 99.74 99.74 188792 |
|
``` |
|
</details> |
|
|
|
<details> |
|
<summary>Amharic</summary> |
|
|
|
``` |
|
punct_post test report: |
|
label precision recall f1 support |
|
<NULL> (label_id: 0) 99.58 99.42 99.50 236298 |
|
. (label_id: 1) 0.00 0.00 0.00 0 |
|
, (label_id: 2) 0.00 0.00 0.00 0 |
|
? (label_id: 3) 0.00 0.00 0.00 0 |
|
? (label_id: 4) 0.00 0.00 0.00 0 |
|
, (label_id: 5) 0.00 0.00 0.00 0 |
|
。 (label_id: 6) 0.00 0.00 0.00 0 |
|
、 (label_id: 7) 0.00 0.00 0.00 0 |
|
・ (label_id: 8) 0.00 0.00 0.00 0 |
|
। (label_id: 9) 0.00 0.00 0.00 0 |
|
؟ (label_id: 10) 0.00 0.00 0.00 0 |
|
، (label_id: 11) 0.00 0.00 0.00 0 |
|
; (label_id: 12) 0.00 0.00 0.00 0 |
|
። (label_id: 13) 89.79 95.24 92.44 9169 |
|
፣ (label_id: 14) 66.85 56.58 61.29 1504 |
|
፧ (label_id: 15) 67.67 83.72 74.84 215 |
|
------------------- |
|
micro avg 98.99 98.99 98.99 247186 |
|
macro avg 80.97 83.74 82.02 247186 |
|
weighted avg 98.99 98.99 98.98 247186 |
|
|
|
cap test report: |
|
label precision recall f1 support |
|
LOWER (label_id: 0) 96.65 99.78 98.19 1360 |
|
UPPER (label_id: 1) 98.90 85.13 91.50 316 |
|
------------------- |
|
micro avg 97.02 97.02 97.02 1676 |
|
macro avg 97.77 92.45 94.84 1676 |
|
weighted avg 97.08 97.02 96.93 1676 |
|
|
|
seg test report: |
|
label precision recall f1 support |
|
NOSTOP (label_id: 0) 99.85 99.74 99.80 239845 |
|
FULLSTOP (label_id: 1) 91.72 95.25 93.45 7341 |
|
------------------- |
|
micro avg 99.60 99.60 99.60 247186 |
|
macro avg 95.79 97.49 96.62 247186 |
|
weighted avg 99.61 99.60 99.61 247186 |
|
``` |
|
</details> |