|
--- |
|
base_model: 1aurent/vit_base_patch16_224.owkin_pancancer |
|
tags: |
|
- image-classification |
|
- timm |
|
- owkin |
|
- biology |
|
- cancer |
|
- lung |
|
library_name: timm |
|
datasets: |
|
- 1aurent/LC25000 |
|
metrics: |
|
- accuracy |
|
pipeline_tag: image-classification |
|
model-index: |
|
- name: owkin_pancancer_ft_lc25000_lung |
|
results: |
|
- task: |
|
type: image-classification |
|
name: Image Classification |
|
dataset: |
|
name: 1aurent/LC25000 |
|
type: image-classification |
|
metrics: |
|
- type: accuracy |
|
value: 0.999 |
|
name: accuracy |
|
verified: false |
|
widget: |
|
- src: >- |
|
https://datasets-server.huggingface.co/cached-assets/1aurent/LC25000/--/56a7c495692c27afd294a88b7aadaa7b79d8e270/--/default/train/5000/image/image.jpg |
|
example_title: benign |
|
- src: >- |
|
https://datasets-server.huggingface.co/assets/1aurent/LC25000/--/default/train/0/image/image.jpg |
|
example_title: adenocarcinomas |
|
- src: >- |
|
https://datasets-server.huggingface.co/cached-assets/1aurent/LC25000/--/56a7c495692c27afd294a88b7aadaa7b79d8e270/--/default/train/10000/image/image.jpg |
|
example_title: squamous carcinomas |
|
license: other |
|
license_name: owkin-non-commercial |
|
license_link: https://github.com/owkin/HistoSSLscaling/blob/main/LICENSE.txt |
|
--- |
|
|
|
# Model card for vit_base_patch16_224.owkin_pancancer_ft_lc25000_lung |
|
|
|
A Vision Transformer (ViT) image classification model. \ |
|
Trained by Owkin on 40M pan-cancer histology tiles from TCGA. \ |
|
Fine-tuned on LC25000's lung subset. |
|
|
|
## Model Details |
|
|
|
- **Model Type:** Image classification / feature backbone |
|
- **Model Stats:** |
|
- Params (M): 85.8 |
|
- Image size: 224 x 224 x 3 |
|
- **Papers:** |
|
- Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling: https://www.medrxiv.org/content/10.1101/2023.07.21.23292757v2 |
|
- **Pretrain Dataset:** TGCA: https://portal.gdc.cancer.gov/ |
|
- **Dataset:** LC25000: https://huggingface.co/datasets/1aurent/LC25000 |
|
- **Original:** https://github.com/owkin/HistoSSLscaling/ |
|
- **License:** https://github.com/owkin/HistoSSLscaling/blob/main/LICENSE.txt |
|
|
|
## Model Usage |
|
|
|
### Image Classification |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
# get example histology image |
|
img = Image.open( |
|
urlopen( |
|
"https://datasets-server.huggingface.co/assets/1aurent/LC25000/--/default/train/0/image/image.jpg" |
|
) |
|
) |
|
|
|
# load model from the hub |
|
model = timm.create_model( |
|
model_name="hf-hub:1aurent/vit_base_patch16_224.owkin_pancancer_ft_lc25000_lung", |
|
pretrained=True, |
|
).eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
``` |
|
|
|
### Image Embeddings |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
# get example histology image |
|
img = Image.open( |
|
urlopen( |
|
"https://datasets-server.huggingface.co/assets/1aurent/LC25000/--/default/train/0/image/image.jpg" |
|
) |
|
) |
|
|
|
# load model from the hub |
|
model = timm.create_model( |
|
model_name="hf-hub:1aurent/vit_base_patch16_224.owkin_pancancer_ft_lc25000_lung", |
|
pretrained=True, |
|
num_classes=0, |
|
).eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor |
|
``` |
|
|
|
## Citation |
|
```bibtex |
|
@article {Filiot2023.07.21.23292757, |
|
author = {Alexandre Filiot and Ridouane Ghermi and Antoine Olivier and Paul Jacob and Lucas Fidon and Alice Mac Kain and Charlie Saillard and Jean-Baptiste Schiratti}, |
|
title = {Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling}, |
|
elocation-id = {2023.07.21.23292757}, |
|
year = {2023}, |
|
doi = {10.1101/2023.07.21.23292757}, |
|
publisher = {Cold Spring Harbor Laboratory Press}, |
|
URL = {https://www.medrxiv.org/content/early/2023/09/14/2023.07.21.23292757}, |
|
eprint = {https://www.medrxiv.org/content/early/2023/09/14/2023.07.21.23292757.full.pdf}, |
|
journal = {medRxiv} |
|
} |
|
``` |