metadata
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert-base-multilingual-cased-finetuned
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8308823529411765
- name: F1
type: f1
value: 0.8791593695271455
bert-base-multilingual-cased-finetuned
This model is a fine-tuned version of bert-base-multilingual-cased on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.5456
- Accuracy: 0.8309
- F1: 0.8792
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 459 | 0.5439 | 0.7549 | 0.8413 |
0.6021 | 2.0 | 918 | 0.5474 | 0.8039 | 0.8701 |
0.4386 | 3.0 | 1377 | 0.5456 | 0.8309 | 0.8792 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1