Marcos12886's picture
Upload folder using huggingface_hub
a007ad9 verified
|
raw
history blame
2.33 kB
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: distilhubert-finetuned-cry-detector
    results: []

distilhubert-finetuned-cry-detector

This model is a fine-tuned version of ntu-spml/distilhubert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0878
  • Accuracy: 0.9861
  • Precision: 0.9861
  • Recall: 0.9861
  • F1: 0.9861

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 123
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.001
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0.9956 85 0.1204 0.9641 0.9641 0.9641 0.9638
No log 1.9912 170 0.0847 0.9773 0.9772 0.9773 0.9773
No log 2.9985 256 0.1025 0.9766 0.9769 0.9766 0.9766
No log 3.9941 341 0.0869 0.9832 0.9835 0.9832 0.9832
No log 4.9898 426 0.0746 0.9832 0.9834 0.9832 0.9832
0.0538 5.9971 512 0.0870 0.9861 0.9861 0.9861 0.9861
0.0538 6.9927 597 0.0890 0.9861 0.9861 0.9861 0.9861
0.0538 7.9649 680 0.0878 0.9861 0.9861 0.9861 0.9861

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Tokenizers 0.19.1