metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: distilhubert-finetuned-cry-detector
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: audiofolder
type: audiofolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9852941176470589
- name: F1
type: f1
value: 0.9853150765112866
- name: Precision
type: precision
value: 0.9853868369053048
- name: Recall
type: recall
value: 0.9852941176470589
distilhubert-finetuned-cry-detector
This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0332
- Accuracy: 0.9853
- F1: 0.9853
- Precision: 0.9854
- Recall: 0.9853
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 123
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.001
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 0.9412 | 12 | 0.1931 | 0.9363 | 0.9365 | 0.9372 | 0.9363 |
No log | 1.9608 | 25 | 0.0950 | 0.9706 | 0.9704 | 0.9710 | 0.9706 |
No log | 2.9804 | 38 | 0.0611 | 0.9804 | 0.9804 | 0.9804 | 0.9804 |
No log | 4.0 | 51 | 0.0492 | 0.9853 | 0.9853 | 0.9853 | 0.9853 |
No log | 4.9412 | 63 | 0.0588 | 0.9804 | 0.9805 | 0.9814 | 0.9804 |
No log | 5.9608 | 76 | 0.0368 | 0.9853 | 0.9853 | 0.9854 | 0.9853 |
No log | 6.9804 | 89 | 0.0382 | 0.9902 | 0.9902 | 0.9903 | 0.9902 |
No log | 8.0 | 102 | 0.0318 | 0.9951 | 0.9951 | 0.9951 | 0.9951 |
No log | 8.9412 | 114 | 0.0331 | 0.9853 | 0.9853 | 0.9854 | 0.9853 |
No log | 9.4118 | 120 | 0.0332 | 0.9853 | 0.9853 | 0.9854 | 0.9853 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1