Marcos12886's picture
Upload folder using huggingface_hub
ee61ac2 verified
|
raw
history blame
3.06 kB
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distilhubert-finetuned-cry-detector
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9852941176470589
          - name: F1
            type: f1
            value: 0.9853150765112866
          - name: Precision
            type: precision
            value: 0.9853868369053048
          - name: Recall
            type: recall
            value: 0.9852941176470589

distilhubert-finetuned-cry-detector

This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0332
  • Accuracy: 0.9853
  • F1: 0.9853
  • Precision: 0.9854
  • Recall: 0.9853

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 123
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.001
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 0.9412 12 0.1931 0.9363 0.9365 0.9372 0.9363
No log 1.9608 25 0.0950 0.9706 0.9704 0.9710 0.9706
No log 2.9804 38 0.0611 0.9804 0.9804 0.9804 0.9804
No log 4.0 51 0.0492 0.9853 0.9853 0.9853 0.9853
No log 4.9412 63 0.0588 0.9804 0.9805 0.9814 0.9804
No log 5.9608 76 0.0368 0.9853 0.9853 0.9854 0.9853
No log 6.9804 89 0.0382 0.9902 0.9902 0.9903 0.9902
No log 8.0 102 0.0318 0.9951 0.9951 0.9951 0.9951
No log 8.9412 114 0.0331 0.9853 0.9853 0.9854 0.9853
No log 9.4118 120 0.0332 0.9853 0.9853 0.9854 0.9853

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1