metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: distilhubert-finetuned-cry-detector
results: []
distilhubert-finetuned-cry-detector
This model is a fine-tuned version of ntu-spml/distilhubert on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2255
- Accuracy: 0.9883
- F1: 0.9883
- Precision: 0.9883
- Recall: 0.9883
- Confusion Matrix: [[960, 10], [6, 389]]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 123
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Confusion Matrix |
---|---|---|---|---|---|---|---|---|
0.3124 | 2.3256 | 100 | 0.2739 | 0.9641 | 0.9640 | 0.9640 | 0.9641 | [[948, 22], [27, 368]] |
0.2337 | 4.6512 | 200 | 0.2385 | 0.9736 | 0.9737 | 0.9737 | 0.9736 | [[950, 20], [16, 379]] |
0.2064 | 6.9767 | 300 | 0.2295 | 0.9832 | 0.9832 | 0.9832 | 0.9832 | [[958, 12], [11, 384]] |
0.2023 | 9.3023 | 400 | 0.2277 | 0.9868 | 0.9869 | 0.9870 | 0.9868 | [[957, 13], [5, 390]] |
0.2003 | 11.6279 | 500 | 0.2254 | 0.9875 | 0.9876 | 0.9876 | 0.9875 | [[960, 10], [7, 388]] |
0.2002 | 13.9535 | 600 | 0.2259 | 0.9875 | 0.9876 | 0.9876 | 0.9875 | [[959, 11], [6, 389]] |
0.1994 | 16.2791 | 700 | 0.2255 | 0.9883 | 0.9883 | 0.9883 | 0.9883 | [[960, 10], [6, 389]] |
0.1997 | 18.6047 | 800 | 0.2254 | 0.9883 | 0.9883 | 0.9883 | 0.9883 | [[960, 10], [6, 389]] |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Tokenizers 0.19.1