Marcos12886's picture
Update README.md
4f63950 verified
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distilhubert-finetuned-mixed-data
    results: []

distilhubert-finetuned-mixed-data

This model is a fine-tuned version of ntu-spml/distilhubert on an unknown dataset.

  • Loss: 0.7808755040168762,
  • Accuracy: 0.8644688644688645,
  • F1: 0.8641694609590086,
  • Precision: 0.8653356589517041,
  • Recall: 0.8644688644688645,
  • Confusion Matrix: [[71, 9, 0, 3], [5, 42, 12, 0], [0, 7, 55, 0], [1, 0, 0, 68]]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 123
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40
  • mixed_precision_training: Native AMP
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Confusion Matrix
0.5098 40.0000 50 0.7809 0.8645 0.8642 0.8653 0.8645 [[71, 9, 0, 3], [5, 42, 12, 0], [0, 7, 55, 0], [1, 0, 0, 68]]

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Tokenizers 0.19.1