ACCORD-NLP
ACCORD-NLP is a Natural Language Processing (NLP) framework developed by the ACCORD project to facilitate Automated Compliance Checking (ACC) within the Architecture, Engineering, and Construction (AEC) sector. It consists of several pre-trained/fine-tuned machine learning models to perform the following information extraction tasks from regulatory text.
- Entity Extraction/Classification (ner)
- Relation Extraction/Classification (re)
re-roberta-large is a RoBERTa large model fine-tuned for relation classification using CODE-ACCORD relations dataset.
Installation
From Source
git clone https://github.com/Accord-Project/accord-nlp.git
cd accord-nlp
pip install -r requirements.txt
From pip
pip install accord-nlp
Using Pre-trained Models
Entity Extraction/Classification (ner)
from accord_nlp.text_classification.ner.ner_model import NERModel
model = NERModel('roberta', 'ACCORD-NLP/ner-roberta-large')
predictions, raw_outputs = model.predict(['The gradient of the passageway should not exceed five per cent.'])
print(predictions)
Relation Extraction/Classification (re)
from accord_nlp.text_classification.relation_extraction.re_model import REModel
model = REModel('roberta', 'ACCORD-NLP/re-roberta-large')
predictions, raw_outputs = model.predict(['The <e1>gradient<\e1> of the passageway should not exceed <e2>five per cent</e2>.'])
print(predictions)
For more details, please refer to the ACCORD-NLP GitHub repository.
- Downloads last month
- 353
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.