File size: 13,669 Bytes
cb8ea55 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a6f64c409d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a6f64c40a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a6f64c40af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a6f64c40b80>", "_build": "<function ActorCriticPolicy._build at 0x7a6f64c40c10>", "forward": "<function ActorCriticPolicy.forward at 0x7a6f64c40ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a6f64c40d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a6f64c40dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a6f64c40e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a6f64c40ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a6f64c40f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a6f64c41000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a6f64dd5f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2560000, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719203586047813842, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI3rpL17cI26zWLEtA40e7AQOjG7Ig2nMwAAAAAAAIA/c2mOvcPpG7psBqu8MVJOMZBlzztmr7mzAACAPwAAgD/AGIc9A2C/P5Znxz55vws9yjwwvUT8Rz0AAAAAAAAAAIDeHT02uCC8k1DMu3GWgrzMgoK9bLNHvgAAgD8AAIA/IDIiPmlWJz6NIeG8IxmJvrq0BT3eeq28AAAAAAAAAABmbuw8VBeNPjYkJjyxS6S+QXsWPRPl07sAAAAAAAAAAABPt7w07Uc+oMBCPWUekr4pezc9utn+OgAAAAAAAAAA2jj+PcOGM7wyK7m9yYTyvXIK3rxe4ka9AACAPwAAgD9be9S+BVXjPoW3Rz4/8v2+zxSTvp1BWD4AAAAAAAAAAGY91D2upcu6lVZtvG9ClDxpisq7MwyAPQAAgD8AAIA/zTgwPgPBSbwWTLY7SrYCug3TtL1S89W6AAAAAAAAgD/NscI8Tr6JPSvJQL5HrJK+QSvnvd6PL70AAAAAAAAAAObVTz1UIVQ+vV6+PHkypL7MRR09vKw6PAAAAAAAAAAAs0tXvY+WQ7parDY0zn8srn4qlDq4J5qzAACAPwAAgD86qDs+oVa8vDIMtbpsOTA5mzMovhth+jkAAIA/AACAP8CgwT0Nc0A/bgXBPeO39r7AZc89q39hPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.74464, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC5KEJ0GNeMAWyUS+KMAXSUR0CjNfxZdOZcdX2UKGgGR0BwECL0jC53aAdL4mgIR0CjNhjOkcjrdX2UKGgGR0BARw9A5aNdaAdLs2gIR0CjNiXOnl4kdX2UKGgGR0B0CcXsPatcaAdLx2gIR0CjNoGXgLqmdX2UKGgGR0ByOXP/rB0qaAdL6WgIR0CjNqexfOUudX2UKGgGR0BxkJ4SpR4yaAdL6mgIR0CjNsQBo24vdX2UKGgGR0Bxj4rJ8v25aAdL3GgIR0CjN3TW5H3DdX2UKGgGR0BxUVBX0XgtaAdL2GgIR0CjOBE+xGDudX2UKGgGR0Bxund56dDqaAdL2GgIR0CjOGtDc/MXdX2UKGgGR0ByzPCl7+kyaAdLxGgIR0CjOMl98Z1ndX2UKGgGR0BwhDasZHd5aAdLxWgIR0CjOOOwHJLedX2UKGgGR0BwqWeEqUeNaAdL6GgIR0CjOOoSDh99dX2UKGgGR0ByAuttALRbaAdL2GgIR0CjOPVoYekpdX2UKGgGR0BCkQf6oESvaAdLqmgIR0CjOVOEdvKmdX2UKGgGR0BxaKKAJ9iMaAdLv2gIR0CjOVwbEP1+dX2UKGgGR0Bx1Wjj7yhBaAdL32gIR0CjOV7edkJ8dX2UKGgGR0BxSuvPkaMraAdL+mgIR0CjOcx28qWkdX2UKGgGR0Bk01TDO1OTaAdN6ANoCEdAoznhTyauwHV9lChoBkdAcCKvysjmjmgHS95oCEdAoznwD3dsSHV9lChoBkdAcVWL1VYISmgHTbEBaAhHQKM7i4EwFkh1fZQoaAZHQHFYzXvphWpoB0vtaAhHQKM7i5ksjFB1fZQoaAZHQHGKImgJ1JVoB0vYaAhHQKM70it7rs11fZQoaAZHQHAWp84PwuxoB0vdaAhHQKM8p5kbxVh1fZQoaAZHQHB9jb349HNoB0v6aAhHQKM8pfsNUfh1fZQoaAZHQHC+hP9DQZ5oB0vjaAhHQKM8ue18b711fZQoaAZHQHJLKn3ta6loB0v1aAhHQKM86Rr8BMl1fZQoaAZHQHCOu2JBPbhoB0vbaAhHQKM9FSQ5myx1fZQoaAZHQHC+wwGnn+1oB0vpaAhHQKM9SSV4X411fZQoaAZHQHOPHXI2fkFoB0vHaAhHQKM9YoDPnjh1fZQoaAZHQHEXiyMUAT9oB00QAWgIR0CjPW7dadMCdX2UKGgGR0BwQIEt/WlNaAdL3mgIR0CjPZA1FYuCdX2UKGgGR0BxIN6cAimmaAdNBgFoCEdAoz2o4sEq2HV9lChoBkdAcOBjZ+QU6GgHTQIBaAhHQKM+TtAs0551fZQoaAZHQGM9uIhyKeloB03oA2gIR0CjPsEdFOO9dX2UKGgGR0Bt19WfbsWwaAdL12gIR0CjPvApjMFEdX2UKGgGR0BwKLeBQN1AaAdL6GgIR0CjPzrk8zRAdX2UKGgGR0Bx1sczZYgaaAdNAgFoCEdAo0ASv3ai9XV9lChoBkdAcKgEbHZK4GgHS9NoCEdAo0BeYnfEXXV9lChoBkdAcC2ha1TisGgHS+JoCEdAo0CSPdVNpXV9lChoBkdAc29PnB+F12gHS89oCEdAo0DHPcBU73V9lChoBkdAcAOUpNKywGgHS+NoCEdAo0DuP3i71HV9lChoBkdAbrlJaq0dBGgHS/1oCEdAo0Edc4YJmnV9lChoBkdAbsvNM495hWgHS+NoCEdAo0FwSzw+dXV9lChoBkdAcPp6O5rgwWgHS9poCEdAo0GfD1oQF3V9lChoBkdAcAQ7tiQT22gHS9NoCEdAo0GfKyOaOXV9lChoBkdAb8FZyuIRAmgHS/BoCEdAo0HPgccU/XV9lChoBkdAb7tM9r4332gHTRgBaAhHQKNCjbItDlZ1fZQoaAZHQHHHkXtShrZoB0vzaAhHQKNDh7N0NjN1fZQoaAZHQHJ1r9l2/ztoB0veaAhHQKNDklOXVsl1fZQoaAZHQEfaiTMaCMBoB0usaAhHQKND3yLhrFh1fZQoaAZHQHGYOA7PppxoB0vjaAhHQKND/QdjoZB1fZQoaAZHQHHtaEeyRjloB0v5aAhHQKNEDBBRhtt1fZQoaAZHQG/pkuHvc8FoB0vFaAhHQKNEeeuFHrh1fZQoaAZHQG9ZR6Ww/xFoB0vXaAhHQKNEloV2zOZ1fZQoaAZHQF9Od2xIJ7doB03oA2gIR0CjRLWdd3SsdX2UKGgGR0BJr9qUNayKaAdLvWgIR0CjRO163RXwdX2UKGgGR0BxyA6tDD0laAdL42gIR0CjRQ6be/HpdX2UKGgGR0BxZ8vN/vv0aAdL32gIR0CjRR8jzI3jdX2UKGgGR0Bv/KVUuL75aAdL9GgIR0CjRSlbeMyadX2UKGgGR0BAdoEjgQ6IaAdLuWgIR0CjRZRqXWvsdX2UKGgGR0Bw/Dn1WbPQaAdL8mgIR0CjRZ4e1a4ddX2UKGgGR0BxR+/L1VYIaAdNAQFoCEdAo0XLNKRMe3V9lChoBkdAb3w/CZWq+GgHS/toCEdAo0XZV+7UX3V9lChoBkdAUkoNrj5sTGgHS7FoCEdAo0YTzGxUvXV9lChoBkdAcuroM8YAKmgHS+poCEdAo0ZCn+AEuHV9lChoBkdAcX+6Tnq3VmgHS99oCEdAo0ZtkUbkwXV9lChoBkdAcFM8bJfYz2gHS9loCEdAo0Z4GB4D93V9lChoBkdAcdazFMqSYGgHTQEBaAhHQKNGjnanJkp1fZQoaAZHQHIhnrMTviNoB0vHaAhHQKNGsUwi7kJ1fZQoaAZHQG4vY2bXpW5oB00KAWgIR0CjR5zKDCgsdX2UKGgGR0Bu4twLmZE2aAdNBgFoCEdAo0ewRAbADnV9lChoBkdAcTcr8zhxYWgHS+9oCEdAo0fJW912aHV9lChoBkdAbzOnTiKiwmgHS+5oCEdAo0fYKneiz3V9lChoBkdAb9Hr4WUKRmgHS+1oCEdAo0fhwS8J2XV9lChoBkdAcdxZpSJj2GgHTRQBaAhHQKNIGIRAbAF1fZQoaAZHQHBMuBg/keZoB0vmaAhHQKNIQCA+Y+l1fZQoaAZHQHJaLCm/FitoB0vwaAhHQKNI9wqiGnJ1fZQoaAZHQHJrtAX2ugZoB0vUaAhHQKNJII55qud1fZQoaAZHQHHhQVCXyAhoB0vMaAhHQKNJOz544ZN1fZQoaAZHQHIruLm6oVFoB0v1aAhHQKNJPXoTwlV1fZQoaAZHQHBECzTnaFpoB00WAWgIR0CjSZO14Pf9dX2UKGgGR0BwjcKtxMnJaAdL2mgIR0CjSZmWMS9NdX2UKGgGR0BwjXwgDA8CaAdL4WgIR0CjSaPnSv1UdX2UKGgGR0Bx7VWp6yB1aAdL1WgIR0CjSaMuWa+fdX2UKGgGR0Buy/zg/C66aAdL1WgIR0CjSrbiyY5UdX2UKGgGR0BwqOgWac7RaAdL1GgIR0CjSty8rZrYdX2UKGgGR0ByljyCnP3SaAdLxmgIR0CjSvQrtmcwdX2UKGgGR0Bw48cebNKRaAdNAgFoCEdAo0s6eAd4mnV9lChoBkdAcaXdp7CzkmgHS/loCEdAo0tIjGDL83V9lChoBkdAcr8MCtA9m2gHS+VoCEdAo0uItapxWHV9lChoBkdAbxbYSQHRkWgHTRIBaAhHQKNLtlr/Khd1fZQoaAZHQHFPOKGcnVpoB0vZaAhHQKNLv/d69kB1fZQoaAZHQHHY1b/wRXhoB0vVaAhHQKNL0so2GZh1fZQoaAZHQHN9U7nxJ/ZoB0vsaAhHQKNMG0x/NJR1fZQoaAZHQFCNSUkfLcNoB0tlaAhHQKNMQzi0fHR1fZQoaAZHQHH6L9ETg2toB0veaAhHQKNMU7wrlNl1fZQoaAZHQG/ckYO2AoZoB0vlaAhHQKNMYgQHzH11fZQoaAZHQHGd6W1MM7VoB0v0aAhHQKNMoP3BYV91fZQoaAZHQHFGBpUPxx1oB00JAWgIR0CjTN7nX/YKdX2UKGgGR0BtJA5Lh73PaAdL5WgIR0CjTZQTdtVJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1520, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 420, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 420, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |