metadata
tags:
- deepseek-ai/deepseek-math-7b-instruct
- deepseek-ai/deepseek-math-7b-base
- deepseek-ai/deepseek-math-7b-rl
base_model:
- deepseek-ai/deepseek-math-7b-instruct
- deepseek-ai/deepseek-math-7b-base
- deepseek-ai/deepseek-math-7b-rl
- deepseek-ai/deepseek-math-7b-rl
- deepseek-ai/deepseek-math-7b-rl
- deepseek-ai/deepseek-math-7b-rl
- deepseek-ai/deepseek-math-7b-rl
- deepseek-ai/deepseek-math-7b-rl
license: apache-2.0
DeepCode-7B-Aurora-v3
DeepCode-7B-Aurora-v3 is a merge of the following models using LazyMergekit:
- deepseek-ai/deepseek-math-7b-instruct
- deepseek-ai/deepseek-math-7b-base
- deepseek-ai/deepseek-math-7b-rl
- deepseek-ai/deepseek-math-7b-rl
- deepseek-ai/deepseek-math-7b-rl
- deepseek-ai/deepseek-math-7b-rl
- deepseek-ai/deepseek-math-7b-rl
- deepseek-ai/deepseek-math-7b-rl
🧩 Configuration
models:
- model: deepseek-ai/deepseek-math-7b-rl
# No parameters necessary for base model
- model: deepseek-ai/deepseek-math-7b-instruct
parameters:
density: 0.66
weight: 0.2
- model: deepseek-ai/deepseek-math-7b-base
parameters:
density: 0.57
weight: 0.2
- model: deepseek-ai/deepseek-math-7b-rl
parameters:
density: 0.54
weight: 0.1
- model: deepseek-ai/deepseek-math-7b-rl
parameters:
density: 0.61
weight: 0.1
- model: deepseek-ai/deepseek-math-7b-rl
parameters:
density: 0.65
weight: 0.1
- model: deepseek-ai/deepseek-math-7b-rl
parameters:
density: 0.55
weight: 0.1
- model: deepseek-ai/deepseek-math-7b-rl
parameters:
density: 0.55
weight: 0.1
- model: deepseek-ai/deepseek-math-7b-rl
parameters:
density: 0.55
weight: 0.1
merge_method: dare_ties
base_model: deepseek-ai/deepseek-math-7b-rl
dtype: bfloat16
experts_per_token: 3
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "ALBADDAWI/DeepCode-7B-Aurora-v3"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])