ALBADDAWI's picture
End of training
994a1c1 verified
|
raw
history blame
6.61 kB
metadata
license: other
library_name: peft
tags:
  - trl
  - sft
  - generated_from_trainer
base_model: google/gemma-2b-it
model-index:
  - name: ft-google-gemma-2b-it-qlora-v2
    results: []

ft-google-gemma-2b-it-qlora-v2

This model is a fine-tuned version of google/gemma-2b-it on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 5.8028

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 80
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.2955 10.0 10 2.7587
0.232 20.0 20 2.5366
0.177 30.0 30 2.4293
0.1317 40.0 40 2.4247
0.0893 50.0 50 2.5725
0.0472 60.0 60 2.8254
0.0147 70.0 70 3.2230
0.0035 80.0 80 3.7653
0.0015 90.0 90 4.0707
0.0008 100.0 100 4.2730
0.0006 110.0 110 4.3961
0.0006 120.0 120 4.4900
0.0005 130.0 130 4.5394
0.0005 140.0 140 4.5999
0.0005 150.0 150 4.6447
0.0004 160.0 160 4.6848
0.0004 170.0 170 4.7255
0.0004 180.0 180 4.7569
0.0004 190.0 190 4.7802
0.0004 200.0 200 4.8020
0.0004 210.0 210 4.8522
0.0004 220.0 220 4.8690
0.0004 230.0 230 4.8940
0.0004 240.0 240 4.9423
0.0004 250.0 250 4.9723
0.0004 260.0 260 4.9644
0.0004 270.0 270 4.9923
0.0004 280.0 280 5.0230
0.0004 290.0 290 5.0319
0.0004 300.0 300 5.0627
0.0004 310.0 310 5.1078
0.0004 320.0 320 5.1167
0.0004 330.0 330 5.1260
0.0004 340.0 340 5.1586
0.0004 350.0 350 5.1803
0.0004 360.0 360 5.1652
0.0004 370.0 370 5.1692
0.0004 380.0 380 5.1980
0.0004 390.0 390 5.2254
0.0004 400.0 400 5.2434
0.0004 410.0 410 5.2792
0.0004 420.0 420 5.2699
0.0004 430.0 430 5.2906
0.0004 440.0 440 5.3069
0.0004 450.0 450 5.3063
0.0004 460.0 460 5.3275
0.0004 470.0 470 5.3406
0.0004 480.0 480 5.3319
0.0004 490.0 490 5.3354
0.0004 500.0 500 5.3601
0.0004 510.0 510 5.4094
0.0004 520.0 520 5.4175
0.0004 530.0 530 5.4083
0.0004 540.0 540 5.3947
0.0004 550.0 550 5.4211
0.0004 560.0 560 5.4287
0.0004 570.0 570 5.4580
0.0004 580.0 580 5.4610
0.0004 590.0 590 5.4775
0.0004 600.0 600 5.5165
0.0004 610.0 610 5.5356
0.0004 620.0 620 5.5142
0.0004 630.0 630 5.4963
0.0004 640.0 640 5.5114
0.0004 650.0 650 5.5223
0.0004 660.0 660 5.5468
0.0004 670.0 670 5.5543
0.0004 680.0 680 5.5731
0.0004 690.0 690 5.6010
0.0004 700.0 700 5.6050
0.0004 710.0 710 5.6203
0.0004 720.0 720 5.6415
0.0004 730.0 730 5.6312
0.0004 740.0 740 5.6209
0.0004 750.0 750 5.6283
0.0004 760.0 760 5.6605
0.0004 770.0 770 5.6683
0.0004 780.0 780 5.6686
0.0004 790.0 790 5.6810
0.0004 800.0 800 5.6837
0.0004 810.0 810 5.7018
0.0004 820.0 820 5.7189
0.0004 830.0 830 5.7218
0.0004 840.0 840 5.7053
0.0004 850.0 850 5.7328
0.0004 860.0 860 5.7495
0.0004 870.0 870 5.7220
0.0004 880.0 880 5.7142
0.0004 890.0 890 5.7272
0.0004 900.0 900 5.7643
0.0004 910.0 910 5.7750
0.0004 920.0 920 5.7762
0.0004 930.0 930 5.7899
0.0004 940.0 940 5.7878
0.0004 950.0 950 5.7727
0.0004 960.0 960 5.7630
0.0004 970.0 970 5.7806
0.0004 980.0 980 5.7953
0.0004 990.0 990 5.7662
0.0004 1000.0 1000 5.8028

Framework versions

  • PEFT 0.9.0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2