ALM-AHME's picture
End of training
8c4b59a
---
license: apache-2.0
base_model: microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-BreastCancer-BreakHis-AH-Shuff-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-BreastCancer-BreakHis-AH-Shuff-3
This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0161
- Accuracy: 0.9972
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2598 | 1.0 | 199 | 0.1445 | 0.9416 |
| 0.194 | 2.0 | 398 | 0.1121 | 0.9524 |
| 0.0967 | 3.0 | 597 | 0.0504 | 0.9826 |
| 0.0809 | 4.0 | 796 | 0.1604 | 0.9449 |
| 0.1531 | 5.0 | 995 | 0.0673 | 0.9807 |
| 0.0941 | 6.0 | 1194 | 0.0866 | 0.9680 |
| 0.1157 | 7.0 | 1393 | 0.0525 | 0.9844 |
| 0.0684 | 8.0 | 1592 | 0.1004 | 0.9760 |
| 0.0141 | 9.0 | 1791 | 0.0521 | 0.9873 |
| 0.038 | 10.0 | 1990 | 0.0293 | 0.9934 |
| 0.0044 | 11.0 | 2189 | 0.0161 | 0.9972 |
| 0.0006 | 12.0 | 2388 | 0.0197 | 0.9967 |
### Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3