|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-Lesion-Classification-HAM10000-S |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-Lesion-Classification-HAM10000-S |
|
|
|
This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0007 |
|
- Accuracy: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.5 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 1.3289 | 1.0 | 114 | 1.0633 | 0.6248 | |
|
| 0.7956 | 2.0 | 228 | 0.5050 | 0.8103 | |
|
| 0.5253 | 2.99 | 342 | 0.3013 | 0.9031 | |
|
| 0.2958 | 4.0 | 457 | 0.1534 | 0.9524 | |
|
| 0.276 | 5.0 | 571 | 0.1825 | 0.9335 | |
|
| 0.2556 | 6.0 | 685 | 0.0723 | 0.9729 | |
|
| 0.3624 | 6.99 | 799 | 0.1268 | 0.9483 | |
|
| 0.1986 | 8.0 | 914 | 0.0522 | 0.9778 | |
|
| 0.1554 | 9.0 | 1028 | 0.0205 | 0.9926 | |
|
| 0.1636 | 10.0 | 1142 | 0.0197 | 0.9951 | |
|
| 0.1147 | 10.99 | 1256 | 0.0517 | 0.9836 | |
|
| 0.1663 | 12.0 | 1371 | 0.0056 | 0.9959 | |
|
| 0.094 | 13.0 | 1485 | 0.0030 | 0.9992 | |
|
| 0.1308 | 14.0 | 1599 | 0.0011 | 0.9992 | |
|
| 0.1557 | 14.97 | 1710 | 0.0007 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|