ALM-AHME's picture
update model card README.md
e1cf32c
|
raw
history blame
2.61 kB
---
license: apache-2.0
base_model: microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-Lesion-Classification-HAM10000-S
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-Lesion-Classification-HAM10000-S
This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0007
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3289 | 1.0 | 114 | 1.0633 | 0.6248 |
| 0.7956 | 2.0 | 228 | 0.5050 | 0.8103 |
| 0.5253 | 2.99 | 342 | 0.3013 | 0.9031 |
| 0.2958 | 4.0 | 457 | 0.1534 | 0.9524 |
| 0.276 | 5.0 | 571 | 0.1825 | 0.9335 |
| 0.2556 | 6.0 | 685 | 0.0723 | 0.9729 |
| 0.3624 | 6.99 | 799 | 0.1268 | 0.9483 |
| 0.1986 | 8.0 | 914 | 0.0522 | 0.9778 |
| 0.1554 | 9.0 | 1028 | 0.0205 | 0.9926 |
| 0.1636 | 10.0 | 1142 | 0.0197 | 0.9951 |
| 0.1147 | 10.99 | 1256 | 0.0517 | 0.9836 |
| 0.1663 | 12.0 | 1371 | 0.0056 | 0.9959 |
| 0.094 | 13.0 | 1485 | 0.0030 | 0.9992 |
| 0.1308 | 14.0 | 1599 | 0.0011 | 0.9992 |
| 0.1557 | 14.97 | 1710 | 0.0007 | 1.0 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3