File size: 1,773 Bytes
77f7886 f316509 6e2bcb3 77f7886 e541902 bb43502 77f7886 7d9873b 77f7886 7d9873b 77f7886 7d9873b 77f7886 7d9873b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
tags:
- summarization
language:
- it
metrics:
- rouge
model-index:
- name: summarization_ilpost
results:
- task:
type: summarization
name: Summarization
dataset:
name: ARTeLab/ilpost
type: ARTeLab/ilpost
config: ARTeLab--ilpost
split: test
metrics:
- name: ROUGE-1
type: rouge
value: 28.4008
verified: true
- name: ROUGE-2
type: rouge
value: 13.9951
verified: true
- name: ROUGE-L
type: rouge
value: 24.1571
verified: true
- name: ROUGE-LSUM
type: rouge
value: 26.0996
verified: true
- name: loss
type: loss
value: 1.6566967964172363
verified: true
- name: gen_len
type: gen_len
value: 18.9439
verified: true
datasets:
- ARTeLab/ilpost
---
# summarization_ilpost
This model is a fine-tuned version of [gsarti/it5-base](https://huggingface.co/gsarti/it5-base) on IlPost dataset for Abstractive Summarization.
It achieves the following results:
- Loss: 1.6020
- Rouge1: 33.7802
- Rouge2: 16.2953
- Rougel: 27.4797
- Rougelsum: 30.2273
- Gen Len: 45.3175
## Usage
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("ARTeLab/it5-summarization-ilpost")
model = T5ForConditionalGeneration.from_pretrained("ARTeLab/it5-summarization-ilpost")
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4.0
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.9.1+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3 |