AdaCodruta's picture
End of training
175d8dc verified
|
raw
history blame
2.83 kB
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: wav2vec2-romanian-test
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ro
          split: test
          args: ro
        metrics:
          - name: Wer
            type: wer
            value: 0.9989733059548255

wav2vec2-romanian-test

This model is a fine-tuned version of facebook/wav2vec2-base on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3928
  • Wer: 0.9990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.4031 1.7730 500 1.7235 1.0
0.8308 3.5461 1000 0.5378 0.9997
0.4317 5.3191 1500 0.4410 0.9995
0.3127 7.0922 2000 0.4157 0.9992
0.2468 8.8652 2500 0.4119 0.9987
0.2086 10.6383 3000 0.3922 0.9995
0.1787 12.4113 3500 0.3861 0.9990
0.1601 14.1844 4000 0.3829 0.9987
0.1459 15.9574 4500 0.3929 0.9990
0.1315 17.7305 5000 0.3983 0.9990
0.1218 19.5035 5500 0.4068 0.9987
0.1138 21.2766 6000 0.4139 0.9990
0.107 23.0496 6500 0.3851 0.9990
0.0983 24.8227 7000 0.3820 0.9992
0.0937 26.5957 7500 0.3962 0.9990
0.0909 28.3688 8000 0.3928 0.9990

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu124
  • Datasets 2.21.0
  • Tokenizers 0.19.1