AdamLucek's picture
Update README.md
8fb1e89 verified
metadata
library_name: transformers
license: mit
datasets:
  - mlabonne/orpo-dpo-mix-40k
base_model:
  - meta-llama/Llama-3.2-1B
pipeline_tag: text-generation

Orpo-Llama-3.2-1B-15k

AdamLucek/Orpo-Llama-3.2-1B-15k is an ORPO fine tuned version of meta-llama/Llama-3.2-1B on a subset of 15,000 shuffled entries of mlabonne/orpo-dpo-mix-40k.

Trained for 7 hours on an L4 GPU with this training script, modified from Maxime Labonne's original guide

For full model details, refer to the base model page meta-llama/Llama-3.2-1B

Evaluations

Benchmark Accuracy Notes
AGIEval 20.99% Average across multiple reasoning tasks
GPT4ALL 51.12% Average across all categories
TruthfulQA 42.80% MC2 accuracy
BigBench 31.75% Average across 18 tasks
MMLU 31.23% Average across all categories
Winogrande 61.33% 5-shot evaluation
ARC Challenge 35.92% 25-shot evaluation
HellaSwag 48.65% 10-shot evaluation

Detailed Eval Metrics Available Here

Using this Model

from transformers import AutoTokenizer
import transformers
import torch

# Load Model and Pipeline
model = "AdamLucek/Orpo-Llama-3.2-1B-15k"

pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

# Load Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model)

# Generate Message
messages = [{"role": "user", "content": "What is a language model?"}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Training Statistics

Panel 1
Panel 2
Panel 3
Panel 4