metadata
library_name: transformers
license: mit
datasets:
- mlabonne/orpo-dpo-mix-40k
base_model:
- meta-llama/Llama-3.2-1B
pipeline_tag: text-generation
Orpo-Llama-3.2-1B-15k
AdamLucek/Orpo-Llama-3.2-1B-15k is an ORPO fine tuned version of meta-llama/Llama-3.2-1B on a subset of 15,000 shuffled entries of mlabonne/orpo-dpo-mix-40k.
Trained for 7 hours on an L4 GPU with this training script, modified from Maxime Labonne's original guide
For full model details, refer to the base model page meta-llama/Llama-3.2-1B
Evaluations
Benchmark | Accuracy | Notes |
---|---|---|
AGIEval | 20.99% | Average across multiple reasoning tasks |
GPT4ALL | 51.12% | Average across all categories |
TruthfulQA | 42.80% | MC2 accuracy |
BigBench | 31.75% | Average across 18 tasks |
MMLU | 31.23% | Average across all categories |
Winogrande | 61.33% | 5-shot evaluation |
ARC Challenge | 35.92% | 25-shot evaluation |
HellaSwag | 48.65% | 10-shot evaluation |
Detailed Eval Metrics Available Here
Using this Model
from transformers import AutoTokenizer
import transformers
import torch
# Load Model and Pipeline
model = "AdamLucek/Orpo-Llama-3.2-1B-15k"
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
# Load Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model)
# Generate Message
messages = [{"role": "user", "content": "What is a language model?"}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])