rubert-tiny2-1-4 / README.md
Adammz's picture
End of training
65f1701
|
raw
history blame
2.33 kB
---
license: mit
base_model: cointegrated/rubert-tiny2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: rubert-tiny2-1-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rubert-tiny2-1-4
This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3882
- Accuracy: 0.9001
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.9597 | 1.0 | 1500 | 1.1052 | 0.7613 |
| 0.9583 | 2.0 | 3000 | 0.8140 | 0.8157 |
| 0.7343 | 3.0 | 4500 | 0.6514 | 0.8502 |
| 0.6076 | 4.0 | 6000 | 0.5656 | 0.867 |
| 0.5257 | 5.0 | 7500 | 0.5115 | 0.8771 |
| 0.4694 | 6.0 | 9000 | 0.4748 | 0.8826 |
| 0.4296 | 7.0 | 10500 | 0.4477 | 0.8885 |
| 0.4006 | 8.0 | 12000 | 0.4295 | 0.8938 |
| 0.3753 | 9.0 | 13500 | 0.4159 | 0.896 |
| 0.358 | 10.0 | 15000 | 0.4066 | 0.8979 |
| 0.3417 | 11.0 | 16500 | 0.3994 | 0.8992 |
| 0.3296 | 12.0 | 18000 | 0.3943 | 0.8993 |
| 0.3203 | 13.0 | 19500 | 0.3914 | 0.8993 |
| 0.3158 | 14.0 | 21000 | 0.3889 | 0.9001 |
| 0.3126 | 15.0 | 22500 | 0.3882 | 0.9001 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0