metadata
license: apache-2.0
base_model: meta-llama/Llama-3.2-11B-Vision-Instruct
tags:
- thai
- handwriting-recognition
- vision-language
- fine-tuned
- vision
datasets:
- iapp/thai_handwriting_dataset
language:
- th
pipeline_tag: image-to-text
Thai Handwriting Recognition Vision-Language Model
A LoRA-adapted vision-language model based on Llama-3.2-11B-Vision-Instruct that transcribes Thai handwritten text from images.
Model Architecture
- Base: Llama-3.2-11B-Vision-Instruct
Inference
Single Image
import torch
from transformers import AutoModelForVision2Seq, AutoProcessor
from peft import PeftModel
from PIL import Image
def load_model():
# Model paths
base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct"
adapter_path = "Aekanun/thai-handwriting-llm"
# Load processor
processor = AutoProcessor.from_pretrained(
base_model_path,
use_auth_token=True
)
# Load base model
base_model = AutoModelForVision2Seq.from_pretrained(
base_model_path,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True,
use_auth_token=True
)
# Load adapter
model = PeftModel.from_pretrained(
base_model,
adapter_path,
device_map="auto",
torch_dtype=torch.float16,
use_auth_token=True
)
return model, processor
def transcribe_thai_handwriting(image_path, model, processor):
# Load and prepare image
image = Image.open(image_path)
# Create prompt
prompt = """Transcribe the Thai handwritten text from the provided image.
Only return the transcription in Thai language."""
# Prepare inputs
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image", "image": image}
],
}
]
# Process with model
text = processor.apply_chat_template(messages, tokenize=False)
inputs = processor(text=text, images=image, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
# Generate
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=512,
do_sample=False,
pad_token_id=processor.tokenizer.pad_token_id
)
# Decode output
transcription = processor.decode(outputs[0], skip_special_tokens=True)
return transcription.strip()
# Example usage
if __name__ == "__main__":
# Load model
model, processor = load_model()
# Transcribe image
image_path = "path/to/your/image.jpg"
result = transcribe_thai_handwriting(image_path, model, processor)
print(f"Transcription: {result}")