Inf
!git clone https://github.com/huggingface/transformers.git
%cd transformers
!git checkout <commit_id_for_4.47.0.dev0>
!pip install .
!pip install -q accelerate==0.34.2 bitsandbytes==0.44.1 peft==0.13.1
Importing libs
import os
import torch
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
logging,
)
Bits&Bytes Config
use_4bit = True
# Compute dtype for 4-bit base models
bnb_4bit_compute_dtype = "float16"
# Quantization type (fp4 or nf4)
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
use_nested_quant = False
bnb_4bit_quant_type = "nf4"
bnb_config = BitsAndBytesConfig(
load_in_4bit=use_4bit,
bnb_4bit_quant_type=bnb_4bit_quant_type,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=use_nested_quant,
)
Loading Model
# Load base model
model_name = 'Ahanaas/HermesWithYou'
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map=0
)
Loading Tokenizer
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
Predictions
# Run text generation pipeline with our next model
system_prompt = ''''''
prompt = ''''''
pipe = pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=128, # Increase this to allow for longer outputs
temperature=0.5, # Encourages more varied outputs
top_k=50, # Limits to the top 50 tokens
do_sample=True, # Enables sampling
return_full_text=True,
)
result = pipe(f"<|im_start|>system\n {system_prompt}\n<|im_end|>\n<|im_start|>user\n{prompt}\n<|im_end|>\n<|im_start|>assistant\n")
# print(result[0]['generated_text'])
generated_text = result[0]['generated_text']
# Print the extracted response text
print(generated_text)
- Downloads last month
- 10
Model tree for Ahanaas/HermesWithYou
Base model
meta-llama/Llama-3.1-8B
Finetuned
NousResearch/Hermes-3-Llama-3.1-8B