distill / README.md
Ahmed107's picture
End of training
d34b82a
metadata
language:
  - ar
license: mit
base_model: distil-whisper/distil-large-v2
tags:
  - generated_from_trainer
datasets:
  - nadsoft/Jordan-Audio
metrics:
  - wer
model-index:
  - name: Hamsa distill alfa
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: nadsoft/Jordan-Audio
          type: nadsoft/Jordan-Audio
        metrics:
          - name: Wer
            type: wer
            value: 54.11225658648339

Hamsa distill alfa

This model is a fine-tuned version of distil-whisper/distil-large-v2 on the nadsoft/Jordan-Audio dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8474
  • Wer Ortho: 56.1657
  • Wer: 54.1123

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.7394 1.76 500 0.8474 56.1657 54.1123

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1