Akashpb13's picture
Update README.md (#1)
cfa28c0
|
raw
history blame
3.16 kB
---
language:
- kmr
- ku
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- kmr
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: Akashpb13/xlsr_kurmanji_kurdish
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: kmr
metrics:
- name: Test WER
type: wer
value: 0.33073206986250464
- name: Test CER
type: cer
value: 0.08035244447163924
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: kmr
metrics:
- name: Test WER
type: wer
value: 0.33073206986250464
- name: Test CER
type: cer
value: 0.08035244447163924
---
# Akashpb13/xlsr_kurmanji_kurdish
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - hu dataset.
It achieves the following results on the evaluation set (which is 10 percent of train data set merged with invalidated data, reported, other, and dev datasets):
- Loss: 0.292389
- Wer: 0.388585
## Model description
"facebook/wav2vec2-xls-r-300m" was finetuned.
## Intended uses & limitations
More information needed
## Training and evaluation data
Training data -
Common voice Kurmanji Kurdish train.tsv, dev.tsv, invalidated.tsv, reported.tsv, and other.tsv
Only those points were considered where upvotes were greater than downvotes and duplicates were removed after concatenation of all the datasets given in common voice 7.0
## Training procedure
For creating the training dataset, all possible datasets were appended and 90-10 split was used.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000096
- train_batch_size: 16
- eval_batch_size: 16
- seed: 13
- gradient_accumulation_steps: 16
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 200
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Step | Training Loss | Validation Loss | Wer |
|------|---------------|-----------------|----------|
| 200 | 4.382500 | 3.183725 | 1.000000 |
| 400 | 2.870200 | 0.996664 | 0.781117 |
| 600 | 0.609900 | 0.333755 | 0.445052 |
| 800 | 0.326800 | 0.305729 | 0.403157 |
| 1000 | 0.255000 | 0.290734 | 0.391621 |
| 1200 | 0.226300 | 0.292389 | 0.388585 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.18.1
- Tokenizers 0.10.3
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id Akashpb13/xlsr_kurmanji_kurdish --dataset mozilla-foundation/common_voice_8_0 --config kmr --split test
```