Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: microsoft/phi-2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true

hub_model_id: AlekseyKorshuk/evol-codealpaca-v1-sft-4e-5
hub_strategy: every_save

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: AlekseyKorshuk/evol-codealpaca-v1-sft
    type: sharegpt
    conversation: chatml

dataset_prepared_path:
val_set_size: 0
output_dir: ./output

sequence_len: 2048
sample_packing: false  # currently unsupported
pad_to_sequence_len:

lora_r:
lora_alpha:
lora_dropout:
lora_target_modules:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project: ui-thesis
wandb_entity:
wandb_watch:
wandb_name: phi-2-chatml-v1
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 16
num_epochs: 1
optimizer: paged_adamw_8bit
adam_beta1: 0.9
adam_beta2: 0.95
max_grad_norm: 1.0
adam_epsilon: 0.00001
lr_scheduler: cosine
cosine_min_lr_ratio: 0.1
learning_rate: 4e-5
warmup_ratio: 0.1
weight_decay: 0.1

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
#float16: false
#bloat16: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true


evals_per_epoch: 0
eval_table_size: 8 # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0
eval_table_max_new_tokens: 768 # Total number of tokens generated for predictions sent to wandb. Default is 128
eval_sample_packing: false

chat_template: chatml
saves_per_epoch: 1
save_total_limit: 1
seed: 42
debug:
deepspeed:

fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true

special_tokens:
  eos_token: "<|im_end|>"
  pad_token: "<|endoftext|>"
tokens:
  - "<|im_start|>"

evol-codealpaca-v1-sft-4e-5

This model is a fine-tuned version of microsoft/phi-2 on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 3
  • num_epochs: 1

Training results

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
33
Safetensors
Model size
2.78B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AlekseyKorshuk/evol-codealpaca-v1-sft-4e-5

Base model

microsoft/phi-2
Finetuned
(282)
this model
Finetunes
1 model