xls-r-300m-pt / .ipynb_checkpoints /README-checkpoint.md
AlexN's picture
pt evaluation
8ba698b
metadata
language:
  - pt
license: apache-2.0
tags:
  - automatic-speech-recognition
  - robust-speech-event
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
datasets:
  - common_voice
model-index:
  - name: xls-r-300m-pt
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8.0 fr
          type: mozilla-foundation/common_voice_8_0
          args: fr
        metrics:
          - name: Test WER
            type: wer
            value: 21.008
          - name: Test CER
            type: cer
            value: 6.117
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: fr
        metrics:
          - name: Validation WER
            type: wer
            value: 47.812
          - name: Validation CER
            type: cer
            value: 18.805

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PT dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2290
  • Wer: 0.2382

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1500
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.0952 0.64 500 3.0982 1.0
1.7975 1.29 1000 0.7887 0.5651
1.4138 1.93 1500 0.5238 0.4389
1.344 2.57 2000 0.4775 0.4318
1.2737 3.21 2500 0.4648 0.4075
1.2554 3.86 3000 0.4069 0.3678
1.1996 4.5 3500 0.3914 0.3668
1.1427 5.14 4000 0.3694 0.3572
1.1372 5.78 4500 0.3568 0.3501
1.0831 6.43 5000 0.3331 0.3253
1.1074 7.07 5500 0.3332 0.3352
1.0536 7.71 6000 0.3131 0.3152
1.0248 8.35 6500 0.3024 0.3023
1.0075 9.0 7000 0.2948 0.3028
0.979 9.64 7500 0.2796 0.2853
0.9594 10.28 8000 0.2719 0.2789
0.9172 10.93 8500 0.2620 0.2695
0.9047 11.57 9000 0.2537 0.2596
0.8777 12.21 9500 0.2438 0.2525
0.8629 12.85 10000 0.2409 0.2493
0.8575 13.5 10500 0.2366 0.2440
0.8361 14.14 11000 0.2317 0.2385
0.8126 14.78 11500 0.2290 0.2382

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0