Edit model card

SentenceTransformer based on Qwen/Qwen2.5-0.5B-Instruct

This is a sentence-transformers model finetuned from Qwen/Qwen2.5-0.5B-Instruct. It maps sentences & paragraphs to a 896-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Qwen/Qwen2.5-0.5B-Instruct
  • Maximum Sequence Length: 1024 tokens
  • Output Dimensionality: 896 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: Qwen2Model 
  (1): Pooling({'word_embedding_dimension': 896, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("AlexWortega/qwen_emb_600_best_21.11")
# Run inference
sentences = [
    'Is a birth certificate a form of ID?',
    'Identity documents in the United States\nThe birth certificate is the initial identification document issued to parents shortly after the birth of their child. The birth certificate is typically issued by local governments, usually the city or county where a child is born. It is an important record, often called a "feeder document," because it establishes U.S. citizenship through birthright citizenship, which is then used to obtain, or is the basis for, all other identity documents.[2] By itself, the birth certificate is usually only considered proof of citizenship but not proof of identity, since it is issued without a photograph at birth, containing no identifying features. A birth certificate is normally produced along with proof of identity, such as a driver\'s license or the testimony of a third party (such as a parent), to establish identity or entitlement to a service.',
    "Identity document\nIn Canada, different forms of identification documentation are used, but there is no de jure national identity card. The Canadian passport is issued by the federal (national) government, and the provinces and territories issue various documents which can be used for identification purposes. The most commonly used forms of identification within Canada are the health card and driver's licence issued by provincial and territorial governments. The widespread usage of these two documents for identification purposes has made them de facto identity cards.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 896]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

  • Datasets: NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with InformationRetrievalEvaluator
Metric NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoMSMARCO NanoNFCorpus NanoNQ NanoQuoraRetrieval NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
cosine_accuracy@1 0.18 0.6 0.28 0.18 0.46 0.22 0.32 0.28 0.84 0.26 0.06 0.26 0.449
cosine_accuracy@3 0.28 0.72 0.56 0.28 0.56 0.34 0.42 0.4 0.92 0.38 0.42 0.38 0.7143
cosine_accuracy@5 0.32 0.82 0.66 0.4 0.6 0.34 0.46 0.5 0.92 0.48 0.52 0.5 0.7959
cosine_accuracy@10 0.4 0.88 0.82 0.5 0.68 0.44 0.52 0.58 0.98 0.62 0.68 0.6 0.9796
cosine_precision@1 0.18 0.6 0.28 0.18 0.46 0.22 0.32 0.28 0.84 0.26 0.06 0.26 0.449
cosine_precision@3 0.1 0.4333 0.1867 0.1133 0.2333 0.1133 0.28 0.1333 0.3667 0.1533 0.14 0.1333 0.3946
cosine_precision@5 0.072 0.416 0.136 0.096 0.148 0.068 0.24 0.1 0.236 0.148 0.104 0.104 0.3673
cosine_precision@10 0.052 0.34 0.086 0.062 0.09 0.044 0.18 0.058 0.128 0.118 0.068 0.066 0.3347
cosine_recall@1 0.07 0.0588 0.26 0.0969 0.23 0.22 0.0125 0.27 0.7407 0.053 0.06 0.235 0.0347
cosine_recall@3 0.1283 0.1203 0.52 0.1971 0.35 0.34 0.0367 0.37 0.8687 0.093 0.42 0.355 0.0924
cosine_recall@5 0.145 0.1722 0.63 0.275 0.37 0.34 0.0562 0.47 0.886 0.15 0.52 0.465 0.1378
cosine_recall@10 0.1933 0.2396 0.79 0.3352 0.45 0.44 0.0669 0.53 0.956 0.2407 0.68 0.58 0.2392
cosine_ndcg@10 0.1694 0.4329 0.5142 0.2365 0.4053 0.3192 0.2211 0.3978 0.889 0.2161 0.3708 0.3967 0.3738
cosine_mrr@10 0.2476 0.6865 0.4404 0.2642 0.5121 0.2824 0.3847 0.3705 0.8829 0.3527 0.2719 0.3504 0.6104
cosine_map@100 0.1356 0.2693 0.4253 0.1923 0.3491 0.2998 0.0815 0.3635 0.8629 0.1591 0.2829 0.3458 0.3108

Nano BEIR

Metric Value
cosine_accuracy@1 0.3376
cosine_accuracy@3 0.4903
cosine_accuracy@5 0.5628
cosine_accuracy@10 0.6677
cosine_precision@1 0.3376
cosine_precision@3 0.2139
cosine_precision@5 0.1719
cosine_precision@10 0.1251
cosine_recall@1 0.1801
cosine_recall@3 0.2993
cosine_recall@5 0.3552
cosine_recall@10 0.4416
cosine_ndcg@10 0.3802
cosine_mrr@10 0.4351
cosine_map@100 0.3137

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,077,240 training samples
  • Columns: query, response, and negative
  • Approximate statistics based on the first 1000 samples:
    query response negative
    type string string string
    details
    • min: 4 tokens
    • mean: 8.76 tokens
    • max: 26 tokens
    • min: 23 tokens
    • mean: 141.88 tokens
    • max: 532 tokens
    • min: 4 tokens
    • mean: 134.02 tokens
    • max: 472 tokens
  • Samples:
    query response negative
    Was there a year 0? Year zero
    Year zero does not exist in the anno Domini system usually used to number years in the Gregorian calendar and in its predecessor, the Julian calendar. In this system, the year 1 BC is followed by AD 1. However, there is a year zero in astronomical year numbering (where it coincides with the Julian year 1 BC) and in ISO 8601:2004 (where it coincides with the Gregorian year 1 BC) as well as in all Buddhist and Hindu calendars.
    504
    Year 504 (DIV) was a leap year starting on Thursday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Nicomachus without colleague (or, less frequently, year 1257 "Ab urbe condita"). The denomination 504 for this year has been used since the early medieval period, when the Anno Domini calendar era became the prevalent method in Europe for naming years.
    When is the dialectical method used? Dialectic
    Dialectic or dialectics (Greek: διαλεκτική, dialektikḗ; related to dialogue), also known as the dialectical method, is at base a discourse between two or more people holding different points of view about a subject but wishing to establish the truth through reasoned arguments. Dialectic resembles debate, but the concept excludes subjective elements such as emotional appeal and the modern pejorative sense of rhetoric.[1][2] Dialectic may be contrasted with the didactic method, wherein one side of the conversation teaches the other. Dialectic is alternatively known as minor logic, as opposed to major logic or critique.
    Derek Bentley case
    Another factor in the posthumous defence was that a "confession" recorded by Bentley, which was claimed by the prosecution to be a "verbatim record of dictated monologue", was shown by forensic linguistics methods to have been largely edited by policemen. Linguist Malcolm Coulthard showed that certain patterns, such as the frequency of the word "then" and the grammatical use of "then" after the grammatical subject ("I then" rather than "then I"), were not consistent with Bentley's use of language (his idiolect), as evidenced in court testimony. These patterns fit better the recorded testimony of the policemen involved. This is one of the earliest uses of forensic linguistics on record.
    What do Grasshoppers eat? Grasshopper
    Grasshoppers are plant-eaters, with a few species at times becoming serious pests of cereals, vegetables and pasture, especially when they swarm in their millions as locusts and destroy crops over wide areas. They protect themselves from predators by camouflage; when detected, many species attempt to startle the predator with a brilliantly-coloured wing-flash while jumping and (if adult) launching themselves into the air, usually flying for only a short distance. Other species such as the rainbow grasshopper have warning coloration which deters predators. Grasshoppers are affected by parasites and various diseases, and many predatory creatures feed on both nymphs and adults. The eggs are the subject of attack by parasitoids and predators.
    Groundhog
    Very often the dens of groundhogs provide homes for other animals including skunks, red foxes, and cottontail rabbits. The fox and skunk feed upon field mice, grasshoppers, beetles and other creatures that destroy farm crops. In aiding these animals, the groundhog indirectly helps the farmer. In addition to providing homes for itself and other animals, the groundhog aids in soil improvement by bringing subsoil to the surface. The groundhog is also a valuable game animal and is considered a difficult sport when hunted in a fair manner. In some parts of Appalachia, they are eaten.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • gradient_accumulation_steps: 8
  • learning_rate: 0.0001
  • max_grad_norm: 0.01
  • num_train_epochs: 2
  • warmup_ratio: 0.4
  • bf16: True
  • dataloader_num_workers: 8
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0001
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 0.01
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.4
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 8
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss NanoClimateFEVER_cosine_ndcg@10 NanoDBPedia_cosine_ndcg@10 NanoFEVER_cosine_ndcg@10 NanoFiQA2018_cosine_ndcg@10 NanoHotpotQA_cosine_ndcg@10 NanoMSMARCO_cosine_ndcg@10 NanoNFCorpus_cosine_ndcg@10 NanoNQ_cosine_ndcg@10 NanoQuoraRetrieval_cosine_ndcg@10 NanoSCIDOCS_cosine_ndcg@10 NanoArguAna_cosine_ndcg@10 NanoSciFact_cosine_ndcg@10 NanoTouche2020_cosine_ndcg@10 NanoBEIR_mean_cosine_ndcg@10
0.0002 2 1.8808 - - - - - - - - - - - - - -
0.0005 4 1.9239 - - - - - - - - - - - - - -
0.0007 6 2.0324 - - - - - - - - - - - - - -
0.0010 8 2.0387 - - - - - - - - - - - - - -
0.0012 10 2.0336 - - - - - - - - - - - - - -
0.0014 12 1.9943 - - - - - - - - - - - - - -
0.0017 14 1.971 - - - - - - - - - - - - - -
0.0019 16 1.9206 - - - - - - - - - - - - - -
0.0021 18 1.8157 - - - - - - - - - - - - - -
0.0024 20 1.8605 - - - - - - - - - - - - - -
0.0026 22 1.862 - - - - - - - - - - - - - -
0.0029 24 1.9313 - - - - - - - - - - - - - -
0.0031 26 1.8326 - - - - - - - - - - - - - -
0.0033 28 1.9208 - - - - - - - - - - - - - -
0.0036 30 2.4718 - - - - - - - - - - - - - -
0.0038 32 2.4819 - - - - - - - - - - - - - -
0.0040 34 2.4956 - - - - - - - - - - - - - -
0.0043 36 2.4335 - - - - - - - - - - - - - -
0.0045 38 2.4694 - - - - - - - - - - - - - -
0.0048 40 2.5719 - - - - - - - - - - - - - -
0.0050 42 2.4666 - - - - - - - - - - - - - -
0.0052 44 2.4919 - - - - - - - - - - - - - -
0.0055 46 2.4179 - - - - - - - - - - - - - -
0.0057 48 2.4022 - - - - - - - - - - - - - -
0.0059 50 2.39 - - - - - - - - - - - - - -
0.0062 52 2.4682 - - - - - - - - - - - - - -
0.0064 54 2.3442 - - - - - - - - - - - - - -
0.0067 56 2.3157 - - - - - - - - - - - - - -
0.0069 58 2.2665 - - - - - - - - - - - - - -
0.0071 60 2.2969 - - - - - - - - - - - - - -
0.0074 62 2.1652 - - - - - - - - - - - - - -
0.0076 64 2.1243 - - - - - - - - - - - - - -
0.0078 66 2.0499 - - - - - - - - - - - - - -
0.0081 68 2.0115 - - - - - - - - - - - - - -
0.0083 70 1.8372 - - - - - - - - - - - - - -
0.0086 72 1.6257 - - - - - - - - - - - - - -
0.0088 74 1.6398 - - - - - - - - - - - - - -
0.0090 76 1.4927 - - - - - - - - - - - - - -
0.0093 78 1.3491 - - - - - - - - - - - - - -
0.0095 80 1.3303 - - - - - - - - - - - - - -
0.0097 82 1.3846 - - - - - - - - - - - - - -
0.0100 84 1.2647 - - - - - - - - - - - - - -
0.0102 86 1.1579 - - - - - - - - - - - - - -
0.0105 88 1.0146 - - - - - - - - - - - - - -
0.0107 90 0.9201 - - - - - - - - - - - - - -
0.0109 92 0.8631 - - - - - - - - - - - - - -
0.0112 94 0.7801 - - - - - - - - - - - - - -
0.0114 96 0.7813 - - - - - - - - - - - - - -
0.0116 98 0.7898 - - - - - - - - - - - - - -
0.0119 100 0.722 - - - - - - - - - - - - - -
0.0121 102 0.7595 - - - - - - - - - - - - - -
0.0124 104 0.6245 - - - - - - - - - - - - - -
0.0126 106 0.6036 - - - - - - - - - - - - - -
0.0128 108 0.7248 - - - - - - - - - - - - - -
0.0131 110 0.637 - - - - - - - - - - - - - -
0.0133 112 0.6205 - - - - - - - - - - - - - -
0.0135 114 0.5956 - - - - - - - - - - - - - -
0.0138 116 0.6126 - - - - - - - - - - - - - -
0.0140 118 0.547 - - - - - - - - - - - - - -
0.0143 120 0.5414 - - - - - - - - - - - - - -
0.0145 122 0.4896 - - - - - - - - - - - - - -
0.0147 124 0.5351 - - - - - - - - - - - - - -
0.0150 126 0.5404 - - - - - - - - - - - - - -
0.0152 128 0.4479 - - - - - - - - - - - - - -
0.0154 130 1.1779 - - - - - - - - - - - - - -
0.0157 132 1.4533 - - - - - - - - - - - - - -
0.0159 134 1.5042 - - - - - - - - - - - - - -
0.0162 136 1.2167 - - - - - - - - - - - - - -
0.0164 138 1.2484 - - - - - - - - - - - - - -
0.0166 140 1.1236 - - - - - - - - - - - - - -
0.0169 142 1.1729 - - - - - - - - - - - - - -
0.0171 144 1.0076 - - - - - - - - - - - - - -
0.0173 146 1.0314 - - - - - - - - - - - - - -
0.0176 148 0.9106 - - - - - - - - - - - - - -
0.0178 150 0.8994 - - - - - - - - - - - - - -
0.0181 152 0.9679 - - - - - - - - - - - - - -
0.0183 154 0.8576 - - - - - - - - - - - - - -
0.0185 156 0.777 - - - - - - - - - - - - - -
0.0188 158 0.8527 - - - - - - - - - - - - - -
0.0190 160 0.864 - - - - - - - - - - - - - -
0.0192 162 0.807 - - - - - - - - - - - - - -
0.0195 164 0.9083 - - - - - - - - - - - - - -
0.0197 166 0.7705 - - - - - - - - - - - - - -
0.0200 168 0.7179 - - - - - - - - - - - - - -
0.0202 170 0.7485 - - - - - - - - - - - - - -
0.0204 172 0.7198 - - - - - - - - - - - - - -
0.0207 174 0.7712 - - - - - - - - - - - - - -
0.0209 176 0.82 - - - - - - - - - - - - - -
0.0212 178 0.7744 - - - - - - - - - - - - - -
0.0214 180 0.7668 - - - - - - - - - - - - - -
0.0216 182 0.6501 - - - - - - - - - - - - - -
0.0219 184 0.6327 - - - - - - - - - - - - - -
0.0221 186 0.752 - - - - - - - - - - - - - -
0.0223 188 0.6204 - - - - - - - - - - - - - -
0.0226 190 0.6258 - - - - - - - - - - - - - -
0.0228 192 0.607 - - - - - - - - - - - - - -
0.0231 194 0.5688 - - - - - - - - - - - - - -
0.0233 196 0.6831 - - - - - - - - - - - - - -
0.0235 198 0.5653 - - - - - - - - - - - - - -
0.0238 200 0.5966 - - - - - - - - - - - - - -
0.0240 202 0.5798 - - - - - - - - - - - - - -
0.0242 204 0.5991 - - - - - - - - - - - - - -
0.0245 206 0.5856 - - - - - - - - - - - - - -
0.0247 208 0.5935 - - - - - - - - - - - - - -
0.0250 210 0.5624 - - - - - - - - - - - - - -
0.0252 212 0.6188 - - - - - - - - - - - - - -
0.0254 214 0.5497 - - - - - - - - - - - - - -
0.0257 216 0.582 - - - - - - - - - - - - - -
0.0259 218 0.5912 - - - - - - - - - - - - - -
0.0261 220 0.4818 - - - - - - - - - - - - - -
0.0264 222 0.5686 - - - - - - - - - - - - - -
0.0266 224 0.5174 - - - - - - - - - - - - - -
0.0269 226 0.523 - - - - - - - - - - - - - -
0.0271 228 0.5337 - - - - - - - - - - - - - -
0.0273 230 0.5253 - - - - - - - - - - - - - -
0.0276 232 0.5434 - - - - - - - - - - - - - -
0.0278 234 0.5351 - - - - - - - - - - - - - -
0.0280 236 0.5202 - - - - - - - - - - - - - -
0.0283 238 0.4611 - - - - - - - - - - - - - -
0.0285 240 0.4509 - - - - - - - - - - - - - -
0.0288 242 0.5217 - - - - - - - - - - - - - -
0.0290 244 0.5256 - - - - - - - - - - - - - -
0.0292 246 0.5529 - - - - - - - - - - - - - -
0.0295 248 0.4944 - - - - - - - - - - - - - -
0.0297 250 0.568 - - - - - - - - - - - - - -
0.0299 252 0.5024 - - - - - - - - - - - - - -
0.0302 254 0.5094 - - - - - - - - - - - - - -
0.0304 256 0.5057 - - - - - - - - - - - - - -
0.0307 258 0.5424 - - - - - - - - - - - - - -
0.0309 260 0.6485 - - - - - - - - - - - - - -
0.0311 262 0.4823 - - - - - - - - - - - - - -
0.0314 264 0.475 - - - - - - - - - - - - - -
0.0316 266 0.3753 - - - - - - - - - - - - - -
0.0318 268 0.5117 - - - - - - - - - - - - - -
0.0321 270 0.4067 - - - - - - - - - - - - - -
0.0323 272 0.4706 - - - - - - - - - - - - - -
0.0326 274 0.4099 - - - - - - - - - - - - - -
0.0328 276 0.4251 - - - - - - - - - - - - - -
0.0330 278 0.4392 - - - - - - - - - - - - - -
0.0333 280 0.5373 - - - - - - - - - - - - - -
0.0335 282 0.4259 - - - - - - - - - - - - - -
0.0337 284 0.4227 - - - - - - - - - - - - - -
0.0340 286 0.4774 - - - - - - - - - - - - - -
0.0342 288 0.4878 - - - - - - - - - - - - - -
0.0345 290 0.5619 - - - - - - - - - - - - - -
0.0347 292 0.5061 - - - - - - - - - - - - - -
0.0349 294 0.5434 - - - - - - - - - - - - - -
0.0352 296 0.5115 - - - - - - - - - - - - - -
0.0354 298 0.4281 - - - - - - - - - - - - - -
0.0356 300 0.4287 - - - - - - - - - - - - - -
0.0359 302 0.4864 - - - - - - - - - - - - - -
0.0361 304 0.4724 - - - - - - - - - - - - - -
0.0364 306 0.4607 - - - - - - - - - - - - - -
0.0366 308 0.3978 - - - - - - - - - - - - - -
0.0368 310 0.4851 - - - - - - - - - - - - - -
0.0371 312 0.3466 - - - - - - - - - - - - - -
0.0373 314 0.565 - - - - - - - - - - - - - -
0.0375 316 0.4122 - - - - - - - - - - - - - -
0.0378 318 0.3757 - - - - - - - - - - - - - -
0.0380 320 0.4673 - - - - - - - - - - - - - -
0.0383 322 0.4358 - - - - - - - - - - - - - -
0.0385 324 0.4423 - - - - - - - - - - - - - -
0.0387 326 0.3754 - - - - - - - - - - - - - -
0.0390 328 0.4358 - - - - - - - - - - - - - -
0.0392 330 0.408 - - - - - - - - - - - - - -
0.0394 332 0.3901 - - - - - - - - - - - - - -
0.0397 334 0.4155 - - - - - - - - - - - - - -
0.0399 336 0.379 - - - - - - - - - - - - - -
0.0402 338 0.373 - - - - - - - - - - - - - -
0.0404 340 0.2917 - - - - - - - - - - - - - -
0.0406 342 0.3755 - - - - - - - - - - - - - -
0.0409 344 0.3262 - - - - - - - - - - - - - -
0.0411 346 0.4975 - - - - - - - - - - - - - -
0.0414 348 0.3469 - - - - - - - - - - - - - -
0.0416 350 0.3895 - - - - - - - - - - - - - -
0.0418 352 0.4424 - - - - - - - - - - - - - -
0.0421 354 0.3609 - - - - - - - - - - - - - -
0.0423 356 0.434 - - - - - - - - - - - - - -
0.0425 358 0.4474 - - - - - - - - - - - - - -
0.0428 360 0.3514 - - - - - - - - - - - - - -
0.0430 362 0.4029 - - - - - - - - - - - - - -
0.0433 364 0.4438 - - - - - - - - - - - - - -
0.0435 366 0.4271 - - - - - - - - - - - - - -
0.0437 368 0.3825 - - - - - - - - - - - - - -
0.0440 370 0.3848 - - - - - - - - - - - - - -
0.0442 372 0.4088 - - - - - - - - - - - - - -
0.0444 374 0.4188 - - - - - - - - - - - - - -
0.0447 376 0.4333 - - - - - - - - - - - - - -
0.0449 378 0.3784 - - - - - - - - - - - - - -
0.0452 380 0.4509 - - - - - - - - - - - - - -
0.0454 382 0.4084 - - - - - - - - - - - - - -
0.0456 384 0.371 - - - - - - - - - - - - - -
0.0459 386 0.3965 - - - - - - - - - - - - - -
0.0461 388 0.375 - - - - - - - - - - - - - -
0.0463 390 0.4098 - - - - - - - - - - - - - -
0.0466 392 0.4198 - - - - - - - - - - - - - -
0.0468 394 0.3854 - - - - - - - - - - - - - -
0.0471 396 0.3146 - - - - - - - - - - - - - -
0.0473 398 0.3892 - - - - - - - - - - - - - -
0.0475 400 0.3295 - - - - - - - - - - - - - -
0.0478 402 0.4124 - - - - - - - - - - - - - -
0.0480 404 0.3039 - - - - - - - - - - - - - -
0.0482 406 0.3353 - - - - - - - - - - - - - -
0.0485 408 0.4382 - - - - - - - - - - - - - -
0.0487 410 0.4013 - - - - - - - - - - - - - -
0.0490 412 0.3283 - - - - - - - - - - - - - -
0.0492 414 0.4264 - - - - - - - - - - - - - -
0.0494 416 0.4295 - - - - - - - - - - - - - -
0.0497 418 0.3451 - - - - - - - - - - - - - -
0.0499 420 0.2973 - - - - - - - - - - - - - -
0.0501 422 0.3734 - - - - - - - - - - - - - -
0.0504 424 0.3992 - - - - - - - - - - - - - -
0.0506 426 0.3234 - - - - - - - - - - - - - -
0.0509 428 0.4007 - - - - - - - - - - - - - -
0.0511 430 0.4446 - - - - - - - - - - - - - -
0.0513 432 0.282 - - - - - - - - - - - - - -
0.0516 434 0.3922 - - - - - - - - - - - - - -
0.0518 436 0.4224 - - - - - - - - - - - - - -
0.0520 438 0.3362 - - - - - - - - - - - - - -
0.0523 440 0.3461 - - - - - - - - - - - - - -
0.0525 442 0.344 - - - - - - - - - - - - - -
0.0528 444 0.4355 - - - - - - - - - - - - - -
0.0530 446 0.3443 - - - - - - - - - - - - - -
0.0532 448 0.4363 - - - - - - - - - - - - - -
0.0535 450 0.3282 - - - - - - - - - - - - - -
0.0537 452 0.3761 - - - - - - - - - - - - - -
0.0539 454 0.3279 - - - - - - - - - - - - - -
0.0542 456 0.3774 - - - - - - - - - - - - - -
0.0544 458 0.3888 - - - - - - - - - - - - - -
0.0547 460 0.5149 - - - - - - - - - - - - - -
0.0549 462 0.343 - - - - - - - - - - - - - -
0.0551 464 0.3943 - - - - - - - - - - - - - -
0.0554 466 0.366 - - - - - - - - - - - - - -
0.0556 468 0.344 - - - - - - - - - - - - - -
0.0558 470 0.3681 - - - - - - - - - - - - - -
0.0561 472 0.3041 - - - - - - - - - - - - - -
0.0563 474 0.3857 - - - - - - - - - - - - - -
0.0566 476 0.3665 - - - - - - - - - - - - - -
0.0568 478 0.3871 - - - - - - - - - - - - - -
0.0570 480 0.4707 - - - - - - - - - - - - - -
0.0573 482 0.4031 - - - - - - - - - - - - - -
0.0575 484 0.385 - - - - - - - - - - - - - -
0.0577 486 0.2868 - - - - - - - - - - - - - -
0.0580 488 0.3637 - - - - - - - - - - - - - -
0.0582 490 0.4484 - - - - - - - - - - - - - -
0.0585 492 0.4984 - - - - - - - - - - - - - -
0.0587 494 0.3725 - - - - - - - - - - - - - -
0.0589 496 0.3102 - - - - - - - - - - - - - -
0.0592 498 0.3529 - - - - - - - - - - - - - -
0.0594 500 0.3929 - - - - - - - - - - - - - -
0.0596 502 0.3012 - - - - - - - - - - - - - -
0.0599 504 0.4137 - - - - - - - - - - - - - -
0.0601 506 0.3987 - - - - - - - - - - - - - -
0.0604 508 0.3724 - - - - - - - - - - - - - -
0.0606 510 0.3761 - - - - - - - - - - - - - -
0.0608 512 0.389 - - - - - - - - - - - - - -
0.0611 514 0.3775 - - - - - - - - - - - - - -
0.0613 516 0.3429 - - - - - - - - - - - - - -
0.0616 518 0.348 - - - - - - - - - - - - - -
0.0618 520 0.3706 - - - - - - - - - - - - - -
0.0620 522 0.3563 - - - - - - - - - - - - - -
0.0623 524 0.3029 - - - - - - - - - - - - - -
0.0625 526 0.4227 - - - - - - - - - - - - - -
0.0627 528 0.3457 - - - - - - - - - - - - - -
0.0630 530 0.3666 - - - - - - - - - - - - - -
0.0632 532 0.3331 - - - - - - - - - - - - - -
0.0635 534 0.3362 - - - - - - - - - - - - - -
0.0637 536 0.3974 - - - - - - - - - - - - - -
0.0639 538 0.3841 - - - - - - - - - - - - - -
0.0642 540 0.3318 - - - - - - - - - - - - - -
0.0644 542 0.3349 - - - - - - - - - - - - - -
0.0646 544 0.461 - - - - - - - - - - - - - -
0.0649 546 0.3271 - - - - - - - - - - - - - -
0.0651 548 0.3901 - - - - - - - - - - - - - -
0.0654 550 0.3292 - - - - - - - - - - - - - -
0.0656 552 0.3291 - - - - - - - - - - - - - -
0.0658 554 0.374 - - - - - - - - - - - - - -
0.0661 556 0.3432 - - - - - - - - - - - - - -
0.0663 558 0.2994 - - - - - - - - - - - - - -
0.0665 560 0.3391 - - - - - - - - - - - - - -
0.0668 562 0.3764 - - - - - - - - - - - - - -
0.0670 564 0.2555 - - - - - - - - - - - - - -
0.0673 566 0.3553 - - - - - - - - - - - - - -
0.0675 568 0.3436 - - - - - - - - - - - - - -
0.0677 570 0.4347 - - - - - - - - - - - - - -
0.0680 572 0.3271 - - - - - - - - - - - - - -
0.0682 574 0.2988 - - - - - - - - - - - - - -
0.0684 576 0.3698 - - - - - - - - - - - - - -
0.0687 578 0.3309 - - - - - - - - - - - - - -
0.0689 580 0.3529 - - - - - - - - - - - - - -
0.0692 582 0.3685 - - - - - - - - - - - - - -
0.0694 584 0.333 - - - - - - - - - - - - - -
0.0696 586 0.3344 - - - - - - - - - - - - - -
0.0699 588 0.3496 - - - - - - - - - - - - - -
0.0701 590 0.3616 - - - - - - - - - - - - - -
0.0703 592 0.3637 - - - - - - - - - - - - - -
0.0706 594 0.3745 - - - - - - - - - - - - - -
0.0708 596 0.3465 - - - - - - - - - - - - - -
0.0711 598 0.4128 - - - - - - - - - - - - - -
0.0713 600 0.3674 0.1694 0.4329 0.5142 0.2365 0.4053 0.3192 0.2211 0.3978 0.8890 0.2161 0.3708 0.3967 0.3738 0.3802

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.0
  • Transformers: 4.46.2
  • PyTorch: 2.1.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
0
Safetensors
Model size
494M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AlexWortega/qwen_emb_600_best_21.11

Base model

Qwen/Qwen2.5-0.5B
Finetuned
(63)
this model

Evaluation results