|
---
|
|
library_name: transformers
|
|
license: apache-2.0
|
|
base_model: ntu-spml/distilhubert
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- marsyas/gtzan
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: distilhubert-finetuned-gtzan
|
|
results:
|
|
- task:
|
|
name: Audio Classification
|
|
type: audio-classification
|
|
dataset:
|
|
name: GTZAN
|
|
type: marsyas/gtzan
|
|
config: default
|
|
split: train
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.86
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# distilhubert-finetuned-gtzan
|
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 1.1749
|
|
- Accuracy: 0.86
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5e-05
|
|
- train_batch_size: 4
|
|
- eval_batch_size: 4
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_ratio: 0.1
|
|
- num_epochs: 25
|
|
- mixed_precision_training: Native AMP
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
|
| 2.0517 | 1.0 | 225 | 2.0004 | 0.47 |
|
|
| 1.3283 | 2.0 | 450 | 1.3458 | 0.57 |
|
|
| 0.729 | 3.0 | 675 | 0.8563 | 0.76 |
|
|
| 0.4007 | 4.0 | 900 | 0.6748 | 0.8 |
|
|
| 0.3923 | 5.0 | 1125 | 0.7340 | 0.78 |
|
|
| 0.2193 | 6.0 | 1350 | 0.8712 | 0.76 |
|
|
| 0.2383 | 7.0 | 1575 | 0.7414 | 0.79 |
|
|
| 0.3 | 8.0 | 1800 | 0.7387 | 0.86 |
|
|
| 0.006 | 9.0 | 2025 | 0.9203 | 0.85 |
|
|
| 0.002 | 10.0 | 2250 | 0.8956 | 0.85 |
|
|
| 0.0014 | 11.0 | 2475 | 0.9831 | 0.86 |
|
|
| 0.001 | 12.0 | 2700 | 0.9406 | 0.86 |
|
|
| 0.0009 | 13.0 | 2925 | 1.0288 | 0.86 |
|
|
| 0.0007 | 14.0 | 3150 | 1.0172 | 0.86 |
|
|
| 0.0007 | 15.0 | 3375 | 0.9912 | 0.89 |
|
|
| 0.0005 | 16.0 | 3600 | 1.0282 | 0.86 |
|
|
| 0.0006 | 17.0 | 3825 | 1.3495 | 0.83 |
|
|
| 0.2453 | 18.0 | 4050 | 1.0340 | 0.87 |
|
|
| 0.0004 | 19.0 | 4275 | 1.1048 | 0.86 |
|
|
| 0.0004 | 20.0 | 4500 | 1.3051 | 0.85 |
|
|
| 0.0003 | 21.0 | 4725 | 1.2280 | 0.85 |
|
|
| 0.0003 | 22.0 | 4950 | 1.2530 | 0.85 |
|
|
| 0.0003 | 23.0 | 5175 | 1.1992 | 0.85 |
|
|
| 0.0003 | 24.0 | 5400 | 1.1881 | 0.85 |
|
|
| 0.0003 | 25.0 | 5625 | 1.1749 | 0.86 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.44.2
|
|
- Pytorch 2.3.1
|
|
- Datasets 2.21.0
|
|
- Tokenizers 0.19.1
|
|
|