xlm-roberta-large-finetuned-wikiner-fr
This model is a fine-tuned version of xlm-roberta-large on the Alizee/wikiner_fr_mixed_caps.
Why this model?
Credits to Jean-Baptiste for building the current "best" model for French NER "camembert-ner" based on wikiNER (Jean-Baptiste/wikiner_fr).
xlm-roberta-large models fine-tuned on conll03 English and especially German were outperforming the Camembert-NER model in my own tasks. This inspired me to build a French version of the xlm-roberta-large models based on the wikiNER dataset, with the hope to create a slightly improved standard for French 4-entity NER.
Intended uses & limitations
4-entity NER for French, with the following tags:
Abbreviation | Description |
---|---|
O | Outside of a named entity |
MISC | Miscellaneous entity |
PER | Person’s name |
ORG | Organization |
LOC | Location |
Performance
It achieves the following results on the evaluation set:
- Loss: 0.0518
- Precision: 0.8881
- Recall: 0.9014
- F1: 0.8947
- Accuracy: 0.9855
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1032 | 0.1 | 374 | 0.0853 | 0.7645 | 0.8170 | 0.7899 | 0.9742 |
0.0767 | 0.2 | 748 | 0.0721 | 0.8111 | 0.8423 | 0.8264 | 0.9785 |
0.074 | 0.3 | 1122 | 0.0655 | 0.8252 | 0.8502 | 0.8375 | 0.9797 |
0.0634 | 0.4 | 1496 | 0.0629 | 0.8423 | 0.8694 | 0.8556 | 0.9809 |
0.0605 | 0.5 | 1870 | 0.0610 | 0.8515 | 0.8711 | 0.8612 | 0.9808 |
0.0578 | 0.6 | 2244 | 0.0594 | 0.8633 | 0.8744 | 0.8688 | 0.9822 |
0.0592 | 0.7 | 2618 | 0.0555 | 0.8624 | 0.8833 | 0.8727 | 0.9825 |
0.0567 | 0.8 | 2992 | 0.0534 | 0.8626 | 0.8838 | 0.8731 | 0.9830 |
0.0522 | 0.9 | 3366 | 0.0563 | 0.8560 | 0.8771 | 0.8664 | 0.9818 |
0.0516 | 1.0 | 3739 | 0.0556 | 0.8702 | 0.8869 | 0.8785 | 0.9831 |
0.0438 | 1.0 | 3740 | 0.0558 | 0.8712 | 0.8873 | 0.8792 | 0.9831 |
0.0395 | 1.1 | 4114 | 0.0565 | 0.8696 | 0.8856 | 0.8775 | 0.9830 |
0.0371 | 1.2 | 4488 | 0.0536 | 0.8762 | 0.8910 | 0.8835 | 0.9838 |
0.0403 | 1.3 | 4862 | 0.0531 | 0.8709 | 0.8887 | 0.8797 | 0.9835 |
0.0366 | 1.4 | 5236 | 0.0517 | 0.8791 | 0.8912 | 0.8851 | 0.9843 |
0.037 | 1.5 | 5610 | 0.0510 | 0.8830 | 0.8936 | 0.8883 | 0.9847 |
0.0368 | 1.6 | 5984 | 0.0492 | 0.8795 | 0.8940 | 0.8867 | 0.9845 |
0.0359 | 1.7 | 6358 | 0.0501 | 0.8833 | 0.8986 | 0.8909 | 0.9850 |
0.034 | 1.8 | 6732 | 0.0496 | 0.8852 | 0.8986 | 0.8918 | 0.9852 |
0.0327 | 1.9 | 7106 | 0.0512 | 0.8762 | 0.8948 | 0.8854 | 0.9843 |
0.0325 | 2.0 | 7478 | 0.0512 | 0.8829 | 0.8945 | 0.8887 | 0.9844 |
0.01 | 2.0 | 7480 | 0.0512 | 0.8836 | 0.8945 | 0.8890 | 0.9843 |
0.0232 | 2.1 | 7854 | 0.0526 | 0.8870 | 0.9002 | 0.8936 | 0.9852 |
0.0235 | 2.2 | 8228 | 0.0530 | 0.8841 | 0.8983 | 0.8911 | 0.9848 |
0.0211 | 2.3 | 8602 | 0.0542 | 0.8875 | 0.9008 | 0.8941 | 0.9852 |
0.0235 | 2.4 | 8976 | 0.0525 | 0.8883 | 0.9008 | 0.8945 | 0.9855 |
0.0232 | 2.5 | 9350 | 0.0525 | 0.8874 | 0.9013 | 0.8943 | 0.9855 |
0.0238 | 2.6 | 9724 | 0.0517 | 0.8861 | 0.9011 | 0.8935 | 0.9854 |
0.0223 | 2.7 | 10098 | 0.0513 | 0.8893 | 0.9016 | 0.8954 | 0.9856 |
0.0226 | 2.8 | 10472 | 0.0517 | 0.8892 | 0.9017 | 0.8954 | 0.9856 |
0.0228 | 2.9 | 10846 | 0.0517 | 0.8879 | 0.9013 | 0.8945 | 0.9855 |
0.0235 | 3.0 | 11217 | 0.0518 | 0.8881 | 0.9014 | 0.8947 | 0.9855 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.0.1
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 90
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Alizee/xlm-roberta-large-finetuned-wikiner-fr
Base model
FacebookAI/xlm-roberta-large