Edit model card

results

This model is a fine-tuned version of distilroberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0022
  • Acc: 0.9997
  • Precision: 0.9997
  • Recall: 0.9997
  • F1 score: 0.9997

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Acc Precision Recall F1 score
0.0069 0.0989 100 0.0401 0.9928 0.9927 0.9930 0.9928
0.0262 0.1978 200 0.0143 0.9975 0.9975 0.9975 0.9975
0.0118 0.2967 300 0.0098 0.9983 0.9983 0.9983 0.9983
0.0135 0.3956 400 0.0088 0.9989 0.9989 0.9989 0.9989
0.0163 0.4946 500 0.0136 0.9981 0.9980 0.9981 0.9980
0.0078 0.5935 600 0.0114 0.9986 0.9986 0.9986 0.9986
0.0103 0.6924 700 0.0132 0.9983 0.9983 0.9983 0.9983
0.0041 0.7913 800 0.0122 0.9986 0.9986 0.9986 0.9986
0.0098 0.8902 900 0.0078 0.9989 0.9989 0.9989 0.9989
0.0045 0.9891 1000 0.0047 0.9989 0.9989 0.9989 0.9989

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
82.1M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Am09/distilroberta-base-fake_news_detector-Am09

Finetuned
(522)
this model

Space using Am09/distilroberta-base-fake_news_detector-Am09 1