|
--- |
|
license: mit |
|
--- |
|
|
|
# ESM-2 for Predicting Binding Sites |
|
|
|
This is the 650M parameter version of ESM-2, finetuned with QLoRA to predict binding sites of proteins based on single sequences alone. |
|
No multiple sequence alignment or structure is required. The embeddings from this model can also be used in structural models. The model is trained on |
|
approximately 12M protein sequences from UniProt, with an 80/20 train/test split. |
|
|
|
## Metrics |
|
|
|
### Train Metrics |
|
|
|
```python |
|
'eval_loss': 0.05597764626145363, |
|
'eval_accuracy': 0.9829392036087405, |
|
'eval_precision': 0.5626191259397847, |
|
'eval_recall': 0.9488112528941492, |
|
'eval_f1': 0.7063763773187873, |
|
'eval_auc': 0.9662524626230765, |
|
'eval_mcc': 0.7235838533979579 |
|
``` |
|
|
|
### Test Metrics |
|
|
|
```python |
|
'eval_loss': 0.16281947493553162, |
|
'eval_accuracy': 0.9569658774883986, |
|
'eval_precision': 0.3209956738348438, |
|
'eval_recall': 0.7883697002335764, |
|
'eval_f1': 0.4562306866120791, |
|
'eval_auc': 0.8746433990040084, |
|
'eval_mcc': 0.48648765699020435 |
|
``` |
|
|
|
The metrics for the earlier checkpoints are not reported here yet. |
|
|
|
## Using the Model |
|
|
|
```python |
|
from transformers import AutoModelForTokenClassification, AutoTokenizer |
|
from peft import PeftModel |
|
import torch |
|
|
|
# Path to the saved LoRA model |
|
model_path = "AmelieSchreiber/esm2_t33_650M_qlora_binding_12M" |
|
# ESM2 base model |
|
base_model_path = "facebook/esm2_t33_650M_UR50D" |
|
|
|
# Load the model |
|
base_model = AutoModelForTokenClassification.from_pretrained(base_model_path) |
|
loaded_model = PeftModel.from_pretrained(base_model, model_path) |
|
|
|
# Ensure the model is in evaluation mode |
|
loaded_model.eval() |
|
|
|
# Load the tokenizer |
|
loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path) |
|
|
|
# Protein sequence for inference |
|
protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence |
|
|
|
# Tokenize the sequence |
|
inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length') |
|
|
|
# Run the model |
|
with torch.no_grad(): |
|
logits = loaded_model(**inputs).logits |
|
|
|
# Get predictions |
|
tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens |
|
predictions = torch.argmax(logits, dim=2) |
|
|
|
# Define labels |
|
id2label = { |
|
0: "No binding site", |
|
1: "Binding site" |
|
} |
|
|
|
# Print the predicted labels for each token |
|
for token, prediction in zip(tokens, predictions[0].numpy()): |
|
if token not in ['<pad>', '<cls>', '<eos>']: |
|
print((token, id2label[prediction])) |
|
``` |