ESM-PTM: ESM-2 for Predicting PTM
Collection
This is a collection of LoRA and QLoRA finetuned ESM-2 models and datasets for predicting post translational modification sites on proteins.
•
6 items
•
Updated
Train metrics:
{'eval_loss': 0.024510689079761505,
'eval_accuracy': 0.9908227849618837,
'eval_precision': 0.22390420883031378,
'eval_recall': 0.9793229461354229,
'eval_f1': 0.3644773616334614,
'eval_auc': 0.9850883581685357,
'eval_mcc': 0.4660172779827273}
Test metrics:
{'eval_loss': 0.1606895923614502,
'eval_accuracy': 0.9363938912290479,
'eval_precision': 0.04428881619840198,
'eval_recall': 0.7708102070506146,
'eval_f1': 0.08376472210171558,
'eval_auc': 0.8539155251667717,
'eval_mcc': 0.17519724897930178}
To use this model, firts run:
!pip install transformers -q
!pip install peft -q
Then run the following on your protein sequence to predict post translational modification sites:
from transformers import AutoModelForTokenClassification, AutoTokenizer
from peft import PeftModel
import torch
# Path to the saved LoRA model
model_path = "AmelieSchreiber/esm2_t6_8M_ptm_lora_500K"
# ESM2 base model
base_model_path = "facebook/esm2_t6_8M_UR50D"
# Load the model
base_model = AutoModelForTokenClassification.from_pretrained(base_model_path)
loaded_model = PeftModel.from_pretrained(base_model, model_path)
# Ensure the model is in evaluation mode
loaded_model.eval()
# Load the tokenizer
loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path)
# Protein sequence for inference
protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence
# Tokenize the sequence
inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length')
# Run the model
with torch.no_grad():
logits = loaded_model(**inputs).logits
# Get predictions
tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens
predictions = torch.argmax(logits, dim=2)
# Define labels
id2label = {
0: "No ptm site",
1: "ptm site"
}
# Print the predicted labels for each token
for token, prediction in zip(tokens, predictions[0].numpy()):
if token not in ['<pad>', '<cls>', '<eos>']:
print((token, id2label[prediction]))